Package ‘FLAMES’

January 20, 2026

Title FLAMES: Full Length Analysis of Mutations and Splicing in long
read RNA-seq data

Version 2.4.2
Date 2025-07-22

Description Semi-supervised isoform detection and annotation from both bulk and single-cell
long read RNA-seq data. Flames provides automated pipelines for analysing isoforms,
as well as intermediate functions for manual execution.

biocViews RNASeq, SingleCell, Transcriptomics, Datalmport,
DifferentialSplicing, AlternativeSplicing, GeneExpression,
LongRead

BugReports https://github.com/mritchielab/FLAMES/issues

License GPL (>=3)

Encoding UTF-8

Imports abind, basilisk, bambu, BiocParallel, Biostrings,
BiocGenerics, crew, circlize, ComplexHeatmap, cowplot, cli,
dplyr, GenomicRanges, GenomicFeatures, GenomicAlignments,
Seqinfo, ggplot2, ggbio, grid, gridExtra, igraph, jsonlite,
magrittr, magick, Matrix, MatrixGenerics, readr, reticulate,
Rsamtools, rtracklayer, RColorBrewer, R.utils, S4Arrays,
ShortRead, SingleCellExperiment, SummarizedExperiment,
SpatialExperiment, scater, scatterpie, S4Vectors, scuttle,
stats, scran, stringr, tidyr, utils, withr, methods, tibble,
tidyselect, IRanges

Suggests BiocStyle, GEOquery, ggrastr, knitr, rmarkdown, uwot,
testthat (>= 3.0.0), xml2

LinkingTo Rcpp, Rhtslib, testthat
SystemRequirements GNU make, C++17
RoxygenNote 7.3.2

VignetteBuilder knitr

URL https://mritchielab.github.io/FLAMES
Config/testthat/edition 3

Depends R (>=4.2.0)

LazyLoad yes

StagedInstall no

https://github.com/mritchielab/FLAMES/issues
https://mritchielab.github.io/FLAMES

2 Contents

git_url https://git.bioconductor.org/packages/FLAMES
git_branch RELEASE_3_22
git_last_commit 49b0cb2
git_last_commit_date 2026-01-07
Repository Bioconductor 3.22
Date/Publication 2026-01-19
Author Changqing Wang [aut, cre],

Luyi Tian [aut],

Oliver Voogd [aut],

Jakob Schuster [aut],

Shian Su [aut],

Yair D.J. Prawer [aut],

Yupei You [aut],
Matthew Ritchie [ctb]

Maintainer Changqing Wang <wang.ch@wehi.edu.au>

Contents
addRowRanges 3
add_gene_counts e 4
annotation_to_fasta e e 5
blaze e e e e e e 5
BulkPipeline 6
bulk_long pipeline 8
combINe SCE e 10
config e 11
CoNfig<- e e 11
controllers L e e e e e e e e 12
controllers<-. e e e e 12
convolution_filter L e 13
create_config 14
create_sce_from_dir e e 15
create_se_from_dir L e 16
CTEALE_SPE « + v v v v e 17
cutadapt L e e e e 18
demultiplex_sockeye 18
example_pipeline 19
EXPEIIMENT o i e e e e e e e e e e e e e e e e 19
fake_stranded_gff L 20
filter_annotation e e e e e e e e e 20
filter_coverage 21
find_barcode e 22
find_bin e e e 23
find_isoform e e e e 24
find_variantS e e s 24
FLAMES e 26
flexiplex 26
GEE_COVEIAZE .« . . v v v e e et e e e e e e e e e e e e 27
get_GRangesList 28

gffdbed 28

addRowRanges 3

INdeX_genome e 29
load_config L e 29
merge_configs_Tecursiveo e e e e 30
minimap2_align 30
MultiSampleSCPipeline 31
mutation_positions L. e e e 33
mutation_positions_single 34
PIOL_COVETage o ot i e e e e e e e e 35
plot_demultiplex L 36
plot_demultiplex_raw 37
plot_durations 38
plot_isoforms 39
plot_isoform_heatmap e 40
plot_isoform_reduced_dim L o 41
plot_spatial_feature 43
plot_spatial_isoform L. 43
plot_spatial_pie 44
quantify_gene e e e e e e e 45
quantify_transcript L e e e e 46
quantify_transcript_flameso 47
resume_FLAMES e 47
run_ FLAMES e 48
TUN_SEED « v v v v v e o e 49
scmixology_lib10 e 49
scmixology_lib10_transcripts e 50
scmixology 1ib90 51
sc_DTU _analysis o o o 51
SC_EENE_ENIIOPY « « v v v e e e e e e e e e e e e e e e e e e 53
SC_GENOLYPE « v v v v v e 54
SC_IMPULe_transScript i e e e e e e e e e e e e e 55
sc_long_multisample_pipeline o oo 56
sc_long_pipeline 58
SC_MULALIONS v v v e e e e e e e e e e e e 59
SC_PIot_gEenotype e e e e e e e 60
set_nested_param L. e e e e e e e 61
show,FLAMES Pipeline-method 62
SingleCellPipeline e 62
SEEPS & o o e e e e e e e e 64
]] 01 65
weight_transcripts o e e e e e e 66
Index 68
addRowRanges Add rowRanges by rownames to SummarizedExperiment object As-
sumes rownames are transcript_ids Assumes transcript_id is present
in the annotation file
Description

Add rowRanges by rownames to SummarizedExperiment object Assumes rownames are tran-
script_ids Assumes transcript_id is present in the annotation file

4 add_gene_counts

Usage

addRowRanges(sce, annotation, outdir)

Value

a SummarizedExperiment object with rowRanges added

add_gene_counts Add gene counts to a SingleCellExperiment object

Description

Add gene counts to a SingleCellExperiment object as an altExps slot named gene.

Usage

add_gene_counts(sce, gene_count_file)

Arguments

sce A SingleCellExperiment object.

gene_count_file
The file path to the gene count file. If missing, the function will try to find the
gene count file in the output directory.

Value

A SingleCellExperiment object with gene counts added.

Examples

Set up a mock SingleCellExperiment object

sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(counts = matrix(@, nrow = 10, ncol = 10))

)

colnames(sce) <- paste@(”cell”, 1:10)

Set up a mock gene count file

gene_count_file <- tempfile()

gene_mtx <- matrix(1:10, nrow = 2, ncol = 5)

colnames(gene_mtx) <- paste@("cell”, 1:5)

rownames (gene_mtx) <- c("genel”, "gene2")

write.csv(gene_mtx, gene_count_file)

Add gene counts to the SingleCellExperiment object

sce <- add_gene_counts(sce, gene_count_file)

verify the gene counts are added

SingleCellExperiment::altExps(sce)$gene

annotation_to_fasta 5

annotation_to_fasta GTF/GFF to FASTA conversion

Description

convert the transcript annotation to transcriptome assembly as FASTA file.

Usage

annotation_to_fasta(isoform_annotation, genome_fa, outfile, extract_fn)

Arguments

isoform_annotation
Path to the annotation file (GTF/GFF3)

genome_fa The file path to genome fasta file.
outfile The file path to the output FASTA file.
extract_fn (optional) Function to extract a GRangesList object E.g. function(grl){GenomicFeatures::cdsB
by: n tX")}
Value

This does not return anything. A FASTA file will be created at the specified location.

Examples

fasta <- tempfile()
annotation_to_fasta(system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"), system.file("extdata"”, "rps2:
cat(readChar(fasta, 1e3))

blaze BLAZE Assign reads to cell barcodes.

Description

Uses BLAZE to generate barcode list and assign reads to cell barcodes.

Usage

blaze(
expect_cells,
fg_in,
outdir,
fg_out,
sample_name =
additional_args = NULL,

nn

Arguments

expect_cells

fg_in
outdir
fg_out

sample_name

additional_args

Value

BulkPipeline

Integer, expected number of cells. Note: this could be just a rough estimate.
E.g., the targeted number of cells.

File path to the fastq file used as a query sequence file
Output directory to save BLAZE results.
File path to save the output fastq file containing reads assigned to cell barcodes.

Sample name prefix for output files. Default is an empty string.

Additional command line style arguments to be passed to BLAZE. E.g. c("-
10x-kit-version", "3v3")

Additional BLAZE configuration parameters. E.g., setting ‘overwrite=TRUE" is
equivalent to switch on the ‘—overwrite* option. Note that the specified parame-
ters will override the parameters specified in the configuration file. All available
options can be found at https://github.com/shimlab/BLAZE.

A data. frame summarising the reads aligned. Other outputs are written to disk. The details of the
output files can be found at https://github.com/shimlab/BLAZE.

Examples

outdir <- tempfile()
dir.create(outdir)
fastqg <- system.file("extdata”, "fastq”, "musc_rps24.fastq.gz"”, package = "FLAMES")

blaze(

expect_cells = 10, fastq,

outdir = outdir,

fq_out = file.path(outdir, "blaze_matched_reads.fastq.gz"),
overwrite = TRUE

)

BulkPipeline

Pipeline for bulk long read RNA-seq data processing

Description

Semi-supervised isofrom detection and annotation for long read data. This variant is meant for bulk
samples. Specific parameters can be configured in the config file (see create_config), input files
are specified via arguments.

Usage

BulkPipeline(
config_file,
outdir,
fastq,
annotation,
genome_fa,

BulkPipeline 7

genome_mmi ,
minimap2,
samtools,
controllers
)
Arguments
config_file Path to the JSON configuration file. See create_config for creating one.
outdir Path to the output directory. If it does not exist, it will be created.
fastq Path to the FASTQ file or a directory containing FASTQ files. Each file will be
processed as an individual sample.
annotation The file path to the annotation file in GFF3 / GTF format.
genome_fa The file path to the reference genome in FASTA format.
genome_mmi (optional) The file path to minimap2’s index reference genome.
minimap2 (optional) The path to the minimap?2 binary. If not provided, FLAMES will use
a copy from bioconda via basilisk.
samtools (optional) The path to the samtools binary. If not provided, FLAMES will use a
copy from bioconda via basilisk.
controllers (optional, experimental) A crew_class_controller object for running cer-
tain steps
Details

By default FLAMES use minimap?2 for read alignment. After the genome alignment step (do_genome_align),
FLAMES summarizes the alignment for each read by grouping reads with similar splice junctions
to get a raw isoform annotation (do_isoform_id). The raw isoform annotation is compared against
the reference annotation to correct potential splice site and transcript start/end errors. Transcripts
that have similar splice junctions and transcript start/end to the reference transcript are merged
with the reference. This process will also collapse isoforms that are likely to be truncated tran-
scripts. If isoform_id_bambu is set to TRUE, bambu: :bambu will be used to generate the up-
dated annotations. Next is the read realignment step (do_read_realign), where the sequence of
each transcript from the update annotation is extracted, and the reads are realigned to this updated
transcript_assembly. fa by minimap2. The transcripts with only a few full-length aligned reads
are discarded. The reads are assigned to transcripts based on both alignment score, fractions of
reads aligned and transcript coverage. Reads that cannot be uniquely assigned to transcripts or have
low transcript coverage are discarded. The UMI transcript count matrix is generated by collapsing
the reads with the same UMI in a similar way to what is done for short-read scRNA-seq data, but
allowing for an edit distance of up to 2 by default. Most of the parameters, such as the minimal
distance to splice site and minimal percentage of transcript coverage can be modified by the JSON
configuration file (config_file).

Value
A FLAMES.Pipeline object. The pipeline could be run using run_FLAMES, and / or resumed using
resume_FLAMES.

See Also

create_config for creating a configuration file, SingleCellPipeline for single cell pipelines,
MultiSampleSCPipeline for multi sample single cell pipelines.

8 bulk_long_pipeline

Examples

outdir <- tempfile()

dir.create(outdir)

simulate 3 samples via sampling

reads <- ShortRead: :readFastq(
system.file("extdata"”, "fastq", "musc_rps24.fastq.gz", package = "FLAMES")

)

dir.create(file.path(outdir, "fastq"))

ShortRead: :writeFastq(reads[1:100],
file.path(outdir, "fastq/samplel.fq.gz"),
mode = "w", full = FALSE

)

reads <- reads[-(1:100)]

ShortRead: :writeFastq(reads[1:100],
file.path(outdir, "fastq/sample2.fq.gz"),
mode = "w", full = FALSE

)

reads <- reads[-(1:100)]

ShortRead: :writeFastqg(reads,
file.path(outdir, "fastq/sample3.fq.gz"),
mode = "w", full = FALSE

)

prepare the reference genome

genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

)
ppl <- BulkPipeline(
fastq = c(
"samplel” = file.path(outdir, "fastq", "samplel.fq.gz"),
"sample2” = file.path(outdir, "fastq", "sample2.fq.gz"),
"sample3" = file.path(outdir, "fastq”, "sample3.fq.gz")
),

annotation = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),
genome_fa = genome_fa,
config_file = create_config(outdir, type = "sc_3end”, threads = 1, no_flank = TRUE),
outdir = outdir
)
ppl <- run_FLAMES(ppl) # run the pipeline
experiment(ppl) # get the result as SummarizedExperiment

bulk_long_pipeline Pipeline for bulk long read RNA-seq data processing (deprecated)

Description

This function is deprecated. Use BulkPipeline instead.

Usage

bulk_long_pipeline(
annotation,

bulk_long_pipeline 9

fastq,

outdir,
genome_fa,
minimap2 = NULL,
config_file

)
Arguments
annotation The file path to the annotation file in GFF3 / GTF format.
fastq Path to the FASTQ file or a directory containing FASTQ files. Each file will be
processed as an individual sample.
outdir Path to the output directory. If it does not exist, it will be created.
genome_fa The file path to the reference genome in FASTA format.
minimap2 (optional) The path to the minimap?2 binary. If not provided, FLAMES will use
a copy from bioconda via basilisk.
config_file Path to the JSON configuration file. See create_config for creating one.
Value

A SummarizedExperiment object containing the transcript counts.

See Also

BulkPipeline for the new pipeline function. SingleCellPipeline for single cell pipelines,
MultiSampleSCPipeline for multi sample single cell pipelines.

Examples

outdir <- tempfile()

dir.create(outdir)

simulate 3 samples via sampling

reads <- ShortRead: :readFastq(
system.file("extdata”, "fastq"”, "musc_rps24.fastq.gz"”, package = "FLAMES")

)

dir.create(file.path(outdir, "fastq"))

ShortRead: :writeFastq(reads[1:100],
file.path(outdir, "fastq/samplel.fq.gz"),
mode = "w", full = FALSE

)

reads <- reads[-(1:100)]

ShortRead: :writeFastq(reads[1:100],
file.path(outdir, "fastq/sample2.fq.gz"),
mode = "w", full = FALSE

)

reads <- reads[-(1:100)]

ShortRead: :writeFastq(reads,
file.path(outdir, "fastq/sample3.fq.gz"),
mode = "w", full = FALSE

)

prepare the reference genome

genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),

10 combine_sce

destname = genome_fa, remove = FALSE
)
se <- bulk_long_pipeline(
fastq = file.path(outdir, "fastq"),
annotation = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),
outdir = outdir, genome_fa = genome_fa,
config_file = create_config(outdir, type = "sc_3end”, threads = 1, no_flank = TRUE)

se

combine_sce Combine SCE

Description

Combine FLT-seq SingleCellExperiment objects

Usage

combine_sce(sce_with_1lr, sce_without_1r)

Arguments

sce_with_1r A SingleCellExperiment object with both long and short reads. The long-read
transcript counts should be stored in the ’transcript’ altExp slot.

sce_without_lr A SingleCellExperiment object with only short reads.

Details

For protcols like FLT-seq that generate two libraries, one with both short and long reads, and one
with only short reads, this function combines the two libraries into a single SingleCellExperiment
object. For the library with both long and short reads, the long-read transcript counts should be
stored in the "transcript’ altExp slot of the SingleCellExperiment object. This function will com-
bine the short-read gene counts of both libraries, and for the transcripts counts, it will leave NA
values for the cells from the short-read only library. The sc_impute_transcript function can
then be used to impute the NA values.

Value

A SingleCellExperiment object with combined gene counts and a "transcript" altExp slot.

Examples

with_1r <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = matrix(rpois(100, 5), ncol = 10))
without_lr <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = matrix(rpois(200, 5), ncol = 2
long_read <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = matrix(rpois(50, 5), ncol = 10)
SingleCellExperiment::altExp(with_lr, "transcript”) <- long_read
SummarizedExperiment::colData(with_lr)$Barcode <- paste@(1:10, "-1")

SummarizedExperiment: :colData(without_lr)$Barcode <- paste@(8:27, "-1")

rownames(with_1r) <- as.character(101:110)

rownames (without_lr) <- as.character(103:112)

rownames(long_read) <- as.character(1001:1005)

combined_sce <- FLAMES::combine_sce(sce_with_lr = with_lr, sce_without_lr = without_1r)

combined_sce

config 11

config Get pipeline configurations

Description

This function returns the configuration of the pipeline.

Usage
config(pipeline)

S4 method for signature 'FLAMES.Pipeline'

config(pipeline)
Arguments

pipeline An object of class ‘FLAMES.Pipeline°.
Value

A list containing the configuration of the pipeline.

Examples

pipeline <- example_pipeline(type = "BulkPipeline")
config(pipeline)

config<- Set pipeline configurations

Description

This function sets the configuration of the pipeline.

Usage

config(pipeline) <- value

S4 replacement method for signature 'FLAMES.Pipeline'
config(pipeline) <- value

Arguments
pipeline An pipeline of class ‘FLAMES.Pipeline‘.
value A list containing the configuration of the pipeline, or a path to a JSON configu-
ration file.
Value

An pipeline of class ‘FLAMES Pipeline‘ with the updated configuration.

12 controllers<-

Examples

pipeline <- example_pipeline(type = "BulkPipeline")
Set a new configuration
config(pipeline) <- create_config(outdir = tempdir())

controllers Get controllers

Description

Gets the controllers for the pipeline.

Usage

controllers(pipeline)

S4 method for signature 'FLAMES.Pipeline'
controllers(pipeline)

Arguments

pipeline A FLAMES . Pipeline object.

Value
A named list of crew_class_controller objects, where each controller corresponds to a step in
the pipeline.

Examples

pipeline <- example_pipeline(type = "MultiSampleSCPipeline")
controllers(pipeline) # get the controllers

controllers<- Set controllers

Description

Sets the controllers for the pipeline.
Usage
controllers(pipeline) <- value

S4 replacement method for signature 'FLAMES.Pipeline'
controllers(pipeline) <- value

convolution_filter 13

Arguments
pipeline A FLAMES . Pipeline object.
value A crew_class_controller object or a named list of crew_class_controller
objects. If a single controller is provided, it will be used for all steps in the
pipeline. If a named list is provided, steps with names that match the names
of the list will use the corresponding controller, and steps without a specified
controller will use the current R session.
Value

An updated FLAMES.Pipeline object with the specified controllers.

Examples

pipeline <- example_pipeline()

Only set the genome alignment controller

controllers(pipeline) <- list(genome_alignment = crew::crew_controller_local())
Same as above

controllers(pipeline)[["genome_alignment”]] <- crew::crew_controller_local()

Set a controller for all steps

controllers(pipeline) <- crew::crew_controller_local()

Unset all controllers and use the current R session

controllers(pipeline) <- list()

convolution_filter Convolution filter for smoothing transcript coverages

Description

Filter out transcripts with sharp drops / rises in coverage, to be used in filter_coverage to remove
transcripts with potential misalignments / internal priming etc. Filtering is done by convolving the
coverage with a kernal of 1s and -1s (e.g. c(1, 1, -1, -1), where the width of the 1s and -1s are
determined by the width parameter), and check if the maximum absolute value of the convolution
is below a threshold. If the convolution is below the threshold, TRUE is returned, otherwise FALSE.

Usage

convolution_filter(x, threshold = ©.15, width = 2, trim = 0.05)

Arguments
X numeric vector of coverage values
threshold numeric, the threshold for the maximum absolute value of the convolution
width numeric, the width of the 1s and -1s in the kernal. E.g. width = 2 will result in
akernal of c(1, 1, -1, -1)
trim numeric, the proportion of the coverage values to ignore at both ends before
convolution.
Value

logical, TRUE if the transcript passes the filter, FALSE otherwise

14

Examples

create_config

A >30% drop in coverage will fail the filter with threshold = 0.3
convolution_filter(c(1, 1, 1, 0.69, 0.69, 0.69), threshold = 0.3)
convolution_filter(c(1, 1, 1, 0.71, 0.7, 0.7), threshold = 0.3)

create_config

Create Configuration File From Arguments

Description

Create Configuration File From Arguments

Usage
create_config(outdir, type = "sc_3end”, ...)

Arguments
outdir the destination directory for the configuration file
type use an example config, available values:

"sc_3end'" - config for 10x 3’ end ONT reads
"'SIRV" - config for the SIRV example reads

Configuration parameters (using dot for nested parameters)

seed - Integer. Seed for minimap?2.

threads - Number of threads to use.

do_barcode_demultiplex - Boolean. Specifies whether to run the barcode de-
multiplexing step.

do_genome_alignment - Boolean. Specifies whether to run the genome align-
ment step. TRUE is recommended

do_gene_quantification - Boolean. Specifies whether to run gene quantifica-
tion using the genome alignment results. TRUE is recommended

do_isoform_identification - Boolean. Specifies whether to run the isoform
identification step. TRUE is recommended

bambu_isoform_identification - Boolean. Whether to use Bambu for isoform
identification.

multithread_isoform_identification - Boolean. Whether to use FLAMES’
new multithreaded Cpp implementation for isoform identification.

do_read_realignment - Boolean. Specifies whether to run the read realign-
ment step. TRUE is recommended

do_transcript_quantification - Boolean. Specifies whether to run the tran-
script quantification step. TRUE is recommended

barcode_parameters.max_bc_editdistance - Maximum edit distance for bar-
code matching

barcode_parameters.pattern.primer - Primer sequence pattern

isoform_parameters.max_dist - Maximum distance allowed when merging
splicing sites

... - Other nested parameters, using dot to indicate nested section

create_sce_from_dir 15

Details

Create a list object containing the arguments supplied in a format usable for the FLAMES pipeline,
and writes the object to a JSON file, which is located with the prefix ’config_’ in the supplied
outdir. Default values from extdata/config_sclr_nanopore_3end. json will be used for un-
provided parameters.

Parameters can be specified using dot to indicate nested sections, e.g., barcode_parameters.max_bc_editdistance
=3 or barcode_parameters.pattern.primer = "ATCG". Alternatively, you can open the created
config file and edit it manually.

Value

file path to the config file created

Examples

create the default configuration file
outdir <- tempdir()
config <- create_config(outdir)

create config with custom parameters including nested ones
config <- create_config(outdir,
threads = 16,
barcode_parameters.max_bc_editdistance = 3,
barcode_parameters.pattern.primer = "ATCGATCG",
isoform_parameters.min_sup_cnt = 10,
use the coverage model in oarfish
via supplying additional CLI arguments
additional_arguments.oarfish = c(”--model-coverage")

create_sce_from_dir Create SingleCellExperiment object from FLAMES output folder

Description

Create SingleCellExperiment object from FLAMES output folder

Usage

create_sce_from_dir(outdir, annotation, quantification = "FLAMES")
Arguments

outdir The folder containing FLAMES output files

annotation the annotation file that was used to produce the output files

quantification (Optional) the quantification method used to generate the output files (either
"FLAMES" or "Oarfish".). If not specified, the function will attempt to deter-
mine the quantification method.

16 create_se_from_dir

Value

a list of SingleCellExperiment objects if multiple transcript matrices were found in the output
folder, or a SingleCellExperiment object if only one were found

Examples

outdir <- tempfile()

dir.create(outdir)

bc_allow <- file.path(outdir, "bc_allow.tsv")

genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE

R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

)

annotation <- system.file("extdata”, "rps24.gtf.gz", package = "FLAMES")

sce <- sc_long_pipeline(
genome_fa = genome_fa,
fastq = system.file("extdata”, "fastq", "musc_rps24.fastq.gz", package = "FLAMES"),
annotation = annotation,
outdir = outdir,
barcodes_file = bc_allow,
config_file = create_config(

outdir,
pipeline_parameters.demultiplexer = "flexiplex”,
oarfish_quantification = FALSE

)
)

sce_2 <- create_sce_from_dir(outdir, annotation)

create_se_from_dir Create SummarizedExperiment object from FLAMES output folder

Description

Create SummarizedExperiment object from FLAMES output folder

Usage

create_se_from_dir(outdir, annotation, quantification = "FLAMES")
Arguments

outdir The folder containing FLAMES output files

annotation (Optional) the annotation file that was used to produce the output files

quantification (Optional) the quantification method used to generate the output files (either
"FLAMES" or "Oarfish".). If not specified, the function will attempt to deter-
mine the quantification method.

create_spe 17

Value

a SummarizedExperiment object

Examples

ppl <- example_pipeline("BulkPipeline")

ppl <- run_FLAMES(ppl)

sel <- experiment(ppl)

se2 <- create_se_from_dir(ppl@outdir, ppl@annotation)

create_spe Create a SpatialExperiment object

Description

This function creates a SpatialExperiment object from a SingleCellExperiment object and a spatial
barcode file.

Usage

create_spe(
sce,
spatial_barcode_file,
mannual_align_json,

image,
tissue_positions_file
)
Arguments
sce The SingleCellExperiment object obtained from running the sc_long_pipeline

function.
spatial_barcode_file
The path to the spatial barcode file, e.g. "spaceranger-2.1.1/1ib/python/cellranger/barcodes
mannual_align_json
The path to the mannual alignment json file.
image ’DataFrame’ containing the image data. See ?SpatialExperiment: :readImgData
and ?SpatialExperiment::SpatialExperiment.
tissue_positions_file
The path to Visium positions file, e.g. "spaceranger-2.1.1/1ib/python/cellranger/barcodes/

Value

A SpatialExperiment object.

18 demultiplex_sockeye

cutadapt cutadapt wrapper

Description

trim TSO adaptor with cutadapt

Usage

cutadapt(args)

Arguments

args arguments to be passed to cutadapt

Value

Exit code of cutadapt

Examples

cutadapt(”-h")

demultiplex_sockeye Demultiplex reads using Sockeye outputs

Description

Demultiplex reads using the cell_umi_gene. tsv file from Sockeye.

Usage

demultiplex_sockeye(fastq_dir, sockeye_tsv, out_fq)

Arguments
fastqg_dir The folder containing FASTQ files from Sockeye’s output under ingest/chunked_fastgs.
sockeye_tsv The cell_umi_gene. tsv file from Sockeye.
out_fq The output FASTQ file.

Value

returns NULL

example_pipeline 19

example_pipeline Example pipelins

Description

Provides example pipelines for bulk, single cell and multi-sample single cell.

Usage

example_pipeline(type = "SingleCellPipeline”, outdir)

Arguments
type The type of pipeline to create. Options are "SingleCellPipeline", "BulkPipeline",
and "MultiSampleSCPipeline".
outdir (Optional) The output directory where the example pipeline will be created. If
not provided, a temporary directory will be created.
Value

A pipeline object of the specified type.

See Also
SingleCellPipeline for creating the single cell pipeline, BulkPipeline for bulk long data, MultiSampleSCPipeline

for multi sample single cell pipelines.

Examples

example_pipeline(”SingleCellPipeline”)

experiment Get pipeline results

Description
This function returns the results of the pipeline as a SummarizedExperiment object, a SingleCellExperiment
object, or a list of SingleCellExperiment objects, depending on the pipeline type.
Usage
experiment(pipeline)
S4 method for signature 'FLAMES.Pipeline'
experiment(pipeline)
Arguments

pipeline A FLAMES Pipeline object.

20 filter_annotation

Value
A SummarizedExperiment object, a SingleCellExperiment object, or alist of SingleCellExperiment
objects.

Examples

pipeline <- example_pipeline(type = "BulkPipeline")
pipeline <- run_FLAMES(pipeline)
se <- experiment(pipeline)

fake_stranded_gff Fake stranded GFF file

Description

Check if all the transcript in the annotation is stranded. If not, convert to °+’.

Usage
fake_stranded_gff(gff_file)

Value

Path to the temporary file with unstranded transcripts converted to *+’.

filter_annotation filter annotation for plotting coverages

Description

Removes isoform annotations that could produce ambigious reads, such as isoforms that only differ
by the 5’ / 3’ end. This could be useful for plotting average coverage plots.

Usage
filter_annotation(annotation, keep = "tss_differ")
Arguments
annotation path to the GTF annotation file, or the parsed GenomicRanges object with a
valid transcript_id column, and each Range representing a transcript.
keep string, one of tss_differ’ (only keep isoforms that all differ by the transcription
start site position), 'tes_differ’ (only keep those that differ by the transcription
end site position), ’both’ (only keep those that differ by both the start and end
site), or ’single_transcripts’ (only keep genes that contains a sinlge transcript).
Value

GenomicRanges of the filtered isoforms

filter_coverage 21

Examples

filtered_annotation <- filter_annotation(
system.file("extdata"”, "rps24.gtf.gz", package = 'FLAMES'), keep = 'tes_differ')
filtered_annotation

filter_coverage Filter transcript coverage

Description

Filter the transcript coverage by applying a filter function to the coverage values.

Usage

filter_coverage(x, filter_fn = convolution_filter)

Arguments
X The tibble returned by get_coverage, or a BAM file path, or a GAlignments
object.
filter_fn The filter function to apply to the coverage values. The function should take
a numeric vector of coverage values and return a logical value (TRUE if the
transcript passes the filter, FALSE otherwise). The default filter function is
convolution_filter, which filters out transcripts with sharp drops / rises in
coverage.
Value

a tibble of the transcript information and coverages, with transcipts that pass the filter

Examples

ppl <- example_pipeline("BulkPipeline")
steps(ppl)["isoform_identification”] <- FALSE
ppl <- run_step(ppl, "read_realignment")
x <- get_coverage(ppl@transcriptome_bam[[1]])
nrow(x)
filter_coverage(x) |>

nrow()

22 find_barcode

find_barcode Match Cell Barcodes

Description

demultiplex reads with flexiplex

Usage

find_barcode(
fastq,
barcodes_file,
max_bc_editdistance = 2,
max_flank_editdistance = 8,
reads_out,
stats_out,
threads = 1,
pattern = c(primer = "CTACACGACGCTCTTCCGATCT", BC = paste@(rep(”"N", 16), collapse =
"""y, UMI = paste@(rep(”"N"”, 12), collapse =""), polyT = paste@(rep("T", 9), collapse
= "),
TSO_seq = "",
TSO_prime = 3,
strand = "+",
cutadapt_minimum_length = 1,
full_length_only = FALSE

Arguments

fastq A path to a FASTQ file or a directory containing FASTQ files.

barcodes_file path to file containing barcode allow-list, with one barcode in each line
max_bc_editdistance

max edit distances for the barcode sequence
max_flank_editdistance

max edit distances for the flanking sequences (primer and polyT)

reads_out path to output FASTQ file

stats_out path of output stats file

threads number of threads to be used

pattern named character vector defining the barcode pattern

TSO_seq TSO sequence to be trimmed

TSO_prime either 3 (when TSO_seq is on 3’ the end) or 5 (on 5’ end)

strand strand of the barcode pattern, either "+’ or ’-’ (read will be reverse comple-

mented after barcode matching if *-)
cutadapt_minimum_length
minimum read length after TSO trimming (cutadapt’s —minimum-length)
full_length_only
boolean, when TSO sequence is provided, whether reads without TSO are to be
discarded

find_bin 23

Details

This function demultiplexes reads by searching for flanking sequences (adaptors) around the bar-
code sequence, and then matching against allowed barcodes.

Value

alist containing: reads_tb (tibble of read demultiplexed information) and input, output, read1_with_adapter
from cutadapt report (if TSO trimming is performed)

Examples

outdir <- tempfile()
dir.create(outdir)
bc_allow <- file.path(outdir, "bc_allow.tsv")
R.utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE
)
find_barcode(
fastq = system.file("extdata”, "fastq", "musc_rps24.fastq.gz", package = "FLAMES"),
stats_out = file.path(outdir, "bc_stat.tsv.gz"),
reads_out = file.path(outdir, "demultiplexed.fastq.gz"),
barcodes_file = bc_allow,
TSO_seq = "AAGCAGTGGTATCAACGCAGAGTACATGGG", TSO_prime = 5,

strand = '-', cutadapt_minimum_length = 10, full_length_only = TRUE
)
find_bin Find path to a binary Wrapper for Sys.which to find path to a binary
Description

This function is a wrapper for base: :Sys.which to find the path to a command. It also searches
within the FLAMES basilisk conda environment. This function also replaces "" with NA in the output
of base: :Sys.which to make it easier to check if the binary is found.

Usage

find_bin(command)

Arguments

command character, the command to search for

Value

character, the path to the command or NA

Examples

find_bin("minimap2")

24 find_variants

find_isoform Isoform identification

Description

Long-read isoform identification with FLAMES or bambu.

Usage

find_isoform(annotation, genome_fa, genome_bam, outdir, config)

Arguments
annotation Path to annotation file. If configured to use bambu, the annotation must be
provided as GTF file.
genome_fa The file path to genome fasta file.
genome_bam File path to BAM alignment file. Multiple files could be provided.
outdir The path to directory to store all output files.
config Parsed FLAMES configurations.
Value

The updated annotation and the transcriptome assembly will be saved in the output folder as isoform_annotated.gff3
(GTF if bambu is selected) and transcript_assembly. fa respectively.

find_variants bulk variant identification

Description

Treat each bam file as a bulk sample and identify variants against the reference

Usage

find_variants(
bam_path,
reference,
annotation,
min_nucleotide_depth = 100,
homopolymer_window = 3,
annotated_region_only = FALSE,
names_from = "gene_name",
threads = 1

find_variants 25

Arguments
bam_path character(1) or character(n): path to the bam file(s) aligned to the reference
genome (NOT the transcriptome!).
reference DNAStringSet: the reference genome
annotation GRanges: the annotation of the reference genome. You can load a GTF/GFF

annotation file with anno <- rtracklayer: :import(file).

min_nucleotide_depth
integer(1): minimum read depth for a position to be considered a variant.

homopolymer_window
integer(1): the window size to calculate the homopolymer percentage. The ho-
mopolymer percentage is calculated as the percentage of the most frequent nu-
cleotide in a window of -homopolymer_window to homopolymer_window nu-
cleotides around the variant position, excluding the variant position itself. Cal-
culation of the homopolymer percentage is skipped when homopolymer_window
= 0. This is useful for filtering out Nanopore sequencing errors in homopolymer
regions.

annotated_region_only
logical(1): whether to only consider variants outside annotated regions. If TRUE,
only variants outside annotated regions will be returned. If FALSE, all variants
will be returned, which could take significantly longer time.

names_from character(1): the column name in the metadata column of the annotation (mcols(annotation)[,
names_from]) to use for the region column in the output.
threads integer(1): number of threads to use. Threading is done over each annotated re-
gion and (if annotated_region_only = FALSE) unannotated gaps for each bam
file.
Details

Each bam file is treated as a bulk sample to perform pileup and identify variants. You can run
sc_mutations with the variants identified with this function to get single-cell allele counts. Note
that reference genome FASTA files may have the chromosome names field as ‘“>chrl 1° instead
of ‘>chrl‘. You may need to remove the trailing number to match the chromosome names in
the bam file, for example with names(ref) <- sapply(names(ref), function(x) strsplit(x,

"LOIIND.

Value

A tibble with columns: seqnames, pos, nucleotide, count, sum, freq, ref, region, homopolymer_pct,
bam_path The homopolymer percentage is calculated as the percentage of the most frequent nu-
cleotide in a window of homopolymer_window nucleotides around the variant position, excluding
the variant position itself.

Examples

ppl <- example_pipeline(”SingleCellPipeline")
ppl <- run_step(ppl, "genome_alignment")
variants <- find_variants(

bam_path = ppl@genome_bam,

reference = ppl@genome_fa,

annotation = ppl@annotation,

min_nucleotide_depth = 4

26 flexiplex

)

head(variants)

FLAMES FLAMES: full-length analysis of mutations and splicing

Description

FLAMES: full-length analysis of mutations and splicing

Value

invisible()

flexiplex Rcepp port of flexiplex

Description

demultiplex reads with flexiplex, for detailed description, see documentation for the original flexi-
plex: https://davidsongroup.github.io/flexiplex

Usage

flexiplex(
reads_in,
barcodes_file,
bc_as_readid,
max_bc_editdistance,
max_flank_editdistance,
pattern,
reads_out,
stats_out,
bc_out,
reverseCompliment,
n_threads

Arguments

reads_in Input FASTQ or FASTA file
barcodes_file barcode allow-list file

bc_as_readid bool, whether to add the demultiplexed barcode to the read ID field

max_bc_editdistance

max edit distance for barcode ’
max_flank_editdistance

max edit distance for the flanking sequences ’

pattern StringVector defining the barcode structure, see [find_barcode]

get_coverage 27

reads_out output file for demultiplexed reads
stats_out output file for demultiplexed stats
bc_out WIP
reverseCompliment
bool, whether to reverse complement the reads after demultiplexing
n_threads number of threads to be used during demultiplexing
Value

integer return value. O represents normal return.

get_coverage Get read coverages from BAM file

Description

Get the read coverages for each transcript in the BAM file (or a GAlignments object). The read
coverages are sampled at 100 positions along the transcript, and the coverage is scaled by dividing
the coverage at each position by the total read counts for the transcript. If a BAM file is provided,
alignment with MAPQ < 5, secondary alignments and supplementary alignments are filtered out. A
GAlignments object can also be provided in case alternative filtering is desired.

Usage

get_coverage(bam, min_counts = 10, remove_UTR = FALSE, annotation)

Arguments
bam path to the BAM file, or a parsed GAlignments object
min_counts numeric, the minimum number of alignments required for a transcript to be
included
remove_UTR logical, if TRUE, remove the UTRs from the coverage
annotation (Required if remove_UTR = TRUE) path to the GTF annotation file
Value

a tibble of the transcript information and coverages, with the following columns:

* transcript: the transcript name / ID
* read_counts: the total number of aligments for the transcript
* coverage_1-100: the coverage at each of the 100 positions along the transcript

e tr_length: the length of the transcript

Examples

ppl <- example_pipeline("BulkPipeline")
steps(ppl)["isoform_identification”] <- FALSE
ppl <- run_step(ppl, "read_realignment")

x <- get_coverage(ppl@transcriptome_bam[[1]])
head(x)

28 gff2bed

get_GRangesList Parse FLAMES’ GFF output

Description

Parse FLAMES’ GFF ouputs into a Genomic Ranges List

Usage
get_GRangesList(
file,
feature.type = c("exon”, "utr"),
drop.cols = c("type”, "exon_number”, "exon_id", "level”, "Parent”)
)
Arguments
file the GFF file to parse

feature. type The type of features to extract from the GFF file. Default is c("exon”, "utr”).

drop.cols Columns to drop from the metadata. Default is c("type”, "exon_number”,
"exon_id", "level”), which are exon-specific metadata that may not be rele-
vant when keeping just the first row (exon).

Value

A list containing a GRangesList of isoforms and a DataFrame, which have the same number of
rows as the number of unique transcript IDs in the GFF file.

gff2bed Convert GFF/GTF to BED file

Description

Convert GFF/GTF to BED file

Usage
gff2bed(gff, bed)

Arguments

gff Path to the GFF/GTF file

bed Path to the output BED file to be written
Value

invisible, the BED file is written to the specified path

index_genome 29

index_genome Index the reference genome for minimap?2

Description

Calls minimap?2 to index the reference genome.

Usage

index_genome(pipeline, path, additional_args = c("-k", "14"))

S4 method for signature 'FLAMES.Pipeline'
index_genome(pipeline, path, additional_args = c("-k", "14"))

Arguments
pipeline A FLAMES Pipeline object.
path The file path to save the minimap?2 index. If not provided, it will be saved to the

output directory with the name "genome.mmi".
additional_args
(optional) Additional arguments to pass to minimap2.

Value
A SummarizedExperiment object, a SingleCellExperiment object, or alist of SingleCellExperiment
objects.

Examples

pipeline <- example_pipeline(type = "BulkPipeline")
pipeline <- index_genome(pipeline)

load_config Load Configurations

Description
Loads a configuration file and fills in missing values with defaults from the package’s default con-
figuration.

Usage
load_config(config_file, type = "sc_3end")

Arguments

config_file Path to the configuration JSON file
type Config type to use for defaults ("sc_3end" or "SIRV")

Value

A complete configuration list with all parameters filled

30 minimap2_align

merge_configs_recursive
Recursively Merge Configuration Lists

Description
Internal function to recursively merge configuration lists, filling missing values from defaults while
preserving user values

Usage

merge_configs_recursive(default_config, user_config)

Arguments

default_config Default configuration list

user_config User configuration list

Value

Merged configuration list

Note

Special case: when user_config contains barcode_parameters.pattern as a list, the entire pattern list
is preserved as-is without merging with defaults to maintain user-specified order and structure.

minimap2_align Minimap?2 Align to Genome

Description

Uses minimap?2 to align sequences agains a reference databse. Uses options ’-ax splice -t 12 -k14
—secondary=no fa_file fq_in’

Usage

minimap2_align(
fg_in,
fa_file,
config,
outfile,
minimap2_args,
sort_by,
minimap2,
samtools,
threads = 1,
tmpdir

MultiSampleSCPipeline 31

Arguments
fg_in File path to the fastq file used as a query sequence file
fa_file Path to the fasta file used as a reference database for alignment
config Parsed list of FLAMES config file
outfile Path to the output file

minimap2_args Arguments to pass to minimap2, see minimap2 documentation for details.

sort_by Column to sort the bam file by, see samtools sort for details

minimap2 Path to minimap2 binary

samtools path to the samtools binary.

threads Integer, threads for minimap?2 to use, see minimap2 documentation for details,
tmpdir Temporary directory to use for intermediate files. FLAMES will try to detect

cores if this parameter is not provided.

Value

a data.frame summarising the reads aligned

MultiSampleSCPipeline Pipeline for multi-sample long-read scRNA-seq data

Description

Semi-supervised isofrom detection and annotation for long read data. This variant is meant for
multi-sample scRNA-seq data. Specific parameters can be configured in the config file (see create_config),
input files are specified via arguments.

Usage

MultiSampleSCPipeline(
config_file,
outdir,
fastq,
annotation,
genome_fa,
genome_mmi,
minimap2,
samtools,
barcodes_file,
expect_cell_number,
controllers

32 MultiSampleSCPipeline

Arguments

config_file Path to the JSON configuration file. See create_config for creating one.

outdir Path to the output directory. If it does not exist, it will be created.

fastq A named vector of fastq file (or folder) paths. Each element of the vector will be
treated as a sample. The names of the vector will be used as the sample names.
If not named, the sample names will be generated from the file names.

annotation The file path to the annotation file in GFF3 / GTF format.

genome_fa The file path to the reference genome in FASTA format.

genome_mmi (optional) The file path to minimap2’s index reference genome.

minimap2 (optional) The path to the minimap?2 binary. If not provided, FLAMES will use
a copy from bioconda via basilisk.

samtools (optional) The path to the samtools binary. If not provided, FLAMES will use a

copy from bioconda via basilisk.

barcodes_file The file with expected cell barcodes, with each barcode on a new line.
expect_cell_number
The expected number of cells in the sample. This is used if barcodes_file is
not provided. See BLAZE for more details.

controllers (optional, experimental) A crew_class_controller object for running cer-
tain steps

Details

By default the pipeline starts with demultiplexing the input fastq data. If the cell barcodes are
known apriori (e.g. via coupled short-read sequencing), the barcodes_file argument can be used
to specify a file containing the cell barcodes, and a modified Rcpp version of flexiplex will be
used; otherwise, expect_cell_number need to be provided, and BLAZE will be used to generate the
cell barcodes. The pipeline then aligns the reads to the genome using minimap2. The alignment
is then used for isoform detection (either using FLAMES or bambu, can be configured). The reads
are then realigned to the detected isoforms. Finally, a transcript count matrix is generated (either
using FLAMES’s simplistic counting or oarfish’s Expectation Maximization algorithm, can be con-
figured). The results can be accssed with experiment (pipeline). If the pipeline errored out / new
steps were configured, it can be resumed by calling resume_FLAMES (pipeline)

Value

A FLAMES.MultiSampleSCPipeline object. The pipeline can be run using the run_FLAMES func-
tion. The resulting list of SingleCellExperiment objects can be accessed using the experiment
method.

See Also

SingleCellPipeline for single-sample long data and more details on the pipeline output, create_config
for creating a configuration file, BulkPipeline for bulk long data.

Examples

reads <- ShortRead: :readFastq(
system.file("extdata”, "fastq"”, "musc_rps24.fastq.gz"”, package = "FLAMES")

)
outdir <- tempfile()

mutation_positions

dir.create(outdir)
dir.create(file.path(outdir, "fastq"))
bc_allow <- file.path(outdir, "bc_allow.tsv")
genome_fa <- file.path(outdir, "rps24.fa")

R.

)

utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE

.utils::gunzip(

filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

ShortRead: :writeFastq(reads[1:100],

noon

file.path(outdir, "fastq/samplel.fq.gz"), mode = "w", full

FALSE)

reads <- reads[-(1:100)]
ShortRead: :writeFastq(reads[1:100],

file.path(outdir, "fastq/sample2.fq.gz"), mode = "w", full = FALSE)

reads <- reads[-(1:100)]
ShortRead: :writeFastqg(reads,

file.path(outdir, "fastq/sample3.fq.gz"), mode = "w", full = FALSE)

ppl <- MultiSampleSCPipeline(

)

config_file = create_config(
outdir,
pipeline_parameters.demultiplexer = "flexiplex",
pipeline_parameters.threads = 1,
alignment_parameters.no_flank = TRUE
),
outdir = outdir,
fastq = c("sampleA” = file.path(outdir, "fastq"),
"samplel” = file.path(outdir, "fastq”, "samplel.fq.gz"),
"sample2” = file.path(outdir, "fastq", "sample2.fq.gz"),
"sample3” = file.path(outdir, "fastq", "sample3.fq.gz")),
annotation = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),
genome_fa = genome_fa,
barcodes_file = rep(bc_allow, 4)

ppl <- run_FLAMES(ppl)
experiment (ppl)

33

mutation_positions Calculate mutation positions within the gene body

Description

Given a set of mutations and gene annotation, calculate the position of each mutation within the
gene body they are in.

Usage

mutation_positions(

mutations,
annotation,

type = "relative”,
bin = FALSE,

34

by = c(region
threads = 1

Arguments

mutations

annotation

type

bin

by

threads

Value

mutation_positions_single

= "gene_name"),

either the tibble output from find_variants. It must have columns segnames,
pos, and a third column for specifying the gene id or gene name. The mutation
must be within the gene region.

Either path to the annotation file (GTF/GFF) or a GRanges object of the gene
annotation.

character(1): the type of position to calculate. Can be one of "TSS" (distance
from the transcription start site), "TES" (distance from the transcription end
site), or "relative” (relative position within the gene body).

logical(1): whether to bin the relative positions into 100 bins. Only applicable
when type = "relative”.

character(1): the column name in the annotation to match with the gene anno-
tation. E.g. c("region” = "gene_name") to match the ‘region‘ column in the
mutations with the ‘gene_name* column in the annotation.

integer(1): number of threads to use.

A numeric vector of positions of each mutation within the gene body. When type = "relative”,
the positions are normalized to the gene length, ranging from 0 (start of the gene) to 1 (end of the
gene). When type = "TSS" / type = "TES", the distances from the transcription start / end site. If
bin = TRUE, and type = "relative”, the relative positions are binned into 100 bins along the gene
body, and the output is a matrix with the number of mutations in each bin, the rows are named by

the by column (e.g.

Examples

gene name).

variants <- data.frame(
segnames = rep("chr14”, 8),
pos = c(1084, 1085, 1217, 1384, 2724, 2789, 5083, 5147),
region = rep("Rps24"”, 8)

)

positions <-

mutation_positions(
mutations = variants,
annotation = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES")

mutation_positions_single

mutation positions within the gene body

plot_coverage 35

Description

Given a set of mutations and a gene annotation, calculate the position of each mutation within the
gene body. The gene annotation must have the following types: "gene" and "exon". The gene
annotation must be for one gene only. The mutations must be within the gene region. The function
will merge overlapping exons and calculate the position of each mutation within the gene body,
excluding intronic regions.

Usage

mutation_positions_single(mutations, annotation_grange, type, verbose = TRUE)

Arguments

mutations either the tibble output from find_variants or a GRanges object. Make sure
to filter it for only the gene of interest.
annotation_grange

GRanges: the gene annotation. Must have the following types: "gene" and
"exon".

type character(1): the type of position to calculate. Can be one of "TSS" (distance
from the transcription start site), "TES" (distance from the transcription end
site), or "relative” (relative position within the gene body).

verbose logical(1): whether to print messages.

Value

A numeric vector of positions of each mutation within the gene body. When type = "relative”,
the positions are normalized to the gene length, ranging from 0 (start of the gene) to 1 (end of the
gene). When type = "TSS"” / type = "TES", the distances from the transcription start / end site.

plot_coverage plot read coverages

Description

Plot the average read coverages for each length bin or a perticular isoform

Usage

plot_coverage(
X,
quantiles = c(@, 0.2375, ©.475, 0.7125, ©.95, 1),
length_bins = c(0, 1, 2, 5, 10, Inf),
weight_fn = weight_transcripts,
filter_fn,
detailed = FALSE

36 plot_demultiplex

Arguments

X path to the BAM file (aligning reads to the transcriptome), or the (Genomi-
cAlignments::readGAlignments) parsed GAlignments object, or the tibble re-
turned by get_coverage, or the filtered tibble returned by filter_coverage.

quantiles numeric vector to specify the quantiles to bin the transcripts lengths by if length_bins
is missing. The length bins will be determined such that the read counts are dis-
tributed acording to the quantiles.

length_bins numeric vector to specify the sizes to bin the transcripts by

weight_fn function to calculate the weights for the transcripts. The function should take
a numeric vector of read counts and return a numeric vector of weights. The
default function is weight_transcripts, you can change its default parameters
by passing an anonymous function like function(x) weight_transcripts(x,
type = 'equal’).

filter_fn Optional filter function to filter the transcripts before plotting. See the filter_fn
parameter in filter_coverage for more details. Providing a filter fucntion here
is the same as providing it in filter_coverage and then passing the result to
this function.

detailed logical, if TRUE, also plot the top 10 transcripts with the highest read counts for
each length bin.

Value

a ggplot2 object of the coverage plot(s)

Examples

ppl <- example_pipeline("”BulkPipeline")
steps(ppl)["isoform_identification”] <- FALSE
ppl <- run_step(ppl, "read_realignment")

Plot the coverages directly from the BAM file
plot_coverage(ppl@transcriptome_bam[[1]1])

Get the coverage information first
coverage <- get_coverage(ppl@transcriptome_bam[[1]]) |>
dplyr::filter(read_counts > 2) |> # Filter out transcripts with read counts < 3
filter_coverage(filter_fn = convolution_filter) # Filter out transcripts with sharp drops / rises
Plot the filtered coverages
plot_coverage(coverage, detailed = TRUE)
filtering function can also be passed directly to plot_coverage
plot_coverage(ppl@transcriptome_bam[[1]], filter_fn = convolution_filter)

plot_demultiplex Plot Cell Barcode demultiplex statistics

Description

produce a barplot of cell barcode demultiplex statistics

plot_demultiplex_raw

Usage
plot_demultiplex(pipeline)
S4 method for signature 'FLAMES.SingleCellPipeline'
plot_demultiplex(pipeline)

Arguments

pipeline A FLAMES.SingleCellPipeline object

Value
a list of ggplot objects:

* reads_count_plot: stacked barplot of: demultiplexed reads

* knee_plot: knee plot of UMI counts before TSO trimming

* flank_editdistance_plot: flanking sequence (adaptor) edit-distance plot
* barcode_editdistance_plot: barcode edit-distance plot

* cutadapt_plot: if TSO trimming is performed, number of reads kept by cutadapt

Examples

pipeline <- example_pipeline("”MultiSampleSCPipeline”) |>
run_step("barcode_demultiplex")
plot_demultiplex(pipeline)

37

plot_demultiplex_raw Plot Cell Barcode demultiplex statistics

Description

produce a barplot of cell barcode demultiplex statistics

Usage

plot_demultiplex_raw(find_barcode_result)

Arguments

find_barcode_result
output from find_barcode

Value
a list of ggplot objects:

 reads_count_plot: stacked barplot of: demultiplexed reads

* knee_plot: knee plot of UMI counts before TSO trimming

* flank_editdistance_plot: flanking sequence (adaptor) edit-distance plot
* barcode_editdistance_plot: barcode edit-distance plot

* cutadapt_plot: if TSO trimming is performed, number of reads kept by cutadapt

38 plot_durations

Examples

outdir <- tempfile()
dir.create(outdir)
fastg_dir <- tempfile()
dir.create(fastq_dir)
file.copy(system.file("extdata”, "fastq”, "musc_rps24.fastq.gz", package = "FLAMES"),
file.path(fastq_dir, "musc_rps24.fastq.gz"))
sampled_lines <- readlLines(file.path(fastq_dir, "musc_rps24.fastqg.gz"), n = 400)
writeLines(sampled_lines, file.path(fastq_dir, "copy.fastq"))
bc_allow <- file.path(outdir, "bc_allow.tsv")
R.utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE
)
find_barcode(
fastq = fastqg_dir,
stats_out = file.path(outdir, "bc_stat.tsv.gz"),
reads_out = file.path(outdir, "demultiplexed.fq"),
barcodes_file = bc_allow, TSO_seq = "CCCATGTACTCTGCGTTGATACCACTGCTT"
) 1>
plot_demultiplex_raw()

plot_durations Plot pipeline step durations

Description

This function creates a horizontal bar plot showing the duration of each pipeline step using ggplot2.

Usage

plot_durations(x)

S4 method for signature 'FLAMES.Pipeline'’
plot_durations(x)

Arguments

X A FLAMES Pipeline object.

Value

A ggplot2 object.

Examples

pipeline <- example_pipeline("BulkPipeline”)
pipeline <- run_FLAMES(pipeline)
plot_durations(pipeline)

plot_isoforms 39

plot_isoforms Plot isoforms

Description

Plot isoforms, either from a gene or a list of transcript ids.

Usage
plot_isoforms(
sce,
gene_id,
transcript_ids,
n =4,
format = "plot_grid"”,
colors
)
Arguments
sce The SingleCellExperiment object containing transcript counts, rowRanges
and rowData with gene_id and transcript_id columns.
gene_id The gene symbol of interest, ignored if transcript_ids is provided.

transcript_ids The transcript ids to plot.

n The number of top isoforms to plot from the gene. Ignored if transcript_ids
is provided.

format The format of the output, either "plot_grid" or "list".

colors A character vector of colors to use for the isoforms. If not provided, gray will

be used. for all isoforms.

Details

This function takes a SingleCellExperiment object and plots the top isoforms of a gene, or a
list of specified transcript ids. Either as a list of plots or together in a grid. This function wraps
the ggbio: :geom_alignment function to plot the isoforms, and orders the isoforms by expression
levels (when specifying a gene) or by the order of the transcript_ids.

Value
When format = "1ist”, a list of ggplot objects is returned. Otherwise, a grid of the plots is
returned.

Examples

data(scmixology_lib1@_transcripts)
plot_isoforms(scmixology_lib1@_transcripts, gene_id = "ENSG00000108107")

40

plot_isoform_heatmap

plot_isoform_heatmap FLAMES heetmap plots

Description

Plot expression heatmap of top n isoforms of a gene

Usage

plot_isoform_heatmap(

sce,
gene_id,

transcript_ids,

n =4,
isoform_legend_width = 7,
col_low = "#313695",
col_mid = "#FFFFBF",
col_high = "#A50026",

color_quantile = 1,
cluster_palette,

Arguments
sce The SingleCellExperiment object containing transcript counts, rowRanges
and rowData with gene_id and transcript_id columns.
gene_id The gene symbol of interest, ignored if transcript_ids is provided.

transcript_ids

n

The transcript ids to plot.

The number of top isoforms to plot from the gene. Ignored if transcript_ids
is provided.

isoform_legend_width

The width of isoform legends in heatmaps, in cm.

col_low Color for cells with low expression levels in UMAPs.
col_mid Color for cells with intermediate expression levels in UMAPs.
col_high Color for cells with high expression levels in UMAPs.

color_quantile

cluster_palette

Details

The lower and upper expression quantile to be displayed bewteen col_low and
col_high, e.g. with color_quantile =0.95, cells with expressions higher
than 95% of other cells will all be shown in col_high, and cells with expression
lower than 95% of other cells will all be shown in col_low.

Optional, named vector of colors for the cluster annotations.

Additional arguments to pass to Heatmap.

Takes SingleCellExperiment object and plots an expression heatmap with the isoform visualiza-
tions along genomic coordinates.

plot_isoform_reduced_dim 41

Value

a ComplexHeatmap

Examples

data(scmixology_lib10@_transcripts)

scmixology_lib1@_transcripts |>
scuttle::logNormCounts() |>
plot_isoform_heatmap(gene = "ENSG0Q000108107")

plot_isoform_reduced_dim
FLAMES isoform reduced dimensions plots

Description

Plot expression of top n isoforms of a gene in reduced dimensions

Usage
plot_isoform_reduced_dim(
sce,
gene_id,
transcript_ids,
n =4,
reduced_dim_name = "UMAP",

use_gene_dimred = FALSE,

expr_func = function(x) {
SingleCellExperiment: :logcounts(x)

1

col_low = "#313695",

col_mid = "#FFFFBF",

col_high = "#A50026",

alpha = 0.5,

size = 0.2,

ggtheme = theme_minimal() + theme(axis.text = element_blank()),

color_quantile = 1,

format = "plot_grid"”,

)
Arguments
sce The SingleCellExperiment object containing transcript counts, rowRanges
and rowData with gene_id and transcript_id columns.
gene_id The gene symbol of interest, ignored if transcript_ids is provided.

transcript_ids The transcript ids to plot.

n The number of top isoforms to plot from the gene. Ignored if transcript_ids
is provided.

42 plot_isoform_reduced_dim

reduced_dim_name
The name of the reduced dimension to use for plotting cells.
use_gene_dimred

Whether to use gene-level reduced dimensions for plotting. Set to TRUE if the
SingleCellExperiment has gene counts in main assay and transcript counts in

altExp.

expr_func The function to extract expression values from the SingleCellExperiment ob-
ject. Default is logcounts. Alternatively, counts can be used for raw counts.

col_low Color for cells with low expression levels in UMAPs.

col_mid Color for cells with intermediate expression levels in UMAPs.

col_high Color for cells with high expression levels in UMAPs.

alpha The transparency of the points in the UMAPs.

size The size of the points in the UMAPs.

ggtheme The theme to use for the UMAPs.

color_quantile The lower and upper expression quantile to be displayed bewteen col_low and
col_high, e.g. with color_quantile =0.95, cells with expressions higher
than 95% of other cells will all be shown in col_high, and cells with expression
lower than 95% of other cells will all be shown in col_low.

format The format of the output, either "plot_grid" or "list".

Additional arguments to pass to plot_grid.

Details

Takes SingleCellExperiment object and plots an expression on reduced dimensions with the iso-
form visualizations along genomic coordinates.

Value

a ggplot object of the UMAP(s)

Examples

data(scmixology_lib1@_transcripts, scmixology_lib10, scmixology_lib90)
scmixology_lib1@ <-

scmixology_lib1@[, colSums(SingleCellExperiment::counts(scmixology_lib10)) > @]
sce_lr <- scmixology_lib10@[, colnames(scmixology_lib1@) %in% colnames(scmixology_lib1@_transcripts)]
SingleCellExperiment::altExp(sce_lr, "transcript”) <-

scmixology_lib1@_transcripts[, colnames(sce_1lr)]
combined_sce <- combine_sce(sce_lr, scmixology_1ib90)
combined_sce <- combined_sce |>

scuttle: :logNormCounts() |>

scater::runPCA(Q) |>

scater: :runUMAP()
combined_imputed_sce <- sc_impute_transcript(combined_sce)
plot_isoform_reduced_dim(combined_sce, 'ENSG00000108107')
plot_isoform_reduced_dim(combined_imputed_sce, 'ENSG00000108107')

plot_spatial_feature 43

plot_spatial_feature Plot feature on spatial image

Description

This function plots a spatial point plot for given feature

Usage
plot_spatial_feature(
spe,
feature,
opacity = 50,
grayscale = TRUE,
size = 1,
assay_type = "counts”,
color = "red”,
)
Arguments
spe The SpatialExperiment object.
feature The feature to plot. Could be either a feature name or index present in the assay
or a numeric vector of length nrow(spe).
opacity The opacity of the background tissue image.
grayscale Whether to convert the background image to grayscale.
size The size of the points.
assay_type The assay that contains the given features. E.g. *counts’, ’logcounts’.
color The maximum color for the feature. Minimum color is transparent.
Additional arguments to pass to geom_point.
Value
A ggplot object.

plot_spatial_isoform Plot spatial pie chart of isoforms

Description

This function plots a spatial pie chart for given features.

Usage

plot_spatial_isoform(spe, isoforms, assay_type = "counts”, color_palette, ...)

44 plot_spatial_pie

Arguments
spe The SpatialExperiment object.
isoforms The isoforms to plot.
assay_type The assay that contains the given features. E.g. *counts’, ’logcounts’.

color_palette Named vector of colors for each isoform.

Additional arguments to pass to plot_spatial_pie, including opacity, grayscale,

pie_scale.
Value
A ggplot object.
plot_spatial_pie Plot spatial pie chart
Description

This function plots a spatial pie chart for given features.

Usage

plot_spatial_pie(
spe,
features,
assay_type = "counts”,
color_palette,
opacity = 50,
grayscale = TRUE,
pie_scale = 0.8

)
Arguments
spe The SpatialExperiment object.
features The features to plot.
assay_type The assay that contains the given features.

color_palette Named vector of colors for each feature.

opacity The opacity of the background tissue image.
grayscale Whether to convert the background image to grayscale.
pie_scale The size of the pie charts.

Value

A ggplot object.

quantify_gene

45

quantify_gene

Gene quantification

Description

Calculate the per gene UMI count matrix by parsing the genome alignment file.

Usage

quantify_gene(
annotation,

outdir,

pipeline = "sc_single_sample”,

infq,
in_bam,
out_fastq,
n_process,

saturation_curve = TRUE,
sample_names = NULL,
random_seed = 2024

Arguments

annotation
outdir

pipeline

infq
in_bam
out_fastq

n_process

The file path to the annotation file in GFF3 format
The path to directory to store all output files.

The pipeline type as a character string, either sc_single_sample (single-cell,
single-sample), bulk (bulk, single or multi-sample), or sc_multi_sample (single-
cell, multiple samples)

The input FASTQ file.
The input BAM file(s) from the genome alignment step.
The output FASTQ file(s) to store deduplicated reads.

The number of processes to use for parallelization.

saturation_curve

sample_names

random_seed

Details

Logical, whether to generate a saturation curve figure.

A vector of sample names, default to the file names of input fastq files, or folder
names if fastqgs is a vector of folders.

The random seed for reproducibility.

After the genome alignment step (do_genome_align), the alignment file will be parsed to generate
the per gene UMI count matrix. For each gene in the annotation file, the number of reads overlap-
ping with the gene’s genomic coordinates will be assigned to that gene. If a read overlaps multiple
genes, it will be assigned to the gene with the highest number of overlapping nucleotides. If exon
coordinates are included in the provided annotation, the decision will first consider the number of
nucleotides aligned to the exons of each gene. In cases of a tie, the overlap with introns will be used
as a tiebreaker. If there is still a tie after considering both exons and introns, a random gene will be
selected from the tied candidates.

46 quantify_transcript

After the read-to-gene assignment, the per gene UMI count matrix will be generated. Specifically,
for each gene, the reads with similar mapping coordinates of transcript termination sites (TTS, i.e.
the end of the the read with a polyT or polyA) will be grouped together. UMIs of reads in the same
group will be collapsed to generate the UMI counts for each gene.

Finally, a new fastq file with deduplicated reads by keeping the longest read in each UMI.

Value

The count matrix will be saved in the output folder as transcript_count.csv.gz.

quantify_transcript Transcript quantification

Description

Calculate the transcript count matrix by parsing the re-alignment file.

Usage
quantify_transcript(
annotation,
outdir,
config,
pipeline = "sc_single_sample”,
)
Arguments
annotation The file path to the annotation file in GFF3 format
outdir The path to directory to store all output files.
config Parsed FLAMES configurations.
pipeline The pipeline type as a character string, either sc_single_sample (single-cell,
single-sample),
Supply sample names as character vector (e.g. samples = c("namel1”, "name2",
...)) for muti-sample or bulk pipeline. bulk (bulk, single or multi-sample), or
sc_multi_sample (single-cell, multiple samples)
Value

A SingleCellExperiment object for single-cell pipeline, a list of SingleCellExperiment objects
for multi-sample pipeline, or a SummarizedExperiment object for bulk pipeline.

quantify_transcript_flames 47

quantify_transcript_flames
FLAMES Transcript quantification

Description

Calculate the transcript count matrix by parsing the re-alignment file.

Usage
quantify_transcript_flames(
annotation,
outdir,
config,
pipeline = "sc_single_sample”,
samples
)
Arguments
annotation The file path to the annotation file in GFF3 format
outdir The path to directory to store all output files.
config Parsed FLAMES configurations.
pipeline The pipeline type as a character string, either sc_single_sample (single-cell,
single-sample),
samples A vector of sample names, required for sc_multi_sample pipeline. bulk (bulk,
single or multi-sample), or sc_multi_sample (single-cell, multiple samples)
Value

A SingleCellExperiment object for single-cell pipeline, a list of SingleCellExperiment objects
for multi-sample pipeline, or a SummarizedExperiment object for bulk pipeline.

resume_FLAMES Resume a FLAMES pipeline

Description

This function resumes a FLAMES pipeline by running configured but unfinished steps.
Usage
resume_FLAMES(pipeline)

S4 method for signature 'FLAMES.Pipeline'
resume_FLAMES (pipeline)

48 run_FLAMES
Arguments
pipeline A FLAMES Pipeline object.
Value
An updated FLAMES .Pipeline object.
See Also
run_FLAMES to run the entire pipeline.
Examples
pipeline <- example_pipeline("BulkPipeline”)
pipeline <- run_step(pipeline, "genome_alignment")
pipeline <- resume_FLAMES(pipeline)
run_FLAMES Execute a FLAMES pipeline
Description
This function runs the FLAMES pipeline. It will run all steps in the pipeline.
Usage
run_FLAMES(pipeline, overwrite = FALSE)
S4 method for signature 'FLAMES.Pipeline'
run_FLAMES(pipeline, overwrite = FALSE)
Arguments
pipeline A FLAMES Pipeline object.
overwrite (optional) If TRUE, the pipeline will be re-run even if some steps are already
completed.
Value

An updated FLAMES.Pipeline object.

See Also

resume_FLAMES to resume a pipeline from the last completed step.

Examples

pipeline <- example_pipeline(”"BulkPipeline™)
pipeline <- run_FLAMES(pipeline)

run_step 49

run_step Execute a single step of the FLAMES pipeline

Description

This function runs the specified step of the FLAMES pipeline.

Usage

run_step(pipeline, step, disable_controller = TRUE)

S4 method for signature 'FLAMES.Pipeline'

run_step(pipeline, step, disable_controller = TRUE)
Arguments
pipeline A FLAMES Pipeline object.
step The step to run. One of "barcode_demultiplex", "genome_alignment", "gene_quantification",

non

"isoform_identification", "read_realignment", or "transcript_quantification".

disable_controller
(optional) If TRUE, the step will be executed in the current R session, instead of
using crew controllers.

Value

An updated FLAMES.Pipeline object.

See Also
run_FLAMES to run the entire pipeline. resume_FLAMES to resume a pipeline from the last completed
step.

Examples

pipeline <- example_pipeline("”BulkPipeline”)
pipeline <- run_step(pipeline, "genome_alignment")

scmixology_lib1@ scMixology short-read gene counts - sample 2

Description

Short-read gene counts from long and short-read single cell RNA-seq profiling of human lung ade-
nocarcinoma cell lines using 10X version 2 chemstry. See Tian, L. et al. Comprehensive character-
ization of single-cell full-length isoforms in human and mouse with long-read sequencing. Genome
Biology 22, 310 (2021).

50 scmixology_lib10_transcripts

Usage

scmixology_lib10

Format

‘scmixology_lib10‘ A SingleCellExperiment with 7,240 rows and 60 columns:

Value

A SingleCellExperiment object

Source

<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154869>

scmixology_lib10_transcripts
scMixology long-read transcript counts - sample 2

Description

long-read transcript counts from long and short-read single cell RNA-seq profiling of human lung
adenocarcinoma cell lines using 10X version 2 chemstry. See Tian, L. et al. Comprehensive char-
acterization of single-cell full-length isoforms in human and mouse with long-read sequencing.
Genome Biology 22, 310 (2021).

Usage

scmixology_lib10@_transcripts

Format

‘scmixology_lib10_transcripts® A SingleCellExperiment with 7,240 rows and 60 columns:

Value

A SingleCellExperiment object

Source

<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154869>

scmixology_lib90 51

scmixology_1ib90 scMixology short-read gene counts - sample 1

Description

Short-read single cell RNA-seq profiling of human lung adenocarcinoma cell lines using 10X ver-
sion 2 chemstry. Single cells from five human lung adenocarcinoma cell lines (H2228, H1975,
A549, H838 and HCC827) were mixed in equal proportions and processed using the Chromium
10X platform, then sequenced using Illumina HiSeq 2500. See Tian L, Dong X, Freytag S, L&
Cao KA et al. Benchmarking single cell RNA-sequencing analysis pipelines using mixture control
experiments. Nat Methods 2019 Jun;16(6):479-487. PMID: 31133762

Usage

scmixology_1ib90

Format

‘scmixology_lib90‘ A SingleCellExperiment

Value

A SingleCellExperiment object

Source

<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126906>

sc_DTU_analysis FLAMES Differential Transcript Usage Analysis

Description

Differential transcription usage testing for single cell data, using colLabels as cluster labels.

Usage
sc_DTU_analysis(
sce,
gene_col = "gene_id",
min_count = 15,
threads = 1,
method = "trascript usage permutation”,

permuations = 1000

52

sc_DTU_analysis

Arguments
sce The SingleCellExperiment object, with transcript counts in the counts slot
and cluster labels in the colLabels slot.
gene_col The column name in the rowData slot of sce that contains the gene ID / name.
Default is "gene_id".
min_count The minimum total counts for a transcript to be tested.
threads Number of threads to use for parallel processing.
method The method to use for testing, listed in details.
permuations Number of permutations for permutation methods.
Details

Genes with more than 2 isoforms expressing more than min_count counts are selected for testing
with one of the following methods:

trascript usage permutation Transcript usage are taken as the test statistic, cluster labels are per-
muted to generate a null distribution.

chisq Chi-square test of the transcript count matrix for each gene.

Adjusted P-values were calculated by Benjamini—Hochberg correction.

Value

a tibble containing the following columns:

p.value - the raw p-value

adj.p.value - multiple testing adjusted p-value
cluster - the cluster where DTU was observed
transcript - rowname of sce, the DTU isoform

transcript_usage - the transcript usage of the isoform in the cluster
Additional columns from method = "trascript usage permutation”:

transcript_usage_elsewhere - transcript usage in other clusters
usage_difference - the difference between the two transcript usage

permuted_var - the variance of usage difference in the permuted data
Additional columns from method = "chisq":

X value - the test statistic
df - the degrees of freedom
expected_usage - the expected usage (mean across all clusters)

usage_difference - the difference between the observed and expected usage

The table is sorted by P-values.

sc_gene_entropy 53

Examples

outdir <- tempfile()

dir.create(outdir)

bc_allow <- file.path(outdir, "bc_allow.tsv")

genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE

R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

)

sce <- FLAMES: :sc_long_pipeline(
genome_fa = genome_fa,
fastqg = system.file("extdata”, "fastq", "musc_rps24.fastq.gz", package = "FLAMES"),
annotation = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),
outdir = outdir,
barcodes_file = bc_allow,
config_file = create_config(
outdir,
pipeline_parameters.demultiplexer = "flexiplex”
)
)
group_anno <- data.frame(barcode_seq = colnames(sce), groups = SingleCellExperiment: :counts(sce)["ENSMUSTQ00Q¢
SingleCellExperiment::collLabels(sce) <- group_anno$groups
DTU with permutation testing:

sc_DTU_analysis(sce, min_count = 1, method = "trascript usage permutation”)
now try with chisq:
sc_DTU_analysis(sce, min_count = 1, method = "chisq")

sc_gene_entropy Compute Gene Isoform Entropy Matrix

Description

Calculates normalized Shannon entropy for gene isoform expression across cells. Higher entropy
indicates more diverse isoform usage, lower entropy indicates dominance by fewer isoforms.

Usage

sc_gene_entropy(
sce,
assay = "counts”,
gene_col = "gene_id",
alpha = .Machine$double.xmin,
min_counts_per_cell = 5,
isoform_min_pct_cells = 0.05,
isoform_cumulative_pct = 0.95,
min_cell_fraction = 0.25,
threads = 1,
show_progress = interactive()

54 sc_genotype

Arguments
sce A SingleCellExperiment object
assay Name of assay containing isoform counts (default: "counts")
gene_col Column name in rowData containing gene identifiers (default: "gene_id")
alpha Pseudocount added to avoid log(0) (default: .Machine$double.xmin)

min_counts_per_cell

Minimum total gene counts per cell to include (default: 5)
isoform_min_pct_cells

Minimum fraction of cells expressing each isoform (default: 0.05)
isoform_cumulative_pct

Keep top isoforms contributing to this cumulative proportion (default: 0.95)
min_cell_fraction

Minimum fraction of cells with valid entropy per gene (default: 0.25)
threads Number of threads for parallel processing (default: 1)

show_progress Logical indicating whether to show progress (default: TRUE if interactive)

Value

Matrix with genes as rows and cells as columns containing normalized entropy values (0-1).

Examples

sce <- scuttle::mockSCE(ncells = 50, ngenes = 30)
SummarizedExperiment: :rowData(sce)$gene_id <- sort(

paste@("gene”, sample(1:9, nrow(sce), replace = TRUE))
)

res <- sc_gene_entropy(sce, threads = 2)

sc_genotype Genotype a single-cell mutation

Description

A simplistic function to genotype a single-cell mutation at a given position. It filters the SNPs
table for the given reference and alternative alleles, and determines the genotype based on the allele
counts and percentages.

Usage

sc_genotype(

snps_tb,

ref,

alt,

segname,

pos,
alt_min_count
alt_min_pct =
ref_min_count
ref_min_pct =

= 11 o 1
-

sc_impute_transcript

Arguments
snps_tb
ref
alt
seqname
pos
alt_min_count
alt_min_pct
ref_min_count

ref_min_pct

Value

55

tibble: the SNPs table, output from sc_mutations.

character(1): the reference allele.

character(1): the alternative allele.

character(1): the chromosome name of the position.

integer(1): the position of the mutation, 1-based.

integer(1): minimum UMI count of the alternative allele to call it "alt".
numeric(1): minimum percentage of the alternative allele to call it "alt".
integer(1): minimum UMI count of the reference allele to call it "ref".

numeric(1): minimum percentage of the reference allele to call it "ref".

A tibble with columns: barcode, allele_count_ref, pct_ref, allele_count_alt, pct_alt, genotype.

Examples

get the SNPs table from sc_mutations
example(sc_mutations)
genotype_tb <- snps_tb [>

sc_genotype(

ref = "G", alt = "A", segname = "chr14”, pos = 1260,
alt_min_count = 2, alt_min_pct = 0.1,

ref_min_count =

)

1, ref_min_pct = 1

dplyr: :count(genotype_tb, genotype)

head(genotype_tb)

sc_impute_transcript Impute missing transcript counts

Description

Impute missing transcript counts using a shared nearest neighbor graph

Usage

sc_impute_transcript(combined_sce, dimred = "PCA", ...)

Arguments

combined_sce

dimred

A SingleCellExperiment object with gene counts and a "transcript" altExp
slot.

The name of the reduced dimension to use for building the shared nearest neigh-
bor graph.

Additional arguments to pass to scran: :buildSNNGraph. E.g. k = 30.

56 sc_long_multisample_pipeline

Details

For cells with NA values in the "transcript" altExp slot, this function imputes the missing values from
cells with non-missing values. A shared nearest neighbor graph is built using reduced dimensions
from the SingleCellExperiment object, and the imputation is done where the imputed value for a
cell is the weighted sum of the transcript counts of its neighbors. Imputed values are stored in the
"logcounts" assay of the "transcript” altExp slot. The "counts" assay is used to obtain logcounts but
left unchanged.

Value

A SingleCellExperiment object with imputed logcounts assay in the "transcript" altExp slot.

Examples

sce <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = matrix(rpois(50, 5), ncol =10)))
long_read <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = matrix(rpois(40, 5), ncol = 10)
SingleCellExperiment::altExp(sce, "transcript”) <- long_read

SingleCellExperiment: :counts(SingleCellExperiment: :altExp(sce))[,1:2] <- NA
SingleCellExperiment::counts(SingleCellExperiment::altExp(sce))

imputed_sce <- sc_impute_transcript(sce, k = 4)
SingleCellExperiment::logcounts(SingleCellExperiment::altExp(imputed_sce))

sc_long_multisample_pipeline
Pipeline for Multi-sample Single Cell Data (deprecated)

Description

This function is deprecated. Please use MultiSampleSCPipeline.

Usage

sc_long_multisample_pipeline(
annotation,
fastgs,
outdir,
genome_fa,
minimap2 = NULL,
barcodes_file = NULL,
expect_cell_numbers = NULL,
config_file = NULL

)
Arguments
annotation The file path to the annotation file in GFF3 format
fastgs The file path to input fastq file
outdir The path to directory to store all output files.

genome_fa The file path to genome fasta file.

sc_long_multisample_pipeline

minimap2 Path to minimap2, optional.

barcodes_file The file with expected cell barcodes, with each barcode on a new line.

expect_cell_numbers

57

The expected number of cells in the sample. This is used if barcodes_file is

not provided. See BLAZE for more details.
File path to the JSON configuration file.

config_file

Value

A list of SingleCellExperiment objects, one for each sample.

See Also

MultiSampleSCPipeline for the new pipeline interface, SingleCellPipeline for single-sample

pipeline, BulkPipeline for bulk long data.

Examples

reads <- ShortRead::readFastq(

system.file("extdata"”, "fastq", "musc_rps24.fastq.gz", package = "FLAMES")

)

outdir <- tempfile()

dir.create(outdir)
dir.create(file.path(outdir, "fastq"))
bc_allow <- file.path(outdir, "bc_allow.tsv")
genome_fa <- file.path(outdir, "rps24.fa")
R.utils::gunzip(

filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),

destname = bc_allow, remove = FALSE
)
R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz"
destname = genome_fa, remove = FALSE
)
ShortRead: :writeFastq(reads[1:100],
file.path(outdir, "fastq/samplel.fq.gz"), mode
reads <- reads[-(1:100)]
ShortRead: :writeFastq(reads[1:100],
file.path(outdir, "fastq/sample2.fq.gz"), mode
reads <- reads[-(1:100)]
ShortRead: :writeFastq(reads,
file.path(outdir, "fastq/sample3.fq.gz"), mode

sce_list <- FLAMES::sc_long_multisample_pipeline(

annotation = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),

’

package =
"w", full
"w", full
"w", full

fastgs = c("sampleA” = file.path(outdir, "fastq"),
"samplel” = file.path(outdir, "fastq", "samplel.fq.gz"),
"sample2" = file.path(outdir, "fastq", "sample2.fq.gz"),

"sample3” = file.path(outdir, "fastq", "sample3.fq.gz")),

outdir = outdir,

genome_fa = genome_fa,

barcodes_file = rep(bc_allow, 4),

config_file = create_config(
outdir,

pipeline_parameters.demultiplexer = "flexiplex”

)

"FLAMES"),

FALSE)

FALSE)

FALSE)

58 sc_long_pipeline

sc_long_pipeline Pipeline for Single Cell Data (deprecated)

Description

This function is deprecated. Please use [SingleCellPipeline()] instead.

Usage

sc_long_pipeline(
annotation,
fastq,
outdir,
genome_fa,
minimap2 = NULL,
barcodes_file = NULL,
expect_cell_number = NULL,
config_file = NULL

)

Arguments
annotation The file path to the annotation file in GFF3 format
fastq The file path to input fastq file
outdir The path to directory to store all output files.
genome_fa The file path to genome fasta file.
minimap2 Path to minimap2, optional.

barcodes_file The file with expected cell barcodes, with each barcode on a new line.

expect_cell_number
The expected number of cells in the sample. This is used if barcodes_file is
not provided. See BLAZE for more details.

config_file File path to the JSON configuration file.

Value

A SingleCellPipeline object containing the transcript counts.

See Also

SingleCellPipeline for the new pipeline interface, BulkPipeline for bulk long data, MultiSampleSCPipeline
for multi sample single cell pipelines.

sc_mutations

Examples

59

outdir <- tempfile()

dir.create(outdir)

bc_allow <- file.path(outdir, "bc_allow.tsv")
genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(

filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE

R.utils::gunzip(

filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

)

sce <- FLAMES: :sc_long_pipeline(
genome_fa = genome_fa,
fastq = system.file("extdata”, "fastq", "musc_rps24.fastq.gz", package = "FLAMES"),
annotation = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),
outdir = outdir,

barcodes_file =
FLAMES: :create_config(

config_file =
outdir,

bc_allow,

pipeline_parameters.demultiplexer = "flexiplex”

)
)

sc_mutations

Variant count for single-cell data

Description

Count the number of reads supporting each variants at the given positions for each cell.

Usage

sc_mutations(bam_path, segnames, positions, indel = FALSE, threads = 1)

Arguments

bam_path

segnames

positions

indel

threads

Value

character(1) or character(n): path to the bam file(s) aligned to the reference
genome (NOT the transcriptome! Unless the postions are also from the tran-
scriptome).

character(n): chromosome names of the postions to count alleles.

integer(n): positions, 1-based, same length as seqnames. The positions to count
alleles.

logical(1): whether to count indels (TRUE) or SNPs (FALSE).

integer(1): number of threads to use. Maximum number of threads is the number
of bam files * number of positions.

A tibble with columns: allele, barcode, allele_count, cell_total_reads, pct, pos, seqname.

60 sc_plot_genotype

Examples

ppl <- example_pipeline(”SingleCellPipeline”)
ppl <- run_step(ppl, "barcode_demultiplex")
ppl <- run_step(ppl, "genome_alignment")
snps_tb <- sc_mutations(
bam_path = ppl@genome_bam,
segnames = c("chr14”, "chr14"),
positions = c(1260, 2714), # positions of interest
indel = FALSE
)
head(snps_tb)
snps_tb |>
dplyr::filter(pos == 1260) |>
dplyr::group_by(allele) |>
dplyr::summarise(count = sum(allele_count)) # should be identical to samtools pileup

sc_plot_genotype Plot genotype of single-cell data

Description

Plot the genotype of single-cell data on a reduced dimension plot (e.g. UMAP).

Usage

sc_plot_genotype(
sce,
genotype_tb,
reduced_dim = "UMAP",
na_cell_col = "grey",
na_cell_size = 0.1,
na_cell_alpha = 0.1,

Arguments

sce SingleCellExperiment: the single-cell experiment object with reduced dimen-
sions.

genotype_tb tibble: the genotype table, output from sc_genotype.
reduced_dim character(1): the name of the reduced dimension to use for plotting.
na_cell_col character(1): the color of the cells with no genotype.
na_cell_size numeric(1): the size of the cells with no genotype.

na_cell_alpha numeric(1): the alpha of the cells with no genotype.

additional arguments passed to geom_point for cells with genotype.

Value

A ggplot2 object with the genotype plotted on the reduced dimension.

set_nested_param 61

Examples

ppl <- example_pipeline(”SingleCellPipeline”) |>
run_FLAMES ()
sce <- experiment(ppl) |>
scuttle::logNormCounts() |>
scater::runPCA() [|>
scater: :runUMAP()
snps_tb <- sc_mutations(
bam_path = ppl@genome_bam,
segnames = "chri14”,
positions = 2714
)
genotype_tb <- sc_genotype(
snps_tb, ref = "C", alt = "T", seqgname = "chr14", pos = 2714,
alt_min_count = 2, alt_min_pct = 0.5, ref_min_count = 1, ref_min_pct = 1
)
sc_plot_genotype(
sce, genotype_tb, na_cell_col = "black”,
na_cell_size = 0.5, na_cell_alpha = 0.7,
size = 2

set_nested_param Set Nested Configuration Parameter

Description

Helper function to set a nested parameter in a configuration list using dot notation (e.g., "bar-
code_parameters.pattern.primer")

Usage

set_nested_param(config, param_path, value)

Arguments
config Configuration list
param_path Parameter path using dot notation
value Value to set

Value

Modified configuration list

62 SingleCellPipeline

show, FLAMES.Pipeline-method
Show method for FLAMES. Pipeline

Description

Displays the pipeline in a pretty format

Usage
S4 method for signature 'FLAMES.Pipeline'
show(object)

S4 method for signature 'FLAMES.SingleCellPipeline'
show(object)

S4 method for signature 'FLAMES.MultiSampleSCPipeline'
show(object)
Arguments

object An object of class ‘FLAMES.Pipeline°

Value

None. Displays output to the console.

Examples

ppl <- example_pipeline()
show(ppl)

SingleCellPipeline Pipeline for Single Cell Data

Description

Semi-supervised isofrom detection and annotation for long read data. This variant is meant for sin-
gle sample scRNA-seq data. Specific parameters can be configured in the config file (see create_config),
input files are specified via arguments.

Usage

SingleCellPipeline(
config_file,
outdir,
fastq,
annotation,
genome_fa,
genome_mmi,

SingleCellPipeline 63

minimap2,

samtools,
barcodes_file,
expect_cell_number,

controllers
)
Arguments

config_file Path to the JSON configuration file. See create_config for creating one.

outdir Path to the output directory. If it does not exist, it will be created.

fastq Path to the FASTQ file or a directory containing FASTQ files. Each file will be
processed as an individual sample.

annotation The file path to the annotation file in GFF3 / GTF format.

genome_fa The file path to the reference genome in FASTA format.

genome_mmi (optional) The file path to minimap2’s index reference genome.

minimap2 (optional) The path to the minimap?2 binary. If not provided, FLAMES will use
a copy from bioconda via basilisk.

samtools (optional) The path to the samtools binary. If not provided, FLAMES will use a

copy from bioconda via basilisk.

barcodes_file The file with expected cell barcodes, with each barcode on a new line.
expect_cell_number
The expected number of cells in the sample. This is used if barcodes_file is
not provided. See BLAZE for more details.

controllers (optional, experimental) A crew_class_controller object for running cer-
tain steps

Details

By default the pipeline starts with demultiplexing the input fastq data. If the cell barcodes are
known apriori (e.g. via coupled short-read sequencing), the barcodes_file argument can be used
to specify a file containing the cell barcodes, and a modified Rcpp version of flexiplex will be
used; otherwise, expect_cell_number need to be provided, and BLAZE will be used to generate the
cell barcodes. The pipeline then aligns the reads to the genome using minimap2. The alignment
is then used for isoform detection (either using FLAMES or bambu, can be configured). The reads
are then realigned to the detected isoforms. Finally, a transcript count matrix is generated (either
using FLAMES’s simplistic counting or oarfish’s Expectation Maximization algorithm, can be con-
figured). The results can be accssed with experiment (pipeline). If the pipeline errored out / new
steps were configured, it can be resumed by calling resume_FLAMES (pipeline)

Value

A FLAMES.SingleCellPipeline object. The pipeline can be run using run_FLAMES(pipeline).
The results can be accessed with experiment (pipeline). The pipeline also outputs a number of
output files into the given outdir directory. Some of these output files include:
matched_reads.fastq - fastq file with reads demultiplexed

align2genome.bam - sorted BAM file with reads aligned to genome
matched_reads_dedup.fastq - demultiplexed and UMI-deduplicated fastq file

transcript_assembly.fa - transcript sequence from the isoforms

64 steps

isoform_annotated.filtered.gff3 - isoforms in gff3 format (also contained in the SingleCellExper-
iment)

realign2transcript.bam - sorted realigned BAM file using the transcript_assembly.fa as reference

See Also

create_config for creating a configuration file, BulkPipeline for bulk long data, MultiSampleSCPipeline
for multi sample single cell pipelines.

Examples

outdir <- tempfile()

dir.create(outdir)

bc_allow <- file.path(outdir, "bc_allow.tsv")

genome_fa <- file.path(outdir, "rps24.fa")

R.utils::gunzip(
filename = system.file("extdata”, "bc_allow.tsv.gz", package = "FLAMES"),
destname = bc_allow, remove = FALSE

R.utils::gunzip(
filename = system.file("extdata”, "rps24.fa.gz", package = "FLAMES"),
destname = genome_fa, remove = FALSE

)

ppl <- SingleCellPipeline(
config_file = create_config(

outdir,
pipeline_parameters.demultiplexer = "flexiplex”,
pipeline_parameters.do_gene_quantification = FALSE

),
outdir = outdir,
fastq = system.file("extdata”, "fastq”, "musc_rps24.fastq.gz"”, package = "FLAMES"),
annotation = system.file("extdata”, "rps24.gtf.gz", package = "FLAMES"),
genome_fa = genome_fa,
barcodes_file = bc_allow
)
ppl <- run_FLAMES(ppl)
experiment (ppl)

steps Steps to perform in the pipeline

Description

Steps to perform in the pipeline
Usage
steps(pipeline)

S4 method for signature 'FLAMES.Pipeline'
steps(pipeline)

steps<- 65

Arguments

pipeline An object of class ‘FLAMES.Pipeline*

Value

A named logical vector containing all possible steps for the pipeline. The names of the vector are
the step names, and the values are logical indicating whether the step is configured to be performed.

Examples

ppl <- example_pipeline()
steps(ppl)

steps<- Set steps to perform in the pipeline

Description

Set steps to perform in the pipeline

Usage

steps(pipeline) <- value

S4 replacement method for signature 'FLAMES.Pipeline'
steps(pipeline) <- value

Arguments
pipeline An object of class ‘FLAMES.Pipeline*
value A named logical vector containing all possible steps for the pipeline. The names
of the vector are the step names, and the values are logical indicating whether
the step is configured to be performed.
Value

An pipeline of class ‘FLAMES.Pipeline‘ with the updated steps.

Examples

ppl <- example_pipeline()

steps(ppl) <- c(
barcode_demultiplex = TRUE,
genome_alignment = TRUE,
gene_quantification = TRUE,
isoform_identification = FALSE,
read_realignment = FALSE,
transcript_quantification = TRUE

)

ppl

or partially change a step:

steps(ppl)["read_realignment”] <- TRUE

ppl

66 weight_transcripts

weight_transcripts Weight transcripts by read counts

Description

Given a vector of read counts, return a vector of weights. The weights could be either the read
counts themselves (type = 'counts'), a binary vector of Os and 1s where 1s are assigned to tran-
scripts with read counts above a threshold (type = 'equal', min_counts = 1000), or a sigmoid
function of the read counts (type = 'sigmoid'). The sigmoid function is defined as 1/ (1 +
exp(-steepness/inflection * (x - inflection))).

Usage

weight_transcripts(
counts,
type = "sigmoid”,
min_counts = 1000,
inflection_idx = 10,
inflection_max = 1000,
steepness = 5

)
Arguments
counts numeric vector of read counts
type string, one of ’counts’, ’sigmoid’, or "equal’
min_counts numeric, the threshold for the equal’ type

inflection_idx numeric, the index of the read counts to determine the inflection point for the
sigmoid function. The default is 10, i.e. the 10th highest read count will be the
inflection point.

inflection_max numeric, the maximum value for the inflection point. If the inflection point
according to the inflection_idx is higher than this value, the inflection point will
be set to this value instead.

steepness numeric, the steepness of the sigmoid function

Value

numeric vector of weights

Examples

weight_transcripts(1:2000)
par(mfrow = c(2, 2))
plot(
1:2000, weight_transcripts(1:2000, type = 'sigmoid'),
type = 'l', xlab = 'Read counts', ylab = 'Sigmoid weight'
)
plot(
1:2000, weight_transcripts(1:2000, type = 'counts'),
type = 'l', xlab = 'Read counts', ylab = 'Weight by counts’
)

weight_transcripts

plot(

1:2000, weight_transcripts(1:2000, type = 'equal'),

type = 'l', xlab = 'Read counts', ylab = 'Equal weights'
)

67

Index

+ datasets
scmixology_lib10, 49
scmixology_lib1@_transcripts, 50
scmixology_1ib90, 51

+ internal
addRowRanges, 3
fake_stranded_gff, 20
find_isoform, 24
get_GRangesList, 28
gff2bed, 28
merge_configs_recursive, 30
minimap2_align, 30
mutation_positions_single, 34
plot_demultiplex_raw, 37
plot_spatial_pie, 44
quantify_transcript, 46
quantify_transcript_flames, 47
set_nested_param, 61
show, FLAMES.Pipeline-method, 62

add_gene_counts, 4
addRowRanges, 3
annotation_to_fasta, 5

blaze, 5
bulk_long_pipeline, 8
BulkPipeline, 6, 8, 9, 19, 32, 57, 58, 64

combine_sce, 10

config, 11

config,FLAMES.Pipeline-method (config),
11

config<-, 11

config<-,FLAMES.Pipeline-method
(config<-), 11

controllers, 12

controllers,FLAMES.Pipeline-method
(controllers), 12

controllers<-, 12

controllers<-,FLAMES.Pipeline-method
(controllers<-), 12

convolution_filter, 13, 21

create_config, 6, 7,9, 14, 31, 32, 62-64

create_sce_from_dir, 15

68

create_se_from_dir, 16
create_spe, 17
cutadapt, 18

demultiplex_sockeye, 18

example_pipeline, 19

experiment, 19

experiment,FLAMES.Pipeline-method
(experiment), 19

fake_stranded_gff, 20
filter_annotation, 20
filter_coverage, 21, 36
find_barcode, 22, 37
find_bin, 23
find_isoform, 24
find_variants, 24
FLAMES, 26
flexiplex, 26

geom_point, 43
get_coverage, 21,27, 36
get_GRangesList, 28
gff2bed, 28

Heatmap, 40

index_genome, 29
index_genome,FLAMES.Pipeline-method
(index_genome), 29

load_config, 29

merge_configs_recursive, 30

minimap2_align, 30

MultiSampleSCPipeline, 7, 9, 19, 31, 56-58,
64

mutation_positions, 33

mutation_positions_single, 34

plot_coverage, 35
plot_demultiplex, 36

plot_demultiplex,FLAMES.SingleCellPipeline-method

(plot_demultiplex), 36

INDEX

plot_demultiplex_raw, 37
plot_durations, 38
plot_durations,FLAMES.Pipeline-method
(plot_durations), 38
plot_isoform_heatmap, 40
plot_isoform_reduced_dim, 41
plot_isoforms, 39
plot_spatial_feature, 43
plot_spatial_isoform, 43
plot_spatial_pie, 44, 44

quantify_gene, 45
quantify_transcript, 46
quantify_transcript_flames, 47

resume_FLAMES, 7, 47, 48, 49

resume_FLAMES, FLAMES.Pipeline-method
(resume_FLAMES), 47

run_FLAMES, 7, 32, 48, 48, 49

run_FLAMES,FLAMES.Pipeline-method
(run_FLAMES), 48

run_step, 49

run_step, FLAMES.Pipeline-method
(run_step), 49

sc_DTU_analysis, 51

sc_gene_entropy, 53

sc_genotype, 54

sc_impute_transcript, 55

sc_long_multisample_pipeline, 56

sc_long_pipeline, 17, 58

sc_mutations, 59

sc_plot_genotype, 60

scmixology_lib10, 49

scmixology_lib1@_transcripts, 50

scmixology_1ib90, 51

set_nested_param, 61

show, FLAMES .MultiSampleSCPipeline-method
(show, FLAMES.Pipeline-method),
62

show, FLAMES.Pipeline-method, 62

show, FLAMES.SingleCellPipeline-method
(show, FLAMES.Pipeline-method),
62

SingleCellPipeline, 7,9, 19, 32, 57, 58, 62

steps, 64

steps,FLAMES.Pipeline-method (steps), 64

steps<-, 65

steps<-,FLAMES.Pipeline-method
(steps<-), 65

weight_transcripts, 36, 66

69

	addRowRanges
	add_gene_counts
	annotation_to_fasta
	blaze
	BulkPipeline
	bulk_long_pipeline
	combine_sce
	config
	config<-
	controllers
	controllers<-
	convolution_filter
	create_config
	create_sce_from_dir
	create_se_from_dir
	create_spe
	cutadapt
	demultiplex_sockeye
	example_pipeline
	experiment
	fake_stranded_gff
	filter_annotation
	filter_coverage
	find_barcode
	find_bin
	find_isoform
	find_variants
	FLAMES
	flexiplex
	get_coverage
	get_GRangesList
	gff2bed
	index_genome
	load_config
	merge_configs_recursive
	minimap2_align
	MultiSampleSCPipeline
	mutation_positions
	mutation_positions_single
	plot_coverage
	plot_demultiplex
	plot_demultiplex_raw
	plot_durations
	plot_isoforms
	plot_isoform_heatmap
	plot_isoform_reduced_dim
	plot_spatial_feature
	plot_spatial_isoform
	plot_spatial_pie
	quantify_gene
	quantify_transcript
	quantify_transcript_flames
	resume_FLAMES
	run_FLAMES
	run_step
	scmixology_lib10
	scmixology_lib10_transcripts
	scmixology_lib90
	sc_DTU_analysis
	sc_gene_entropy
	sc_genotype
	sc_impute_transcript
	sc_long_multisample_pipeline
	sc_long_pipeline
	sc_mutations
	sc_plot_genotype
	set_nested_param
	show,FLAMES.Pipeline-method
	SingleCellPipeline
	steps
	steps<-
	weight_transcripts
	Index

