
Package ‘FRASER’
January 20, 2026

Type Package

Title Find RAre Splicing Events in RNA-Seq Data

Version 2.6.0

Date 2025-10-24

Description Detection of rare aberrant splicing events in transcriptome
profiles. Read count ratio expectations are modeled by an autoencoder to
control for confounding factors in the data. Given these expectations,
the ratios are assumed to follow a beta-binomial distribution with a
junction specific dispersion. Outlier events are then identified as
read-count ratios that deviate significantly from this distribution.
FRASER is able to detect alternative splicing, but also intron retention.
The package aims to support diagnostics in the field of rare diseases where
RNA-seq is performed to identify aberrant splicing defects.

biocViews RNASeq, AlternativeSplicing, Sequencing, Software, Genetics,
Coverage

License file LICENSE

URL https://github.com/gagneurlab/FRASER

BugReports https://github.com/gagneurlab/FRASER/issues

RoxygenNote 7.3.3

Encoding UTF-8

VignetteBuilder knitr

Depends BiocParallel, Rsamtools, SummarizedExperiment

Imports AnnotationDbi, BBmisc, Biobase, BiocGenerics, biomaRt,
BSgenome, cowplot, data.table, DelayedArray (>= 0.5.11),
DelayedMatrixStats, extraDistr, generics, GenomeInfoDb,
GenomicAlignments, GenomicFeatures, GenomicRanges, IRanges,
grDevices, ggplot2, ggrepel, HDF5Array, matrixStats, methods,
OUTRIDER, pcaMethods, pheatmap, plotly, PRROC, RColorBrewer,
rhdf5, Rsubread, R.utils, S4Vectors, stats, tibble, tools,
utils, VGAM, RMTstat, pracma

Suggests magick, BiocStyle, knitr, rmarkdown, testthat, covr,
TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, rtracklayer,
SGSeq, ggbio, biovizBase, BSgenome.Hsapiens.UCSC.hg38,
BSgenome.Hsapiens.NCBI.GRCh38,
BSgenome.Hsapiens.1000genomes.hs37d5,
BSgenome.Hsapiens.UCSC.hg19

1

https://github.com/gagneurlab/FRASER
https://github.com/gagneurlab/FRASER/issues

2 Contents

LinkingTo RcppArmadillo, Rcpp

Collate variables.R getNSetterFuns.R FRASER-package.R
FraserDataSet-class.R AllGenerics-definitions.R AllGenerics.R
Fraser-pipeline.R annotationOfRanges.R beta-binomial-testing.R
calculatePSIValue.R countRNAseqData.R example_functions.R
filterExpression.R find_encoding_dimensions.R getURLs.R
helper-functions.R mergeExternalData.R saveHDF5Objects.R
RcppExports.R autoencoder.R updateD.R updateE.R updateRho.R
pvalsNzscore.R makeSimulatedDataset.R fitCorrectionMethods.R
plotMethods.R resultAnnotations.R zzz.R

git_url https://git.bioconductor.org/packages/FRASER

git_branch RELEASE_3_22

git_last_commit b8faec2

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Christian Mertes [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1091-205X>),

Ines Scheller [aut] (ORCID: <https://orcid.org/0000-0003-4533-7857>),
Karoline Lutz [ctb],
Ata Jadid Ahari [ctb] (ORCID: <https://orcid.org/0009-0004-1577-7733>),
Vicente Yepez [aut] (ORCID: <https://orcid.org/0000-0001-7916-3643>),
Julien Gagneur [aut] (ORCID: <https://orcid.org/0000-0002-8924-8365>)

Maintainer Christian Mertes <mertes@in.tum.de>

Contents
annotateRanges . 3
assayNames,FraserDataSet-method . 4
assays,FraserDataSet-method . 5
calculatePSIValues . 6
countRNA . 6
createTestFraserSettings . 11
estimateBestQ . 12
filterVariability . 13
fit . 15
FRASER . 16
FraserDataSet . 20
FraserDataSet-class . 21
getter_setter_functions . 21
injectOutliers . 25
K . 26
length,FraserDataSet-method . 27
loadFraserDataSet . 27
makeSimulatedFraserDataSet . 28
mergeExternalData . 29
plotManhattan . 30
potentialImpactAnnotations . 39
psiTypes . 41

https://orcid.org/0000-0002-1091-205X
https://orcid.org/0000-0003-4533-7857
https://orcid.org/0009-0004-1577-7733
https://orcid.org/0000-0001-7916-3643
https://orcid.org/0000-0002-8924-8365

annotateRanges 3

results,FraserDataSet-method . 42
samples . 44
subset.FRASER . 47

Index 49

annotateRanges Annotates the given FraserDataSet with the HGNC symbol with
biomaRt

Description

Annotates the given FraserDataSet with the HGNC symbol with biomaRt

Usage

annotateRanges(
fds,
feature = "hgnc_symbol",
featureName = feature,
biotype = list("protein_coding"),
ensembl = NULL,
GRCh = 37

)

annotateRangesWithTxDb(
fds,
feature = "SYMBOL",
featureName = "hgnc_symbol",
keytype = "ENTREZID",
txdb = NULL,
orgDb = NULL,
filter = list()

)

Arguments

fds FraserDataSet

feature Defines which feature (default is HGNC symbol) should be annotated. Has to
be the biomaRt feature name or a column name in orgDb.

featureName The column name of the feature in the FraserDataSet mcols.

biotype The biotype for biomaRt.

ensembl The ensembl that should be used. If NULL, the default one is used (hsapi-
ens_gene_ensembl, GRCh37).

GRCh GRCh version to connect to. If this is NULL, then the current GRCh38 is used.
Otherwise, this can only be 37 (default) at the moment (see useEnsembl).

keytype The keytype or column name of gene IDs in the TxDb object (see keytypes for
a list of available ID types).

txdb A TxDb object. If this is NULL, then the default one is used, currently this is
TxDb.Hsapiens.UCSC.hg19.knownGene.

4 assayNames,FraserDataSet-method

orgDb An orgDb object or a data table to map the feature names. If this is NULL, then
org.Hs.eg.db is used as the default.

filter A named list specifying the filters which should be applied to subset to e.g. only
protein-coding genes for annotation. names(filter) needs to be column names
in the given orgDb object (default: no filtering).

Value

FraserDataSet

Examples

fds <- createTestFraserDataSet()

Two ways to annotage ranges with gene names:
either using biomart with GRCh38
try({

fds <- annotateRanges(fds, GRCh=38)
rowRanges(fds, type="j")[,c("hgnc_symbol")]

})

either using biomart with GRCh37
try({

fds <- annotateRanges(fds, featureName="hgnc_symbol_37", GRCh=37)
rowRanges(fds, type="j")[,c("hgnc_symbol_37")]

})

or with a provided TxDb object
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
require(org.Hs.eg.db)
orgDb <- org.Hs.eg.db
fds <- annotateRangesWithTxDb(fds, txdb=txdb, orgDb=orgDb)
rowRanges(fds, type="j")[,"hgnc_symbol"]

assayNames,FraserDataSet-method

Returns the assayNames of FRASER

Description

Returns the assayNames of FRASER

Usage

S4 method for signature 'FraserDataSet'
assayNames(x)

Arguments

x FraserDataSet

assays,FraserDataSet-method 5

Value

Character vector

assays,FraserDataSet-method

Returns the assay for the given name/index of the FraserDataSet

Description

Returns the assay for the given name/index of the FraserDataSet

Usage

S4 method for signature 'FraserDataSet'
assays(x, withDimnames = TRUE, ...)

S4 replacement method for signature 'FraserDataSet,SimpleList'
assays(x, withDimnames = TRUE, HDF5 = TRUE, type = NULL, ...) <- value

S4 replacement method for signature 'FraserDataSet,list'
assays(x, withDimnames = TRUE, HDF5 = TRUE, type = NULL, ...) <- value

S4 replacement method for signature 'FraserDataSet,DelayedMatrix'
assays(x, withDimnames = TRUE, HDF5 = TRUE, type = NULL, ...) <- value

Arguments

x FraserDataSet

withDimnames Passed on to SummarizedExperiment::assays()

... Parameters passed on to SummarizedExperiment::assays()

HDF5 Logical value indicating whether the assay should be stored as a HDF5 file.

type The psi type.

value The new value to which the assay should be set.

Value

(Delayed) matrix.

6 countRNA

calculatePSIValues PSI value calculation

Description

This function calculates the PSI values for each junction and splice site based on the FraserDataSet
object

Usage

calculatePSIValues(
fds,
types = psiTypes,
overwriteCts = FALSE,
BPPARAM = bpparam()

)

Arguments

fds A FraserDataSet object

types A vector with the psi types which should be calculated. Default is all of jaccard,
psi5, psi3 and theta.

overwriteCts FALSE or TRUE (the default) the total counts (aka N) will be recalculated based
on the existing junction counts (aka K)

BPPARAM the BiocParallel parameters for the parallelization

Value

FraserDataSet

Examples

fds <- createTestFraserDataSet()
fds <- calculatePSIValues(fds, types="jaccard")

usually one would run this function for all psi types by using:
fds <- calculatePSIValues(fds)

countRNA Count RNA-seq data

Description

The FRASER package provides multiple functions to extract and count both split and non-spliced
reads from bam files. See Detail and Functions for more information.

countRNA 7

Usage

countRNAData(
fds,
NcpuPerSample = 1,
minAnchor = 5,
recount = FALSE,
BPPARAM = bpparam(),
genome = NULL,
junctionMap = NULL,
filter = TRUE,
minExpressionInOneSample = 20,
keepNonStandardChromosomes = TRUE,
countDir = file.path(workingDir(fds), "savedObjects", nameNoSpace(name(fds))),
...

)

getSplitReadCountsForAllSamples(
fds,
NcpuPerSample = 1,
junctionMap = NULL,
recount = FALSE,
BPPARAM = bpparam(),
genome = NULL,
countFiles = NULL,
keepNonStandardChromosomes = TRUE,
outDir = file.path(workingDir(fds), "savedObjects", nameNoSpace(name(fds)),
"splitCounts")

)

getNonSplitReadCountsForAllSamples(
fds,
splitCountRanges,
NcpuPerSample = 1,
minAnchor = 5,
recount = FALSE,
BPPARAM = bpparam(),
longRead = FALSE,
outDir = file.path(workingDir(fds), "savedObjects", nameNoSpace(name(fds)),
"nonSplitCounts")

)

addCountsToFraserDataSet(fds, splitCounts, nonSplitCounts)

countSplitReads(
sampleID,
fds,
NcpuPerSample = 1,
genome = NULL,
recount = FALSE,
keepNonStandardChromosomes = TRUE,
bamfile = bamFile(fds[, sampleID]),
pairedend = pairedEnd(fds[, sampleID]),

8 countRNA

strandmode = strandSpecific(fds[, sampleID]),
cacheFile = getSplitCountCacheFile(sampleID, fds),
scanbamparam = scanBamParam(fds),
coldata = colData(fds)

)

mergeCounts(
countList,
fds,
junctionMap = NULL,
assumeEqual = FALSE,
spliceSiteCoords = NULL,
BPPARAM = SerialParam()

)

countNonSplicedReads(
sampleID,
splitCountRanges,
fds,
NcpuPerSample = 1,
minAnchor = 5,
recount = FALSE,
spliceSiteCoords = NULL,
longRead = FALSE

)

Arguments

fds A FraserDataSet object

NcpuPerSample A BiocParallel param object or a positive integer to configure the parallel back-
end of the internal loop per sample

minAnchor Minimum overlap around the Donor/Acceptor for non spliced reads. Default to
5

recount if TRUE the cache is ignored and the bam file is recounted.

BPPARAM the BiocParallel parameters for the parallelization

genome NULL (default) or a character vector specifying the names of the reference
genomes that were used to align the reads for each sample. The names have
to be in a way accepted by the getBSgenome function. Available genomes can
be listed using the available.genomes function from the BSgenome package.
If genome is of length 1, the same reference genome will be used for all samples.
If genome is supplied and strandSpecific(fds) == 0L (unstranded), then the
strand information will be estimated by checking the dinucleotides found at the
intron boundaries (see summarizeJunctions in GenomicAlignments package
for details). This can e.g. help to avoid ambiguities when adding gene names
from a gene annotation to the introns in a later step.

junctionMap A object or file containing a map of all junctions of interest across all samples

filter If TRUE, splice sites of introns with low read support in all samples are not
considered when calculating the non-split reads. This helps to speed up the
subsequent steps.

countRNA 9

minExpressionInOneSample

The minimal split read count in at least one sample that is required for an intron
to pass the filter.

keepNonStandardChromosomes

Logical value indicating if non standard chromosomes should also be counted.
Defaults to TRUE.

countDir The directory in which the tsv containing the position and counts of the junctions
should be placed.

... Further parameters passed on to Rsubread::featureCounts.

countFiles If specified, the split read counts for all samples are read from the specified
files. Should be a vector of paths to files containing the split read counts for
the individual samples. Reading from files is only supported for tsv(.gz) or
RDS files containing GRranges objects. The order of the individual sample files
should correspond to the order of the samples in the fds.

outDir The full path to the output folder containing the merged counts. If the given
folder already exists and stores a SummarizedExperiment object, the counts
from this folder will be read in and used in the following (i.e. the reads are
not recounted), unless the option recount=TRUE is used. If this folder doesn’t
exist or if recount=TRUE, then it will be created after counting has finished.

splitCountRanges

The merged GRanges object containing the positions of all the introns in the
dataset over all samples.

longRead If TRUE, then the isLongRead option of Rsubread::featureCounts is used when
counting the non spliced reads overlapping splice sites.

splitCounts The SummarizedExperiment object containing the position and counts of all the
introns in the dataset for all samples.

nonSplitCounts The SummarizedExperiment object containing the position and non split read
counts of all splice sites present in the dataset for all samples.

sampleID The ID of the sample to be counted.

bamfile The BAM file to be used to extract the counts. Defaults to the BAM file defined
in the FraserDataSet object.

pairedend TRUE or FALSE if the BAM file is paired end. Defaults to the value specified in
the FraserDataSet object.

strandmode 0 (no, default), 1 (stranded), or 2 (revers) to specify the used protocol for the
RNA-seq experiment.

cacheFile File path to the cache, where counts are stored.

scanbamparam The ScanBamParam object which is used for loading the reads from the BAM
file before counting. Defaults to the params stored in the FraserDataSet object.

coldata The colData as given by the FraserDataSet object.

countList A list of GRanges objects containing the counts that should be merged into one
object.

assumeEqual Logical indicating whether all objects in countList can be assumed to contain
counts for the same ranges. If FALSE, merging of the ranges is performed.

spliceSiteCoords

A GRanges object containing the positions of the splice sites. If it is NULL,
then splice sites coordinates are calculated first based on the positions of the
junctions defined from the split reads.

10 countRNA

Details

The functions described in this file extract and count both the split and the non-spliced reads from
bam files.

countRNAData is the main function that takes care of all counting steps and returns a FraserDataSet
containing the counts for all samples in the fds.

getSplitReadCountsForAllSamples counts split reads for all samples and getNonSplitReadCountsForAllSamples
counts non split reads overlapping splice sites for all samples. addCountsToFraserDataSet adds
these counts to an existing fds.

countSplitReads calculates the split read counts for a single sample. countNonSplicedReads
counts the non split reads overlapping with splice sites for a single sample.

mergeCounts merges the counts from different samples into a single count object, where the counts
for junctions that are not present in a sample are set to zero.

Value

countRNAData returns a FraserDataSet.

getSplitReadCountsForAllSamples returns a GRanges object.

getNonSplitReadCountsForAllSamples returns a GRanges object.

addCountsToFraserDataSet returns a FraserDataSet.

countSplitReads returns a GRanges object.

mergeCounts returns a SummarizedExperiment object.

countNonSplicedReads returns a GRanges object.

Functions

• countRNAData(): This method extracts and counts the split reads and non spliced reads from
RNA bam files.

• getSplitReadCountsForAllSamples(): This method creates a GRanges object containing
the split read counts from all specified samples.

• getNonSplitReadCountsForAllSamples(): This method creates a GRanges object contain-
ing the non split read counts at the exon-intron boundaries inferred from the GRanges object
containing the positions of all the introns in this dataset.

• addCountsToFraserDataSet(): This method adds the split read and non split read counts to
a existing FraserDataSet containing the settings.

• countSplitReads(): This method counts all split reads in a bam file for a single sample.

• mergeCounts(): This method merges counts for multiple samples into one SummarizedEx-
periment object.

• countNonSplicedReads(): This method counts non spliced reads based on the given target
(acceptor/donor) regions for a single sample.

Examples

On Windows SNOW is the default for the parallele backend, which can be
very slow for many but small tasks. Therefore, we will use
for the example the SerialParam() backend.
if(.Platform$OS.type != "unix") {

register(SerialParam())
}

createTestFraserSettings 11

fds <- countRNAData(createTestFraserSettings())

createTestFraserSettings

Create a test dataset

Description

Create a test case dataset based on the test sample annotation to be used in the vignette and to explore
the functionality of the FRASER package. Dependent on the request only the sample annotation or
a full fitted model is returned.

Usage

createTestFraserSettings(workingDir = "FRASER_output")

createTestFraserDataSet(
workingDir = "FRASER_output",
rerun = FALSE,
metrics = "jaccard"

)

Arguments

workingDir Directory where to store HDF5 and RDS files. Defaults to FRASER_output in
the current working directory.

rerun Defaults to FALSE. If set to TRUE it reruns the full fit of the model.

metrics The splice metrics that should be included in the test fds. One or several of
’jaccard’, ’psi5’, ’psi3’ or ’theta’.

Value

A FraserDataSet object that contains a test case

Examples

fds <- createTestFraserSettings()
fds

fds <- createTestFraserDataSet()
fds

12 estimateBestQ

estimateBestQ Find optimal encoding dimension

Description

Finds the optimal encoding dimension by either Optimal Hard Thresholding or injecting artificial
splicing outlier ratios while maximizing the precision-recall curve.

Usage

estimateBestQ(
fds,
type = "jaccard",
useOHT = TRUE,
implementation = "PCA",
q_param = getEncDimRange(fds),
noise_param = 0,
minDeltaPsi = 0.1,
iterations = 5,
setSubset = 50000,
injectFreq = 0.01,
BPPARAM = bpparam(),
internalThreads = 1,
plot = TRUE,
delayed = ifelse(ncol(fds) <= 300, FALSE, TRUE),
...

)

Arguments

fds A FraserDataSet object

type The type of PSI (jaccard, psi5, psi3 or theta for theta/splicing efficiency)

useOHT If TRUE (default), Optimal Hard Thresholding (OHT) is used to estimate the op-
timal encoding dimension. OHT is only supported for the Intron Jaccard Index.

implementation The method that should be used to correct for confounders.

q_param Vector specifying which values of q should be tested

noise_param Vector specifying which noise levels should be tested.

minDeltaPsi Minimal delta psi of an intron to be be considered a variable intron.

iterations The maximal number of iterations. When the autoencoder has not yet converged
after these number of iterations, the fit stops anyway.

setSubset The size of the subset of the most variable introns that should be used for the
hyperparameter optimization.

injectFreq The frequency with which outliers are injected into the data.

BPPARAM the BiocParallel parameters for the parallelization
internalThreads

The number of threads used internally.

filterVariability 13

plot If TRUE, a plot of the singular values (OHT) or the area under the curve and
the model loss for each evaluated parameter combination (grid-search) will be
displayed after the estimation procedure.

delayed If FALSE, count matrices will be loaded into memory (faster calculations), oth-
erwise the function works on the delayedMatrix representations (more memory
efficient). The default value depends on the number of samples in the fds-object.

... Additional parameters passed to injectOutliers.

Value

FraserDataSet

See Also

FRASER

Examples

generate data
fds <- makeSimulatedFraserDataSet(m=15, j=20)
fds <- calculatePSIValues(fds)

run OHT
fds <- estimateBestQ(fds, type="jaccard", useOHT=TRUE)

run hyperparameter optimization
fds <- estimateBestQ(fds, type="jaccard", useOHT=FALSE, q_param=c(2, 5))

get estimated optimal dimension of the latent space
bestQ(fds, type="jaccard")
hyperParams(fds, type="jaccard")

filterVariability Filtering FraserDataSets

Description

This method can be used to filter out introns that are not reliably detected and to remove introns
with no variablity between samples.

Usage

filterVariability(object, ...)

filterExpressionAndVariability(
object,
minExpressionInOneSample = 20,
quantile = 0.75,
quantileMinExpression = 10,
minDeltaPsi = 0,
filter = TRUE,

14 filterVariability

delayed = ifelse(ncol(object) <= 300, FALSE, TRUE),
filterOnJaccard = TRUE,
BPPARAM = bpparam()

)

S4 method for signature 'FraserDataSet'
filterExpression(
object,
minExpressionInOneSample = 20,
quantile = 0.75,
quantileMinExpression = 10,
filter = TRUE,
delayed = ifelse(ncol(object) <= 300, FALSE, TRUE),
filterOnJaccard = TRUE,
BPPARAM = bpparam()

)

S4 method for signature 'FraserDataSet'
filterVariability(
object,
minDeltaPsi = 0,
filter = TRUE,
delayed = ifelse(ncol(object) <= 300, FALSE, TRUE),
filterOnJaccard = TRUE,
BPPARAM = bpparam()

)

Arguments

object A FraserDataSet object

... Further parameters passed on to Rsubread::featureCounts.
minExpressionInOneSample

The minimal read count in at least one sample that is required for an intron to
pass the filter.

quantile Defines which quantile should be considered for the filter.
quantileMinExpression

The minimum read count an intron needs to have at the specified quantile to pass
the filter.

minDeltaPsi Only introns for which the maximal difference in the psi value of a sample to
the mean psi of the intron is larger than this value pass the filter.

filter If TRUE, a subsetted fds containing only the introns that passed all filters is
returned. If FALSE, no subsetting is done and the information of whether an
intron passed the filters is only stored in the mcols.

delayed If FALSE, count matrices will be loaded into memory, otherwise the function
works on the delayedMatrix representations. The default value depends on the
number of samples in the fds-object.

filterOnJaccard

If TRUE, the Intron Jaccard Metric is used to define express introns during fit-
lering. Otherwise, the psi5, psi3 and theta metrics are used (default: TRUE).

BPPARAM the BiocParallel parameters for the parallelization

fit 15

Value

A FraserDataSet with information about which junctions passed the filters. If filter=TRUE, the
filtered FraserDataSet is returned.

Functions

• filterExpressionAndVariability(): This functions filters out both introns with low read
support and introns that are not variable across samples.

• filterExpression(FraserDataSet): This function filters out introns and corresponding
splice sites that have low read support in all samples.

• filterVariability(FraserDataSet): This function filters out introns and corresponding
splice sites that have low read support in all samples.

Examples

fds <- createTestFraserDataSet()
fds <- filterExpressionAndVariability(fds, minDeltaPsi=0.1, filter=FALSE)
mcols(fds, type="jaccard")[, c(

"maxCount", "passedExpression", "maxDJaccard", "passedVariability")]

plotFilterExpression(fds)
plotFilterVariability(fds)

fit Fitting the denoising autoencoder

Description

This method corrects for confounders in the data and fits a beta-binomial distribution to the in-
trons/splice sites.

For more details please see FRASER.

Usage

S3 method for class 'FraserDataSet'
fit(
object,
implementation = c("PCA", "PCA-BB-Decoder", "AE", "AE-weighted", "PCA-BB-full",
"fullAE", "PCA-regression", "PCA-reg-full", "PCA-BB-Decoder-no-weights", "BB"),
q,
type = psiTypes,
rhoRange = c(-30, 30),
weighted = FALSE,
noiseAlpha = 1,
convergence = 1e-05,
iterations = 15,
initialize = TRUE,
control = list(),
BPPARAM = bpparam(),

16 FRASER

nSubset = 15000,
minDeltaPsi = 0.1,
...

)

Arguments

object A FraserDataSet object

implementation The method that should be used to correct for confounders.

q The encoding dimensions to be used during the fitting proceadure. Should be
fitted using estimateBestQ if unknown. If a named vector is provided it is used
for the different splicing types.

type The type of PSI (jaccard, psi5, psi3 or theta for theta/splicing efficiency)

rhoRange Defines the range of values that rho parameter from the beta-binomial distribu-
tion is allowed to take. For very small values of rho, the loss can be instable, so
it is not recommended to allow rho < 1e-8.

weighted If TRUE, the weighted implementation of the autoencoder is used

noiseAlpha Controls the amount of noise that is added for the denoising autoencoder.

convergence The fit is considered to have converged if the difference between the previous
and the current loss is smaller than this threshold.

iterations The maximal number of iterations. When the autoencoder has not yet converged
after these number of iterations, the fit stops anyway.

initialize If FALSE and a fit has been previoulsy run, the values from the previous fit will
be used as initial values. If TRUE, (re-)initialization will be done.

control List of control parameters passed on to optim().

BPPARAM the BiocParallel parameters for the parallelization

nSubset The size of the subset to be used in fitting if subsetting is used.

minDeltaPsi Minimal delta psi of an intron to be be considered a variable intron.

... Currently not used

Value

FraserDataSet

See Also

FRASER

FRASER FRASER: Find RAre Splicing Events in RNA-seq data

Description

This help page describes the FRASER function which can be used run the default FRASER pipeline.
This pipeline combines the beta-binomial fit, the computation of Z scores and p values as well as
the computation of delta-PSI values.

FRASER 17

Usage

FRASER(
fds,
q,
type = fitMetrics(fds),
implementation = c("PCA", "PCA-BB-Decoder", "AE-weighted", "AE", "BB"),
iterations = 15,
BPPARAM = bpparam(),
correction,
subsets = NULL,
...

)

calculateZscore(fds, type = currentType(fds), logit = TRUE)

calculatePvalues(
fds,
type = currentType(fds),
implementation = "PCA",
BPPARAM = bpparam(),
distributions = c("betabinomial"),
capN = 5 * 1e+05

)

calculatePadjValues(
fds,
type = currentType(fds),
method = "BY",
rhoCutoff = NA,
geneLevel = TRUE,
geneColumn = "hgnc_symbol",
subsets = NULL,
BPPARAM = bpparam()

)

calculatePadjValuesOnSubset(
fds,
genesToTest,
subsetName,
type = currentType(fds),
method = "BY",
geneColumn = "hgnc_symbol",
BPPARAM = bpparam()

)

Arguments

fds A FraserDataSet object

q The encoding dimensions to be used during the fitting proceadure. Should be
fitted using estimateBestQ if unknown. If a named vector is provided it is used
for the different splicing types.

type The type of PSI (jaccard, psi5, psi3 or theta for theta/splicing efficiency)

18 FRASER

implementation The method that should be used to correct for confounders.

iterations The maximal number of iterations. When the autoencoder has not yet converged
after these number of iterations, the fit stops anyway.

BPPARAM A BiocParallel object to run the computation in parallel

correction Deprecated. The name changed to implementation.

subsets A named list of named lists specifying any number of gene subsets (can differ
per sample). For each subset, FDR correction will be limited to genes in the
subset, and the FDR corrected pvalues stored as an assay in the fds object in
addition to the transcriptome-wide FDR corrected pvalues. See the examples
for how to use this argument.

... Additional parameters passed on to the internal fit function

logit Indicates if z scores are computed on the logit scale (default) or in the natural
(psi) scale.

distributions The distribution based on which the p-values are calculated. Possible are beta-
binomial, binomial and normal.

capN Counts are capped at this value to speed up the p-value calculation

method The p.adjust method that should be used for genome-wide multiple testing cor-
rection.

rhoCutoff The cutoff value on the fitted rho value (overdispersion parameter of the betabi-
nomial) above which junctions are masked with NA during p value adjustment
(default: NA, no masking).

geneLevel Logical value indiciating whether gene-level p values should be calculated. De-
faults to TRUE.

geneColumn The column name of the column that has the gene annotation that will be used
for gene-level pvalue computation.

genesToTest A named list with the subset of genes to test per sample. The names must corre-
spond to the sampleIDs in the given fds object.

subsetName The name under which the resulting FDR corrected pvalues will be stored in
metadata(fds).

Details

All computed values are returned as an FraserDataSet object. To have more control over each
analysis step, one can call each function separately.

• fit to control for confounding effects and fit the beta binomial model parameters

• calculatePvalues to calculate the nominal p values

• calculatePadjValues to calculate adjusted p values (per sample)

• calculateZscore to calculate the Z scores

Available methods to correct for the confounders are currently: a denoising autoencoder with a BB
loss ("AE" and "AE-weighted"), PCA ("PCA"), a hybrid approach where PCA is used to fit the
latent space and then the decoder of the autoencoder is fit using the BB loss ("PCA-BB-Decoder").
Although not recommended, it is also possible to directly fit the BB distrbution to the raw counts
("BB").

Value

FraserDataSet

FRASER 19

Functions

• FRASER(): This function runs the default FRASER pipeline combining the beta-binomial fit,
the computation of Z scores and p values as well as the computation of delta-PSI values.

• calculateZscore(): This function calculates z-scores based on the observed and expected
logit psi.

• calculatePvalues(): This function calculates two-sided p-values based on the beta-binomial
distribution (or binomial or normal if desired). The returned p values are not yet adjusted with
Holm’s method per donor or acceptor site, respectively.

• calculatePadjValues(): This function adjusts the previously calculated p-values per sam-
ple for multiple testing. First, the previoulsy calculated junction-level p values are adjusted
with Holm’s method per donor or acceptor site, respectively. Then, if gene symbols have been
annotated to junctions (and not otherwise requested), gene-level p values are computed.

• calculatePadjValuesOnSubset(): This function does FDR correction only for all junctions
in a certain subset of genes which can differ per sample. Requires gene symbols to have been
annotated to junctions. As with the full FDR correction across all junctions, first the previously
calculated junction-level p values are adjusted with Holm’s method per donor or acceptor site,
respectively. Then, gene-level p values are computed.

Author(s)

Christian Mertes <mertes@in.tum.de>

Ines Scheller <scheller@in.tum.de>

See Also

fit

Examples

set default parallel backend
register(SerialParam())

preprocessing
fds <- createTestFraserDataSet()

filtering not expressed introns
fds <- calculatePSIValues(fds)
fds <- filterExpressionAndVariability(fds)

Run the full analysis pipeline: fits distribution and computes p values
fds <- FRASER(fds, q=2, implementation="PCA")

afterwards, the fitted fds-object can be saved and results can
be extracted and visualized, see ?saveFraserDataSet, ?results and
?plotVolcano

The functions run inside the FRASER function can also be directly
run themselves.
To directly run the fit function:
fds <- fit(fds, implementation="PCA", q=2, type="jaccard")

To directly run the nomial and adjusted p value and z score
calculation, the following functions can be used:

20 FraserDataSet

fds <- calculatePvalues(fds, type="jaccard")
head(pVals(fds, type="jaccard"))
fds <- calculatePadjValues(fds, type="jaccard", method="BY")
head(padjVals(fds, type="jaccard"))
fds <- calculateZscore(fds, type="jaccard")
head(zScores(fds, type="jaccard"))

example of restricting FDR correction to subsets of genes of interest
genesOfInterest <- list("sample1"=c("TIMMDC1"), "sample2"=c("MCOLN1"))
fds <- calculatePadjValues(fds, type="jaccard",

subsets=list("exampleSubset"=genesOfInterest))
padjVals(fds, type="jaccard", subsetName="exampleSubset")
padjVals(fds, type="jaccard", level="gene", subsetName="exampleSubset")
fds <- calculatePadjValues(fds, type="jaccard",

subsets=list("anotherExampleSubset"=c("TIMMDC1")))
padjVals(fds, type="jaccard", subsetName="anotherExampleSubset")

only adding FDR corrected pvalues on a subset without calculating
transcriptome-wide FDR again:
fds <- calculatePadjValuesOnSubset(fds, genesToTest=genesOfInterest,

subsetName="setOfInterest", type="jaccard")
padjVals(fds, type="jaccard", subsetName="setOfInterest")

FraserDataSet The FRASER dataset object

Description

Constructs an FRASER object based on the given input. It can take only the annotation (colData)
or count tables (junctions/spliceSites).

Usage

FraserDataSet(colData = NULL, junctions = NULL, spliceSites = NULL, ...)

Arguments

colData A DataFrame containing the annotation of the samples
junctions, spliceSites

A data.frame like object containing the raw counts for each junction or splice
site. It requires the columns startID and endID for the junctions and spliceSiteID
and type for the splice sites. Those columns identifies the corresponding splice
site for the given junction and map to the splice site. For each sample the counts
are saved in a corresponding column with the same name. It can also be a
GRange object.

... Any parameters corresponding to the slots and their possible values. See Fraser-
DataSet

Value

A FraserDataSet object.

FraserDataSet-class 21

Author(s)

Christian Mertes <mertes@in.tum.de>

Examples

fraser <- FraserDataSet()

example sample annoation
sampleTable <- data.table::fread(system.file("extdata",

"sampleTable_countTable.tsv", package="FRASER", mustWork=TRUE))

get raw counts
junctionCts <- data.table::fread(system.file("extdata",

"raw_junction_counts.tsv.gz", package="FRASER", mustWork=TRUE))
spliceSiteCts <- data.table::fread(system.file("extdata",

"raw_site_counts.tsv.gz", package="FRASER", mustWork=TRUE))

create FRASER object
fds <- FraserDataSet(colData=sampleTable, junctions=junctionCts,

spliceSites=spliceSiteCts, name="Example Dataset")

FraserDataSet-class FraserDataSet

Description

This class is designed to store the whole FRASER data set needed for an analysis of a disease cohort

Author(s)

Christian Mertes <mertes@in.tum.de>

getter_setter_functions

Getter/Setter functions

Description

This is a collection of small accessor/setter functions for easy access to the values within the
FRASER model.

Usage

featureExclusionMask(fds, type = currentType(fds))

featureExclusionMask(fds, type = currentType(fds)) <- value

rho(fds, type = currentType(fds))

22 getter_setter_functions

zScores(fds, type = currentType(fds), byGroup = FALSE, ...)

pVals(
fds,
type = currentType(fds),
level = "site",
filters = list(),
dist = "BetaBinomial",
...

)

padjVals(
fds,
type = currentType(fds),
dist = c("BetaBinomial"),
level = "site",
subsetName = NULL,
filters = list(),
...

)

availableFDRsubsets(fds)

predictedMeans(fds, type = currentType(fds))

deltaPsiValue(fds, type = currentType(fds))

currentType(fds)

currentType(fds) <- value

fitMetrics(fds)

fitMetrics(fds) <- value

pseudocount(value = NULL)

hyperParams(fds, type = currentType(fds), all = FALSE)

bestQ(fds, type = currentType(fds))

dontWriteHDF5(fds)

dontWriteHDF5(fds) <- value

verbose(fds)

verbose(fds) <- value

Arguments

fds An FraserDataSet object.

getter_setter_functions 23

type The type of psi (psi5, psi3 or theta)

value The new value to be assigned.

byGroup If TRUE, aggregation by donor/acceptor site will be done.

... Internally used parameters.

level Indicates if the retrieved p values should be adjusted on the donor/acceptor site-
level (default) or if unadjusted junction-level p values should be returned.

filters A named list giving the filters that were applied for masking during p value
correction. Used for storing and retrieving the correct set of requested p values.

dist Distribution for which the p-values should be extracted.

subsetName The name of a subset of genes of interest for which FDR corrected pvalues
were previously computed. Default is NULL (using transcriptome-wide FDR
corrected pvalues).

all Logical value indicating whether hyperParams(fds) should return the results
of all evaluated parameter combinations or only for the optimal parameter com-
bination.

Value

A (delayed) matrix or vector dependent on the type of data retrieved.

Functions

• featureExclusionMask(): Retrieves a logical vector indicating for each junction whether it
is included or excluded during the fitting procedure.

• featureExclusionMask(fds, type = currentType(fds)) <- value: To remove certain junc-
tions from being used in the train step of the encoding dimension we can set the featureExclusion
vector to FALSE. This can be helpfull if we have local linkage between features which we do
not want to model by the autoencoder.

• rho(): Returns the fitted rho values for the beta-binomial distribution

• zScores(): This returns the calculated z-scores.

• pVals(): This returns the calculated p-values.

• padjVals(): This returns the adjusted p-values.

• availableFDRsubsets(): This returns the names of FDR subsets for which adjusted p values
have been calculated.

• predictedMeans(): This returns the fitted mu (i.e. psi) values.

• deltaPsiValue(): Returns the difference between the observed and the fitted psi values.

• currentType(): Returns the psi type that is used within several methods in the FRASER
package (defaults to jaccard).

• currentType(fds) <- value: Sets the psi type that is to be used within several methods in
the FRASER package.

• fitMetrics(): Returns the splice metrics that will be fitted (defaults to jaccard, used within
several methods in the FRASER package).

• fitMetrics(fds) <- value: Sets the splice metrics that will be fitted (used within several
methods in the FRASER package).

• pseudocount(): Sets and returns the pseudo count used within the FRASER fitting proce-
dure.

24 getter_setter_functions

• hyperParams(): This returns the results of OHT or the hyperparameter optimization. It re-
turns NULL if estimateBestQ was not run yet.

• bestQ(): This returns the optimal latent space dimension estimated by OHT or a hyperpa-
rameter optimization. If estimateBestQ has not been run before, a simple estimate of about
a tenth of the number of samples is returned.

• dontWriteHDF5(): Gets the current value of whether the assays should be stored as hdf5 files.

• dontWriteHDF5(fds) <- value: Sets whether the assays should be stored as hdf5 files.

• verbose(): Dependent on the level of verbosity the algorithm reports more or less to the user.
0 means being quiet and 10 means everything.

• verbose(fds) <- value: Sets the verbosity level to a value between 0 and 10. 0 means being
quiet and 10 means reporting everything.

Examples

fds <- createTestFraserDataSet()

should assays be saved as hdf5?
dontWriteHDF5(fds)
dontWriteHDF5 <- TRUE

get/set the splice metric for which results should be retrieved
currentType(fds) <- "jaccard"
currentType(fds)

get fitted parameters
bestQ(fds)
predictedMeans(fds)
rho(fds)

get statistics
pVals(fds)
padjVals(fds)

zscore not calculated by default
fds <- calculateZscore(fds, type="jaccard")
zScores(fds)

set and get pseudocount
pseudocount(4L)
pseudocount()

retrieve or set a mask to exclude certain junctions in the fitting step
featureExclusionMask(fds, type="jaccard") <- sample(

c(FALSE, TRUE), nrow(mcols(fds, type="jaccard")), replace=TRUE)
featureExclusionMask(fds, type="jaccard")

controlling the verbosity level of the output of some algorithms
verbose(fds) <- 2
verbose(fds)

injectOutliers 25

injectOutliers Inject artificial outliers in an existing fds

Description

Inject artificial outliers in an existing fds

Usage

injectOutliers(
fds,
type = psiTypes,
freq = 0.001,
minDpsi = 0.2,
minCoverage = 2,
deltaDistr = "uniformDistr",
verbose = FALSE,
method = c("samplePSI", "meanPSI", "simulatedPSI"),
BPPARAM = bpparam()

)

Arguments

fds FraserDataSet

type The psi type

freq The injection frequency.

minDpsi The minimal delta psi with which outliers will be injected.

minCoverage The minimal total coverage (i.e. N) required for a junction to be considered for
injection of an outlier.

deltaDistr The distribution from which the delta psi value of the injections is drawn (de-
fault: uniform distribution).

verbose Should additional information be printed during computation?

method Defines by which method the new psi of injections is computed, i.e. to which
value the delta psi of the injection is added: "meanPSI" for adding to the mean
psi of the junction over all samples or "samplePSI" to add to the psi value of the
junction in the specific sample. "simulatedPSI" is only possible if a simulated
dataset is used.

BPPARAM A BiocParallel object to run the computation in parallel

Value

FraserDataSet

Examples

A generic dataset
fds <- makeSimulatedFraserDataSet()
fds <- calculatePSIValues(fds)
fds <- injectOutliers(fds, minDpsi=0.2, freq=1E-3)

26 K

K Getter/setter for count data

Description

Getter/setter for count data

setter for count data

Usage

K(fds, type = currentType(fds))

N(fds, type = currentType(fds))

S4 method for signature 'FraserDataSet'
counts(object, type = currentType(object), side = c("ofInterest", "otherSide"))

S4 replacement method for signature 'FraserDataSet,ANY'
counts(
object,
type = currentType(object),
side = c("ofInterest", "otherSide"),
...

) <- value

Arguments

fds, object FraserDataSet

type The psi type.

side "ofInterest" for junction counts, "other" for sum of counts of all other junctions
at the same donor site (psi5) or acceptor site (psi3), respectively.

... Further parameters that are passed to assays(object,...)

value An integer matrix containing the counts.

Value

FraserDataSet

Examples

fds <- createTestFraserDataSet()

counts(fds, side="ofInterest")
counts(fds, type="jaccard", side="other")
head(K(fds))
head(K(fds, type="psi5"))
head(K(fds, type="psi3"))
head(N(fds, type="theta"))

length,FraserDataSet-method 27

length,FraserDataSet-method

retrieve the length of the object (aka number of junctions)

Description

retrieve the length of the object (aka number of junctions)

Usage

S4 method for signature 'FraserDataSet'
length(x)

Arguments

x FraserDataSet

Value

Length of the object.

loadFraserDataSet Loading/Saving FraserDataSets

Description

This is a convenient function to load and save a FraserDataSet object. It looks and saves the Fraser-
DataSet objects and HDF5 files on disk under the given working dir. Internally it uses HDF5 files
for all assays.

Usage

loadFraserDataSet(dir, name = NULL, file = NULL, upgrade = FALSE)

saveFraserDataSet(fds, dir = NULL, name = NULL, rewrite = FALSE)

Arguments

dir A path where to save the objects (replaces the working directory)

name The analysis name of the project (saved within the ‘dir‘)

file The file path to the fds-object.RDS file that should be loaded.

upgrade Should the version of the loaded object be updated?

fds A FraserDataSet object ot be saved

rewrite logical if the object should be rewritten. This makes sense if you have filtered
or subsetted the object and want to save only the subsetted version

Value

FraserDataSet

28 makeSimulatedFraserDataSet

Examples

fds <- createTestFraserSettings()
name(fds) <- "saveing_test"

make sure the object is saved to disc
dontWriteHDF5(fds) <- FALSE
fdsSaved <- saveFraserDataSet(fds)
fdsSaved

load object from disc
fdsLoaded <- loadFraserDataSet(dir=workingDir(fds), name=name(fds))
fdsLoaded

all.equal(fdsSaved, fdsLoaded)

makeSimulatedFraserDataSet

Create an simulated example data set for FRASER

Description

Simulates a data set based on random counts following a beta binomial (or Dirichlet-Multinomial)
distribution.

Usage

makeSimulatedFraserDataSet(
m = 100,
j = 500,
q = 10,
distribution = c("BB", "DM"),
...

)

Arguments

m Number of simulated samples

j Number of simulated junctions

q number of simulated latent variables.

distribution Either "BB" for a beta-binomial simulation or "DM" for a dirichlet-multinomial
simulation.

... Further arguments used to construct the FraserDataSet.

Value

An FraserDataSet containing an example dataset based on simulated data

mergeExternalData 29

Examples

A generic dataset
fds1 <- makeSimulatedFraserDataSet()
fds1

A generic dataset with specificed sample size and injection method
fds2 <- makeSimulatedFraserDataSet(m=10, j=100, q=3)
fds2

mergeExternalData Merge external data

Description

To boost its own sequencing data, one can download existing and precounted data. This function
merges the existing FraserDataSet with external count data.

Usage

mergeExternalData(fds, countFiles, sampleIDs, annotation = NULL)

Arguments

fds A FraserDataSet

countFiles A character vector of file names pointing to the external count data. The vector
has to be names or the files have to start with k_j, k_theta, n_psi3, n_psi5,
n_theta.

sampleIDs The samples to be merged from the external data.

annotation A sample annotation of the external data (optional).

Details

For more details on existing datasets have a look at: <https://github.com/gagneurlab/drop#datasets>

Since FRASER can not hand NA values, the merge will return only the intersecting regions and
will drop any non overlapping features. This has to be kept in mind when analysing rare disease
samples.

Value

Merged FraserDataSet object.

Examples

anno <- data.table::fread(system.file("extdata", "externalCounts",
"annotation.tsv.gz", package="FRASER"))

ctsFiles <- list.files(full.names = TRUE, pattern="counts",
system.file("extdata", "externalCounts", package="FRASER"))

fds <- createTestFraserDataSet()
fds_merged <- mergeExternalData(fds, ctsFiles, anno[,sampleID], anno)

30 plotManhattan

K(fds, "psi5")
K(fds_merged, "psi5")

plotManhattan Visualization functions for FRASER

Description

The FRASER package provides mutliple functions to visualize the data and the results of a full data
set analysis.

Plots the p values over the delta psi values, known as volcano plot. Visualizes per sample the
outliers. By type and aggregate by gene if requested.

Plot the number of aberrant events per samples

Plots the observed split reads of the junction of interest over all reads coming from the given
donor/acceptor.

Plots the observed values of the splice metric across samples for a junction of interest.

Plots the expected psi value over the observed psi value of the given junction.

Plots the quantile-quantile plot

Histogram of the geometric mean per junction based on the filter status

Histogram of minimal delta psi per junction

Count correlation heatmap function

Usage

plotManhattan(object, ...)

S4 method for signature 'FraserDataSet'
plotVolcano(
object,
sampleID,
type = fitMetrics(object),
basePlot = TRUE,
aggregate = FALSE,
main = NULL,
label = NULL,
deltaPsiCutoff = 0.1,
padjCutoff = 0.1,
subsetName = NULL,
...

)

S4 method for signature 'FraserDataSet'
plotAberrantPerSample(
object,
main,
type = fitMetrics(object),

plotManhattan 31

padjCutoff = 0.1,
deltaPsiCutoff = 0.1,
aggregate = TRUE,
subsetName = NULL,
BPPARAM = bpparam(),
...

)

plotExpression(
fds,
type = fitMetrics(fds),
idx = NULL,
result = NULL,
colGroup = NULL,
basePlot = TRUE,
main = NULL,
label = "aberrant",
subsetName = NULL,
...

)

plotSpliceMetricRank(
fds,
type = fitMetrics(fds),
idx = NULL,
result = NULL,
colGroup = NULL,
basePlot = TRUE,
main = NULL,
label = "aberrant",
subsetName = NULL,
...

)

plotExpectedVsObservedPsi(
fds,
type = fitMetrics(fds),
idx = NULL,
result = NULL,
colGroup = NULL,
main = NULL,
basePlot = TRUE,
label = "aberrant",
subsetName = NULL,
...

)

S4 method for signature 'FraserDataSet'
plotQQ(
object,
type = NULL,
idx = NULL,

32 plotManhattan

result = NULL,
aggregate = FALSE,
global = FALSE,
main = NULL,
conf.alpha = 0.05,
samplingPrecision = 3,
basePlot = TRUE,
label = "aberrant",
Ncpus = min(3, getDTthreads()),
subsetName = NULL,
...

)

S4 method for signature 'FraserDataSet'
plotEncDimSearch(object, type = psiTypes, plotType = c("sv", "auc", "loss"))

plotFilterExpression(
fds,
bins = 200,
legend.position = c(0.8, 0.8),
onlyVariableIntrons = FALSE

)

plotFilterVariability(
fds,
bins = 200,
legend.position = c(0.8, 0.8),
onlyExpressedIntrons = FALSE

)

S4 method for signature 'FraserDataSet'
plotCountCorHeatmap(
object,
type = psiTypes,
logit = FALSE,
topN = 50000,
topJ = 5000,
minMedian = 1,
minCount = 10,
main = NULL,
normalized = FALSE,
show_rownames = FALSE,
show_colnames = FALSE,
minDeltaPsi = 0.1,
annotation_col = NA,
annotation_row = NA,
border_color = NA,
nClust = 5,
plotType = c("sampleCorrelation", "junctionSample"),
sampleClustering = NULL,
plotMeanPsi = TRUE,
plotCov = TRUE,

plotManhattan 33

...
)

plotBamCoverage(
fds,
gr,
sampleID,
control_samples = sample(samples(fds[, which(samples(fds) != sampleID)]), min(3,

ncol(fds) - length(sampleID))),
txdb = NULL,
min_junction_count = 20,
highlight_range = NULL,
highlight_range_color = "firebrick",
color_annotated = "gray",
color_novel = "goldenrod3",
color_sample_interest = "firebrick",
color_control_samples = "dodgerblue4",
toscale = c("exon", "gene", "none"),
mar = c(2, 10, 0.1, 5),
curvature_splicegraph = 1,
curvature_coverage = 1,
cex = 1,
splicegraph_labels = c("genomic_range", "id", "name", "none"),
splicegraph_position = c("top", "bottom"),
...

)

plotBamCoverageFromResultTable(
fds,
result,
show_full_gene = FALSE,
txdb = NULL,
orgDb = NULL,
res_gene_col = "hgncSymbol",
res_geneid_type = "SYMBOL",
txdb_geneid_type = "ENTREZID",
left_extension = 1000,
right_extension = 1000,
...

)

S4 method for signature 'FraserDataSet'
plotManhattan(
object,
sampleID,
value = "pvalue",
type = fitMetrics(object),
chr = NULL,
main = paste0("sample: ", sampleID),
chrColor = c("black", "darkgrey"),
subsetName = NULL,
...

34 plotManhattan

)

Arguments

object, fds An FraserDataSet object.

... Additional parameters passed to plot() or plot_ly() if not stated otherwise in the
details for each plot function

sampleID A sample ID which should be plotted. Can also be a vector. Integers are treated
as indices.

type The psi type: either psi5, psi3 or theta (for SE).

basePlot if TRUE (default), use the R base plot version, else use the plotly framework.

aggregate If TRUE, the pvalues are aggregated by gene (default), otherwise junction level
pvalues are used (default for Q-Q plot).

main Title for the plot, if missing a default title will be used.

label Indicates the genes or samples that will be labelled in the plot (only for basePlot=TRUE).
Setting label="aberrant" will label all aberrant genes or samples. Labelling
can be turned off by setting label=NULL. The user can also provide a custom
list of gene symbols or sampleIDs.

padjCutoff, deltaPsiCutoff
Significance or delta psi cutoff to mark outliers

subsetName The name of a subset of genes of interest for which FDR corrected pvalues
were previously computed. Those FDR values on the subset will then be used
to determine aberrant status. Default is NULL (using transcriptome-wide FDR
corrected pvalues).

BPPARAM BiocParallel parameter to use.

idx A junction site ID or gene ID or one of both, which should be plotted. Can also
be a vector. Integers are treated as indices.

result The result table to be used by the method.

colGroup Group of samples that should be colored.

global Flag to plot a global Q-Q plot, default FALSE

conf.alpha If set, a confidence interval is plotted, defaults to 0.05
samplingPrecision

Plot only non overlapping points in Q-Q plot to reduce number of points to plot.
Defines the digits to round to.

Ncpus Number of cores to use.

plotType The type of plot that should be shown as character string. For plotEncDim-
Search, it has to be either "sv" for a plot of the singular values against their
rank, "auc" for a plot of the area under the curve (AUC) or "loss" for the
model loss. For the correlation heatmap, it can be either "sampleCorrelation"
for a sample-sample correlation heatmap or "junctionSample" for a junction-
sample correlation heatmap.

bins Set the number of bins to be used in the histogram.
legend.position

Set legend position (x and y coordinate), defaults to the top right corner.
onlyVariableIntrons

Logical value indicating whether to show only introns that also pass the vari-
ability filter. Defaults to FALSE.

plotManhattan 35

onlyExpressedIntrons

Logical value indicating whether to show only introns that also pass the expres-
sion filter. Defaults to FALSE.

logit If TRUE, the default, psi values are plotted in logit space.

topN Top x most variable junctions that should be used for the calculation of sample
x sample correlations.

topJ Top x most variable junctions that should be displayed in the junction-sample
correlation heatmap. Only applies if plotType is "junctionSample".

minMedian, minCount, minDeltaPsi
Minimal median (m ≥ 1), delta psi (|∆ψ| > 0.1), read count (n ≥ 10) value of
a junction to be considered for the correlation heatmap.

normalized If TRUE, the normalized psi values are used, the default, otherwise the raw psi
values

show_rownames, show_colnames
Logical value indicating whether to show row or column names on the heatmap
axes.

annotation_col, annotation_row
Row or column annotations that should be plotted on the heatmap.

border_color Sets the border color of the heatmap

nClust Number of clusters to show in the row and column dendrograms.
sampleClustering

A clustering of the samples that should be used as an annotation of the heatmap.
plotMeanPsi, plotCov

If TRUE, then the heatmap is annotated with the mean psi values or the junction
coverage.

gr A GRanges object indicating the genomic range that should be shown in plotBamCoverage.
control_samples

The sampleIDs of the samples used as control in plotBamCoverage.

txdb A TxDb object giving the gene/transcript annotation to use.
min_junction_count

The minimal junction count across samples required for a junction to appear in
the splicegraph and coverage tracks of plotBamCoverage.

highlight_range

A GenomicRanges or GenomicRangesList object of ranges to be highlighted in
the splicegraph of plotBamCoverage.

highlight_range_color

The color of highlighted ranges in the splicegraph of plotBamCoverage.
color_annotated

The color for exons and junctions present in the given annotation (in the splice-
graph of plotBamCoverage).

color_novel The color for novel exons and junctions not present in the given annotation (in
the splicegraph of plotBamCoverage).

color_sample_interest

The color in plotBamCoverage for the sample of interest.
color_control_samples

The color in plotBamCoverage for the samples used as controls.

36 plotManhattan

toscale In plotBamCoverage, indicates which part of the plotted region should be drawn
to scale. Possible values are ’exon’ (exonic regions are drawn to scale), ’gene’
(both exonic and intronic regions are drawn to scale) or ’none’ (exonic and in-
tronic regions have constant length) (see SGSeq package).

mar The margin of the plot area for plotBamCoverage (b,l,t,r).
curvature_splicegraph

The curvature of the junction arcs in the splicegraph in plotBamCoverage. De-
crease this value for flatter arcs and increase it for steeper arcs.

curvature_coverage

The curvature of the junction arcs in the coverage tracks of plotBamCoverage.
Decrease this value for flatter arcs and increase it for steeper arcs.

cex For controlling the size of text and numbers in plotBamCoverage.
splicegraph_labels

Indicated the format of exon/splice junction labels in the splicegraph of plotBamCoverage.
Possible values are ’genomic_range’ (gives the start position of the first exon
and the end position of the last exon that are shown), ’id’ (format E1,... J1,...),
’name’ (format type:chromosome:start-end:strand for each feature), ’none’ for
no labels (see SGSeq package).

splicegraph_position

The position of the splicegraph relative to the coverage tracks in plotBamCoverage.
Possible values are ’top’ (default) and ’bottom’.

show_full_gene Should the full genomic range of the gene be shown in plotBamCoverageFromResultTable
(default: FALSE)? If FALSE, only a certain region (see parameters left_extension
and right_extension) around the outlier junction is shown.

orgDb A OrgDb object giving the mapping of gene ids and symbols.

res_gene_col The column name in the given results table that contains the gene annotation.
res_geneid_type

The type of gene annotation in the results table in res_gene_col (e.g. SYM-
BOL or ENTREZID etc.). This information is needed for mapping between the
results table and the provided annotation in the txdb object.

txdb_geneid_type

The type of gene_id present in genes(txdb) (e.g. ENTREZID). This informa-
tion is needed for mapping between the results table and the provided annotation
in the txdb object.

left_extension Indicating how far the plotted range around the outlier junction should be ex-
tended to the left in plotBamCoverageFromResultTable.

right_extension

Indicating how far the plotted range around the outlier junction should be ex-
tended to the right in plotBamCoverageFromResultTable.

value Indicates which assay is shown in the manhattan plot. Defaults to ’pvalue’.
Other options are ’deltaPsi’ and ’zScore’.

chr Vector of chromosome names to show in plotManhattan. The default is to
show all chromosomes.

chrColor Interchanging colors by chromosome for plotManhattan.

Details

This is the list of all plotting function provided by FRASER:

plotManhattan 37

• plotAberrantPerSample()

• plotVolcano()

• plotExpression()

• plotQQ()

• plotExpectedVsObservedPsi()

• plotCountCorHeatmap()

• plotFilterExpression()

• plotFilterVariability()

• plotEncDimSearch()

• plotBamCoverage()

• plotBamCoverageFromResultTable()

• plotManhattan()

• plotSpliceMetricRank()

For a detailed description of each plot function please see the details. Most of the functions share
the same parameters.

plotAberrantPerSample: The number of aberrant events per sample are plotted sorted by rank.
The ... parameters are passed on to the aberrant function.

plotVolcano: the volcano plot is sample-centric. It plots for a given sample and psi type the
negative log10 nominal P-values against the delta psi values for all splice sites or aggregates by
gene if requested.

plotExpression: This function plots for a given site the read count at this site (i.e. K) against the
total coverage (i.e. N) for the given psi type (ψ5, ψ3, orθ (SE)) for all samples.

plotQQ: the quantile-quantile plot for a given gene or if global is set to TRUE over the full data set.
Here the observed P-values are plotted against the expected ones in the negative log10 space.

plotExpectedVsObservedPsi: A scatter plot of the observed psi against the predicted psi for a
given site.

plotSpliceMetricRank: This function plots for a given intron the observed values of the selected
splice metrix against the sample rank.

plotCountCorHeatmap: The correlation heatmap of the count data either of the full data set (i.e.
sample-sample correlations) or of the top x most variable junctions (i.e. junction-sample correla-
tions). By default the values are log transformed and row centered. The ... arguments are passed to
the pheatmap function.

plotFilterExpression: The distribution of FPKM values. If the FraserDataSet object contains
the passedFilter column, it will plot both FPKM distributions for the expressed introns and for
the filtered introns.

plotFilterVariability: The distribution of maximal delta Psi values. If the FraserDataSet object
contains the passedFilter column, it will plot both maximal delta Psi distributions for the variable
introns and for the filtered (i.e. non-variable) introns.

plotEncDimSearch: Visualization of the hyperparameter optimization. It plots the encoding di-
mension against the achieved loss (area under the precision-recall curve). From this plot the opti-
mum should be choosen for the q in fitting process.

plotManhattan: A Manhattan plot showing the junction pvalues by genomic position. Useful to
identify if outliers cluster by genomic position.

plotBamCoverage: A sashimi plot showing the read coverage from the underlying bam files for a
given genomic range and sampleIDs.

38 plotManhattan

plotBamCoverageFromResultTable: A sashimi plot showing the read coverage from the under-
lying bam files for a row in the results table. Can either show the full range of the gene with the
outlier junction or only a certain region around the outlier.

Value

If base R graphics are used nothing is returned else the plotly or the gplot object is returned.

Examples

create full FRASER object
fds <- makeSimulatedFraserDataSet(m=40, j=200)
fds <- calculatePSIValues(fds)
fds <- filterExpressionAndVariability(fds, filter=FALSE)
this step should be done for more dimensions in practice
fds <- estimateBestQ(fds, type="jaccard", useOHT=FALSE, q_param=c(2,5,10,25))

assign gene names to show functionality on test dataset
use fds <- annotateRanges(fds) on real data
mcols(fds, type="j")$hgnc_symbol <-

paste0("gene", sample(1:25, nrow(fds), replace=TRUE))

fit and calculate pvalues
genesOfInterest <- rep(list(paste0("gene", sample(1:25, 10))), 4)
names(genesOfInterest) <- c("sample1", "sample6", "sample15", "sample23")
fds <- FRASER(fds, subsets=list("testSet"=genesOfInterest))

QC plotting
plotFilterExpression(fds)
plotFilterVariability(fds)
plotCountCorHeatmap(fds, "jaccard")
plotCountCorHeatmap(fds, "jaccard", normalized=TRUE)
plotEncDimSearch(fds, type="jaccard")

extract results
plotAberrantPerSample(fds, aggregate=FALSE)
plotAberrantPerSample(fds, aggregate=TRUE, subsetName="testSet")
plotVolcano(fds, "sample2", "jaccard", label="aberrant")
plotVolcano(fds, "sample1", "jaccard", aggregate=TRUE, subsetName="testSet")

dive into gene/sample level results
res <- data.table::as.data.table(results(fds))
res
plotExpression(fds, result=res[1])
plotQQ(fds, result=res[1])
plotExpectedVsObservedPsi(fds, res=res[1])
plotSpliceMetricRank(fds, res=res[1])

other ways to call these plotting functions
plotExpression(fds, idx=10, sampleID="sample1", type="jaccard")
plotExpression(fds, result=res[1], subsetName="testSet")
plotQQ(fds, idx=10, sampleID="sample1", type="jaccard")
plotQQ(fds, result=res[1], subsetName="testSet")
plotExpectedVsObservedPsi(fds, idx=10, sampleID="sample1", type="jaccard")
plotExpectedVsObservedPsi(fds, result=res[1], subsetName="testSet")
plotSpliceMetricRank(fds, idx=10, sampleID="sample1", type="jaccard")
plotSpliceMetricRank(fds, result=res[1], subsetName="testSet")

potentialImpactAnnotations 39

create manhattan plot of pvalues by genomic position
if(require(ggbio)){

plotManhattan(fds, type="jaccard", sampleID="sample10")
}

plot splice graph and coverage from bam files in a given region
if(require(SGSeq)){

fds <- createTestFraserSettings()
gr <- GRanges(seqnames="chr19",

IRanges(start=7587496, end=7598895),
strand="+")

plotBamCoverage(fds, gr=gr, sampleID="sample3",
control_samples="sample2", min_junction_count=5,
curvature_splicegraph=1, curvature_coverage=1,
mar=c(1, 7, 0.1, 3))

plot coverage from bam file for a row in the result table
fds <- createTestFraserDataSet()
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
require(org.Hs.eg.db)
orgDb <- org.Hs.eg.db

res <- results(fds, padjCutoff=NA, deltaPsiCutoff=NA)
res_dt <- data.table::as.data.table(res)
res_dt <- res_dt[sampleID == "sample2",]

plot full range of gene containing outlier junction
plotBamCoverageFromResultTable(fds, result=res_dt[1,], show_full_gene=TRUE,

txdb=txdb, orgDb=orgDb, control_samples="sample3")

plot only certain range around outlier junction
plotBamCoverageFromResultTable(fds, result=res_dt[1,], show_full_gene=FALSE,

control_samples="sample3", curvature_splicegraph=0.5, txdb=txdb,
curvature_coverage=0.5, right_extension=5000, left_extension=5000,
splicegraph_labels="id")

}

potentialImpactAnnotations

Additional result annotations

Description

These functions work on the result table and add additional annotations to the reported introns: the
type of potential impact on splicing (e.g. exon skipping, exon truncation, ...), potential occurence
of frameshift, overlap with UTR regions as well as a flag for introns that are located in blacklist
regions of the genome.

annotateIntronReferenceOverlap adds basic annotations to the fds for each intron based on the
overlap of the intron’s location with the reference annotation. Has to be run before the result table
is created so that the new column can be included in it (see examples).

40 potentialImpactAnnotations

annotatePotentialImpact annotates each intron in the results table with the type of potential im-
pact on splicing and potential occurence of frameshift (likely, unlikely, inconclusive). Can also cal-
culate overlap with annotated UTR regions. Potential impact can be: annotatedIntron_increasedUsage,
annotatedIntron_reducedUsage, exonTruncation, exonElongation, exonTruncation&Elongation, ex-
onSkipping, splicingBeyondGene, multigenicSplicing, downstreamOfNearestGene, upstreamOfN-
earestGene, complex (everything else). Splice sites (theta metric) annotations indicate how the
splice site is located with respect to the reference annotation. The annotated types are: annotated-
SpliceSite, exonicRegion, intronicRegion.

flagBlacklistRegions flags introns in the results table on whether or not they are located in a
blacklist region of the genome. By default, the blacklist regions as reported in Amemiya, Kundaje
& Boyle (2019) and downloaded from here are used.

Usage

annotateIntronReferenceOverlap(fds, txdb, BPPARAM = bpparam())

annotatePotentialImpact(
result,
txdb,
fds,
addPotentialImpact = TRUE,
addUTRoverlap = TRUE,
minoverlap = 5,
BPPARAM = bpparam()

)

flagBlacklistRegions(
result,
blacklist_regions = NULL,
assemblyVersion = c("hg19", "hg38"),
minoverlap = 5

)

Arguments

fds A FraserDataSet

txdb A txdb object providing the reference annotation.

BPPARAM For controlling parallelization behavior. Defaults to bpparam().

result A result table as generated by FRASER, including the column annotatedJunction
as generated by the function annotateIntronReferenceOverlap.

addPotentialImpact

Logical, indicating if the type of the potential impact should be added to the
results table. Defaults to TRUE.

addUTRoverlap Logical, indicating if the overlap with UTR regions should checked and added
to the results table. Defaults to TRUE.

minoverlap Integer value defining the number of base pairs around the splice site that need
to overlap with UTR or blacklist region, respectivly, to be considered matching.
Defaults to 5 bp.

blacklist_regions

A BED file that contains the blacklist regions. If NULL (default), the BED files
that are packaged with FRASER are used (see Details for more information).

https://www.encodeproject.org/annotations/ENCSR636HFF/

psiTypes 41

assemblyVersion

Indicates the genome assembly version of the intron coordinates. Only used
if blacklist_regions is NULL. For other versions, please provide the BED file
containing the blacklist regions directly.

Value

An annotated FraserDataSet or results table, respectively

Functions

• annotateIntronReferenceOverlap(): This method calculates basic annotations based on
overlap with the reference annotation (start, end, none, both) for the full fds. The overlap type
is added as a new column annotatedJunction in mcols(fds).

• annotatePotentialImpact(): This method annotates the splice event type to junctions in
the given results table.

• flagBlacklistRegions(): This method flags all introns and splice sites in the given results
table for which at least one splice site (donor or acceptor) is located in a blacklist region.
Blacklist regions of the genome are determined from the provided BED file.

Examples

get data, fit and compute p-values and z-scores
fds <- createTestFraserDataSet()

load reference annotation
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

add basic annotations for overlap with the reference annotation
run this function before creating the results table
fds <- annotateIntronReferenceOverlap(fds, txdb)

extract results: for this small example dataset, no cutoffs used
to get some results
res <- results(fds, padjCutoff=NA, deltaPsiCutoff=NA)

annotate the type of potential impact on splicing and UTR overlap
res <- annotatePotentialImpact(result=res, txdb=txdb, fds=fds)

annotate overlap with blacklist regions
res <- flagBlacklistRegions(result=res, assemblyVersion="hg19")

show results table containing additional annotations
res

psiTypes Available splice metrics

Description

Available splice metrics

42 results,FraserDataSet-method

Usage

psiTypes

Format

An object of class character of length 4.

Examples

to show all available splice metrics:
psiTypes

results,FraserDataSet-method

Extracting results and aberrant splicing events

Description

The result function extracts the results from the given analysis object based on the given options
and cutoffs. The aberrant function extracts aberrant splicing events based on the given cutoffs.

Usage

S4 method for signature 'FraserDataSet'
results(
object,
sampleIDs = samples(object),
padjCutoff = 0.1,
deltaPsiCutoff = 0.1,
rhoCutoff = NA,
aggregate = FALSE,
collapse = FALSE,
minCount = 5,
psiType = psiTypes,
geneColumn = "hgnc_symbol",
all = FALSE,
returnTranscriptomewideResults = TRUE,
additionalColumns = NULL,
BPPARAM = bpparam()

)

S4 method for signature 'FraserDataSet'
aberrant(
object,
type = fitMetrics(object),
padjCutoff = 0.1,
deltaPsiCutoff = 0.1,
minCount = 5,
rhoCutoff = NA,
by = c("none", "sample", "feature"),

results,FraserDataSet-method 43

aggregate = FALSE,
geneColumn = "hgnc_symbol",
subsetName = NULL,
all = FALSE,
...

)

Arguments

object A FraserDataSet object

sampleIDs A vector of sample IDs for which results should be retrieved

padjCutoff The FDR cutoff to be applied or NA if not requested.

deltaPsiCutoff The cutoff on delta psi or NA if not requested.

rhoCutoff The cutoff value on the fitted rho value (overdispersion parameter of the betabi-
nomial) above which junctions are filtered

aggregate If TRUE the returned object is aggregated to the feature level (i.e. gene level).

collapse Only takes effect if aggregate=TRUE. If TRUE, collapses results across the dif-
ferent psi types to return only one row per feature (gene) and sample.

minCount The minimum count value of the total coverage of an intron to be considered as
significant. result

psiType The psi types for which the results should be retrieved.

geneColumn The column name of the column that has the gene annotation that will be used
for gene-level pvalue computation.

all By default FALSE, only significant introns (or genes) are listed in the results.
If TRUE, results are assembled for all samples and introns/genes regardless of
significance.

returnTranscriptomewideResults

If FDR corrected pvalues for subsets of genes of interest have been calculated,
this parameter indicates whether additionally the transcriptome-wide results should
be returned as well (default), or whether only results for those subsets should be
retrieved.

additionalColumns

Character vector containing the names of additional columns from mcols(fds)
that should appear in the result table (e.g. ensembl_gene_id). Default is NULL,
so no additional columns are included.

BPPARAM The BiocParallel parameter.

type Splicing type (psi5, psi3 or theta)

by By default none which means no grouping. But if sample or feature is speci-
fied the sum by sample or feature is returned

subsetName The name of a subset of genes of interest for which FDR corrected pvalues
were previously computed. Those FDR values on the subset will then be used
to determine aberrant status. Default is NULL (using transcriptome-wide FDR
corrected pvalues).

... Further arguments can be passed to the method. If "n", "padjVals", "dPsi" or
"rhoVals" are given, the values of those arguments are used to define the aberrant
events.

44 samples

Value

For results: GRanges object containing significant results. For aberrant: Either a of logical
values of size introns/genes x samples if "by" is NA or a vector with the number of aberrant events
per sample or feature depending on the vaule of "by"

Examples

get data, fit and compute p-values and z-scores
fds <- createTestFraserDataSet()

extract results: for this example dataset, no cutoffs are used to
show the output of the results function
res <- results(fds, all=TRUE)
res

aggregate the results by genes (gene symbols need to be annotated first
using annotateRanges() function)
results(fds, padjCutoff=NA, deltaPsiCutoff=0.1, aggregate=TRUE)

aggregate the results by genes and collapse over all psi types to obtain
only one row per gene in the results table
results(fds, padjCutoff=NA, deltaPsiCutoff=0.1, aggregate=TRUE,

collapse=TRUE)

get aberrant events per sample: on the example data, nothing is aberrant
based on the adjusted p-value
aberrant(fds, type="jaccard", by="sample")

get aberrant events per gene (first annotate gene symbols)
fds <- annotateRangesWithTxDb(fds)
aberrant(fds, type="jaccard", by="feature", padjCutoff=NA, aggregate=TRUE)

find aberrant junctions/splice sites
aberrant(fds, type="jaccard")

retrieve results limiting FDR correction to only a subset of genes
first, we need to create a list of genes per sample that will be tested
geneList <- list('sample1'=c("TIMMDC1"), 'sample2'=c("MCOLN1"))
fds <- calculatePadjValues(fds, type="jaccard",

subsets=list("exampleSubset"=geneList))
results(fds, all=TRUE, returnTranscriptomewideResults=FALSE)

samples Getter/Setter methods for the FraserDataSet

Description

The following methods are getter and setter methods to extract or set certain values of a Fraser-
DataSet object.

samples sets or gets the sample IDs; condition ; nonSplicedReads return a RangedSumma-
rizedExperiment object containing the counts for the non spliced reads overlapping splice sites in
the fds.

samples 45

Usage

samples(object)

samples(object) <- value

condition(object)

condition(object) <- value

bamFile(object)

bamFile(object) <- value

name(object)

name(object) <- value

strandSpecific(object)

strandSpecific(object) <- value

pairedEnd(object)

pairedEnd(object) <- value

workingDir(object)

workingDir(object) <- value

scanBamParam(object)

scanBamParam(object) <- value

nonSplicedReads(object)

nonSplicedReads(object) <- value

S4 method for signature 'FraserDataSet'
samples(object)

S4 replacement method for signature 'FraserDataSet'
samples(object) <- value

S4 method for signature 'FraserDataSet'
condition(object)

S4 replacement method for signature 'FraserDataSet'
condition(object) <- value

S4 method for signature 'FraserDataSet'
bamFile(object)

46 samples

S4 replacement method for signature 'FraserDataSet'
bamFile(object) <- value

S4 method for signature 'FraserDataSet'
name(object)

S4 replacement method for signature 'FraserDataSet'
name(object) <- value

S4 method for signature 'FraserDataSet'
workingDir(object)

S4 replacement method for signature 'FraserDataSet'
workingDir(object) <- value

S4 method for signature 'FraserDataSet'
strandSpecific(object)

S4 replacement method for signature 'FraserDataSet'
strandSpecific(object) <- value

S4 method for signature 'FraserDataSet'
pairedEnd(object)

S4 replacement method for signature 'FraserDataSet'
pairedEnd(object) <- value

S4 method for signature 'FraserDataSet'
scanBamParam(object)

S4 replacement method for signature 'FraserDataSet'
scanBamParam(object) <- value

S4 method for signature 'FraserDataSet'
nonSplicedReads(object)

S4 replacement method for signature 'FraserDataSet'
nonSplicedReads(object) <- value

FRASER.mcols.get(x, type = NULL, ...)

FRASER.rowRanges.get(x, type = NULL, ...)

mapSeqlevels(fds, style = "UCSC", ...)

Arguments

object A FraserDataSet object.

value The new value that should replace the current one.

x A FraserDataSet object.

type The psi type (psi3, psi5 or theta)

subset.FRASER 47

... Further parameters. For mapSeqLevels: further parameters passed to Genome-
InfoDb::mapSeqlevels().

fds FraserDataSet

style The style of the chromosome names.

Value

Getter method return the respective current value.

Author(s)

Christian Mertes <mertes@in.tum.de>

Ines Scheller <scheller@in.tum.de>

Examples

fds <- createTestFraserDataSet()
samples(fds)
samples(fds) <- 1:dim(fds)[2]
condition(fds)
condition(fds) <- 1:dim(fds)[2]
bamFile(fds) # file.paths or objects of class BamFile
bamFile(fds) <- file.path("bamfiles", samples(fds), "rna-seq.bam")
name(fds)
name(fds) <- "My Analysis"
workingDir(fds)
workingDir(fds) <- tempdir()
strandSpecific(fds)
strandSpecific(fds) <- TRUE
strandSpecific(fds) <- "reverse"
strandSpecific(fds)
scanBamParam(fds)
scanBamParam(fds) <- ScanBamParam(mapqFilter=30)
nonSplicedReads(fds)
rowRanges(fds)
rowRanges(fds, type="theta")
mcols(fds, type="psi5")
mcols(fds, type="theta")
seqlevels(fds)
seqlevels(mapSeqlevels(fds, style="UCSC"))
seqlevels(mapSeqlevels(fds, style="Ensembl"))
seqlevels(mapSeqlevels(fds, style="dbSNP"))

subset.FRASER Subsetting by indices for junctions

Description

Providing subsetting by indices through the single-bracket operator

48 subset.FRASER

Usage

S3 method for class 'FRASER'
subset(x, i, j, by = c("j", "ss"), ..., drop = FALSE)

S4 method for signature 'FraserDataSet,ANY,ANY,ANY'
x[i, j, by = c("j", "ss"), ..., drop = FALSE]

Arguments

x A FraserDataSet object

i A integer vector to subset the rows/ranges

j A integer vector to subset the columns/samples

by a character (j or ss) defining if we subset by junctions or splice sites

... Parameters currently not used or passed on

drop No dimension reduction is done. And the drop parameter is currently not used
at all.

Value

A subsetted FraserDataSet object

Examples

fds <- createTestFraserDataSet()
fds[1:10,2:3]
fds[,samples(fds) %in% c("sample1", "sample2")]
fds[1:10,by="ss"]

Index

∗ datasets
psiTypes, 41

[,FraserDataSet,ANY,ANY,ANY-method
(subset.FRASER), 47

‘featureExclusionMask<-‘
(getter_setter_functions), 21

aberrant, 37
aberrant,FraserDataSet-method

(results,FraserDataSet-method),
42

addCountsToFraserDataSet, 10
addCountsToFraserDataSet (countRNA), 6
annotateIntronReferenceOverlap, 39
annotateIntronReferenceOverlap

(potentialImpactAnnotations),
39

annotatePotentialImpact, 40
annotatePotentialImpact

(potentialImpactAnnotations),
39

annotateRanges, 3
annotateRangesWithTxDb

(annotateRanges), 3
assayNames,FraserDataSet-method, 4
assays,FraserDataSet-method, 5
assays<-,FraserDataSet,DelayedMatrix-method

(assays,FraserDataSet-method),
5

assays<-,FraserDataSet,list-method
(assays,FraserDataSet-method),
5

assays<-,FraserDataSet,SimpleList-method
(assays,FraserDataSet-method),
5

available.genomes, 8
availableFDRsubsets

(getter_setter_functions), 21

bamFile (samples), 44
bamFile,FraserDataSet-method (samples),

44
bamFile<- (samples), 44

bamFile<-,FraserDataSet-method
(samples), 44

bestQ (getter_setter_functions), 21

calculatePadjValues (FRASER), 16
calculatePadjValuesOnSubset (FRASER), 16
calculatePSIValues, 6
calculatePvalues (FRASER), 16
calculateZscore (FRASER), 16
condition (samples), 44
condition,FraserDataSet-method

(samples), 44
condition<- (samples), 44
condition<-,FraserDataSet-method

(samples), 44
countNonSplicedReads, 10
countNonSplicedReads (countRNA), 6
countRNA, 6
countRNAData, 10
countRNAData (countRNA), 6
counts,FraserDataSet-method (K), 26
counts<-,FraserDataSet,ANY-method (K),

26
countSplitReads, 10
countSplitReads (countRNA), 6
createTestFraserDataSet

(createTestFraserSettings), 11
createTestFraserSettings, 11
currentType (getter_setter_functions),

21
currentType<-

(getter_setter_functions), 21

deltaPsiValue
(getter_setter_functions), 21

dontWriteHDF5
(getter_setter_functions), 21

dontWriteHDF5<-
(getter_setter_functions), 21

estimateBestQ, 12, 16, 17, 24

fds-methods (samples), 44
featureExclusionMask

(getter_setter_functions), 21

49

50 INDEX

featureExclusionMask,
(getter_setter_functions), 21

featureExclusionMask<-
(getter_setter_functions), 21

filterExpression,FraserDataSet-method
(filterVariability), 13

filterExpressionAndVariability
(filterVariability), 13

filtering (filterVariability), 13
filterVariability, 13
filterVariability,FraserDataSet-method

(filterVariability), 13
fit, 15, 19
fitMetrics (getter_setter_functions), 21
fitMetrics<- (getter_setter_functions),

21
flagBlacklistRegions, 40
flagBlacklistRegions

(potentialImpactAnnotations),
39

FRASER, 13, 15, 16, 16
FRASER.mcols.get (samples), 44
FRASER.rowRanges.get (samples), 44
FraserDataSet, 6, 8, 9, 12, 14, 16, 17, 20, 20,

34, 43
FraserDataSet-class, 21

getBSgenome, 8
getNonSplitReadCountsForAllSamples, 10
getNonSplitReadCountsForAllSamples

(countRNA), 6
getSplitReadCountsForAllSamples, 10
getSplitReadCountsForAllSamples

(countRNA), 6
getter_setter_functions, 21

hyperParams (getter_setter_functions),
21

injectOutliers, 25

K, 26
keytypes, 3

length,FraserDataSet-method, 27
loadFraserDataSet, 27

makeSimulatedFraserDataSet, 28
mapSeqlevels (samples), 44
mergeCounts, 10
mergeCounts (countRNA), 6
mergeExternalData, 29

N (K), 26

name (samples), 44
name,FraserDataSet-method (samples), 44
name<- (samples), 44
name<-,FraserDataSet-method (samples),

44
nonSplicedReads (samples), 44
nonSplicedReads,FraserDataSet-method

(samples), 44
nonSplicedReads<- (samples), 44
nonSplicedReads<-,FraserDataSet-method

(samples), 44

padjVals (getter_setter_functions), 21
padjVals, (getter_setter_functions), 21
pairedEnd (samples), 44
pairedEnd,FraserDataSet-method

(samples), 44
pairedEnd<- (samples), 44
pairedEnd<-,FraserDataSet-method

(samples), 44
pheatmap, 37
plotAberrantPerSample (plotManhattan),

30
plotAberrantPerSample,FraserDataSet-method

(plotManhattan), 30
plotBamCoverage (plotManhattan), 30
plotBamCoverageFromResultTable

(plotManhattan), 30
plotCountCorHeatmap (plotManhattan), 30
plotCountCorHeatmap,FraserDataSet-method

(plotManhattan), 30
plotEncDimSearch (plotManhattan), 30
plotEncDimSearch,FraserDataSet-method

(plotManhattan), 30
plotExpectedVsObservedPsi

(plotManhattan), 30
plotExpression (plotManhattan), 30
plotFilterExpression (plotManhattan), 30
plotFilterVariability (plotManhattan),

30
plotFunctions (plotManhattan), 30
plotManhattan, 30
plotManhattan,FraserDataSet-method

(plotManhattan), 30
plotQQ (plotManhattan), 30
plotQQ,FraserDataSet-method

(plotManhattan), 30
plotSpliceMetricRank (plotManhattan), 30
plotVolcano (plotManhattan), 30
plotVolcano,FraserDataSet-method

(plotManhattan), 30
potentialImpactAnnotations, 39

INDEX 51

predictedMeans
(getter_setter_functions), 21

pseudocount (getter_setter_functions),
21

psiTypes, 41
pVals (getter_setter_functions), 21
pVals, (getter_setter_functions), 21

results,FraserDataSet-method, 42
rho (getter_setter_functions), 21
rho, (getter_setter_functions), 21

samples, 44
samples,FraserDataSet-method (samples),

44
samples<- (samples), 44
samples<-,FraserDataSet-method

(samples), 44
saveFraserDataSet (loadFraserDataSet),

27
scanBamParam (samples), 44
scanBamParam,FraserDataSet-method

(samples), 44
scanBamParam<- (samples), 44
scanBamParam<-,FraserDataSet-method

(samples), 44
strandSpecific (samples), 44
strandSpecific,FraserDataSet-method

(samples), 44
strandSpecific<- (samples), 44
strandSpecific<-,FraserDataSet-method

(samples), 44
subset.FRASER, 47
summarizeJunctions, 8

useEnsembl, 3

verbose (getter_setter_functions), 21
verbose<- (getter_setter_functions), 21

workingDir (samples), 44
workingDir,FraserDataSet-method

(samples), 44
workingDir<- (samples), 44
workingDir<-,FraserDataSet-method

(samples), 44

zScore, (getter_setter_functions), 21
zScores (getter_setter_functions), 21

	annotateRanges
	assayNames,FraserDataSet-method
	assays,FraserDataSet-method
	calculatePSIValues
	countRNA
	createTestFraserSettings
	estimateBestQ
	filterVariability
	fit
	FRASER
	FraserDataSet
	FraserDataSet-class
	getter_setter_functions
	injectOutliers
	K
	length,FraserDataSet-method
	loadFraserDataSet
	makeSimulatedFraserDataSet
	mergeExternalData
	plotManhattan
	potentialImpactAnnotations
	psiTypes
	results,FraserDataSet-method
	samples
	subset.FRASER
	Index

