Package ‘DRIMSeq’

January 19, 2026

Type Package

Title Differential transcript usage and tuQTL analyses with
Dirichlet-multinomial model in RNA-seq

Version 1.38.0
Date 2017-05-24

Description The package provides two frameworks. One for the differential
transcript usage analysis between different conditions and one for the tuQTL analysis.

Both are based on modeling the counts of genomic features (i.e., transcripts) with the Dirichlet-

multinomial distribution. The package also
makes available functions for visualization and exploration of the data and
results.

biocViews ImmunoOncology, SNP, AlternativeSplicing,
DifferentialSplicing, Genetics, RNASeq, Sequencing,
WorkflowStep, MultipleComparison, GeneExpression,
Differential Expression

License GPL (>=3)
Depends R (>=3.4.0)

Imports utils, stats, MASS, GenomicRanges, IRanges, S4 Vectors,
BiocGenerics, methods, BiocParallel, limma, edgeR, ggplot2,
reshape2

Suggests PasillaTranscriptExpr, GeuvadisTranscriptExpr, grid,
BiocStyle, knitr, testthat

LazyData true
ByteCompile false
VignetteBuilder knitr

Collate 'DRIMSeq.R' 'class_show_utils.R' 'class_MatrixList.R'
'class_dmDSdata.R' 'class_dmDSprecision.R' 'class_dmDSfit.R’'
'class_dmDStest.R' 'class_dmSQTLdata.R'
'class_dmSQTLprecision.R' 'class_dmSQTLfit.R'
'class_dmSQTLtest.R' 'dmDS_CRadjustment.R'
'dmDS_estimateCommonPrecision.R'
'dmDS_estimateTagwisePrecision.R' 'dmDS_filter.R' 'dmDS_fit.R’'
'dmDS_profileLik.R' 'dmSQTL_CRadjustment.R’
'dmSQTL_estimateCommonPrecision.R'
'dmSQTL_estimateTagwisePrecision.R' 'dmSQTL_filter.R'
'dmSQTL_fit.R' 'dmSQTL_permutations.R' 'dmSQTL_profileLik.R'

1

2 Contents
'dm_CRadjustmentManyGroups.R' 'dm_CRadjustmentOneGroup.R'
'dm_CRadjustmentRegression.R' 'dm_LRT.R' 'dm_core_Hessian.R'

'dm_core_colorb.R' 'dm_core_deviance.R' 'dm_core_lik.R'
'dm_core_score.R' 'dm_estimateMeanExpression.R'
'dm_fitManyGroups.R' 'dm_fitOneGroup.R' 'dm_fitRegression.R'
'dm_plotData.R' 'dm_plotPrecision.R' 'dm_plotProportions.R'
'dm_plotPvalues.R' 'dm_profileLikModeration.R'

RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/DRIMSeq

git_branch RELEASE_3_22

git_last_commit 7fdbd09

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Malgorzata Nowicka [aut, cre]

Maintainer Malgorzata Nowicka <gosia.nowicka.uzh@gmail.com>

Contents

dmDSdata e e e e 3
dmDSdata-class e e 4
dmDSfit-class e e e e e e 6
dmDSprecision-class 8
dmDStest-class e e 11
dmFilter e e e e 13
dmFit . . . e e e 16
dmPrecision e e e e e e e 19
dmSQTLdata e e e 23
dmSQTLdata-class e e e e e 25
dmSQTLAfit-class e e 26
dmSQTLprecision-class L 27
dmSQTLtest-class e e 29
dmTest. o e e e 31
dm_plotDataDSInfo 34
dm_plotProportions e e 35
MatrixList-class 35
plotData 37
plotPrecision 39
plotProportions 41
plotPValues e 44
Index 47

dmDSdata 3

dmDSdata Create dmDSdata object

Description

Constructor function for a dmDSdata object.

Usage

dmDSdata(counts, samples)

Arguments
counts Data frame with counts. Rows correspond to features, for example, transcripts
or exons. This data frame has to contain a gene_id column with gene IDs,
feature_id column with feature IDs and columns with counts for each sample.
Column names corresponding to sample IDs must be the same as in the sample
data frame.
samples Data frame where each row corresponds to one sample. Columns have to contain
unique sample IDs in sample_id variable and a grouping variable group.
Value

Returns a dmDSdata object.

Author(s)

Malgorzata Nowicka

See Also

plotData

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)

data_dir <- system.file("extdata"”, package = "PasillaTranscriptExpr")

Load metadata

pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),

header = TRUE, as.is = TRUE)

Load counts

pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),

header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

4 dmDSdata-class

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)
levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readlLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

dmDSdata-class dmDSdata object

Description

dmDSdata contains expression, in counts, of genomic features such as exons or transcripts and
sample information needed for the differential exon/transcript usage (DEU or DTU) analysis. It can
be created with function dmDSdata.

Usage

S4 method for signature 'dmDSdata'
counts(object)

samples(x, ...)

S4 method for signature 'dmDSdata'
samples(x)

S4 method for signature 'dmDSdata’
names(x)

S4 method for signature 'dmDSdata'
length(x)

S4 method for signature 'dmDSdata,ANY'

x[i, 3]
Arguments
object, x dmDSdata object.
Other parameters that can be defined by methods using this generic.
i, j Parameters used for subsetting.
Value

* counts(object): Get a data frame with counts.

* samples(x): Get a data frame with the sample information.

dmDSdata-class 5

* names(x): Get the gene names.
* length(x): Get the number of genes.

* x[i, j1: Get a subset of dmDSdata object that consists of counts for genes i and samples j.

Slots

counts MatrixList of expression, in counts, of genomic features. Rows correspond to genomic
features, such as exons or transcripts. Columns correspond to samples. MatrixList is parti-
tioned in a way that each of the matrices in a list contains counts for a single gene.

samples Data frame with information about samples. It must contain sample_id variable with
unique sample names and other covariates that desribe samples and are needed for the differ-
ential analysis.

Author(s)

Malgorzata Nowicka

See Also

dmDSprecision, dmDSfit, dmDStest

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata”, package = "PasillaTranscriptExpr")

Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)

Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readlLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

6 dmDSfit-class

dmDSfit-class dmDSfit object

Description

dmDSfit extends the dmDSprecision class by adding the full model Dirichlet-multinomial (DM)
and beta-binomial (BB) likelihoods, regression coefficients and feature proportion estimates. Result
of calling the dmFit function.

Usage

S4 method for signature 'dmDSfit'
design(object, type = "full_model”)

proportions(x, ...)

S4 method for signature 'dmDSfit'
proportions(x)

S4 method for signature 'dmDSfit'

coefficients(object, level = "gene")
Arguments
type Character indicating which design matrix should be returned. Possible values

"precision”, "full_model” or "null_model”.
x, object dmDSprecision object.
Other parameters that can be defined by methods using this generic.

level Character specifying which type of results to return. Possible values "gene"” or
"feature”.

Value

e design(object): Get a matrix with the full design.
* proportions(x): Get a data frame with estimated feature ratios for each sample.

» coefficients(x): Get the DM or BB regression coefficients.

Slots

design_fit_full Numeric matrix of the design used to fit the full model.

fit_full MatrixList containing estimated feature ratios in each sample based on the full Dirichlet-
multinomial (DM) model.

lik_full Numeric vector of the per gene DM full model likelihoods.
coef_full MatrixList with the regression coefficients based on the DM model.

fit_full_bb MatrixList containing estimated feature ratios in each sample based on the full
beta-binomial (BB) model.

lik_full_bb Numeric vector of the per gene BB full model likelihoods.

coef_full_bb MatrixList with the regression coefficients based on the BB model.

dmbDSfit-class

Author(s)

Malgorzata Nowicka

See Also

dmDSdata, dmDSprecision, dmDStest

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package

library(PasillaTranscriptExpr)

data_dir <- system.file("extdata"”, package = "PasillaTranscriptExpr")

Load metadata

pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),

header = TRUE, as.is = TRUE)

Load counts

pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),

header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readlLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))

To make the analysis reproducible

8 dmDSprecision-class

set.seed(123)
Calculate precision
d <- dmPrecision(d, design = design_full)

plotPrecision(d)

head(mean_expression(d))
common_precision(d)
head(genewise_precision(d))

Fit full model proportions
d <- dmFit(d, design = design_full)

Get fitted proportions

head(proportions(d))

Get the DM regression coefficients (gene-level)
head(coefficients(d))

Get the BB regression coefficients (feature-level)
head(coefficients(d), level = "feature")

dmDSprecision-class dmDSprecision object

Description

dmDSprecision extends the dnDSdata by adding the precision estimates of the Dirichlet-multinomial
distribution used to model the feature (e.g., transcript, exon, exonic bin) counts for each gene in the
differential usage analysis. Result of calling the dmPrecision function.

Usage
S4 method for signature 'dmDSprecision'
design(object, type = "precision")
mean_expression(x, ...)

S4 method for signature 'dmDSprecision'
mean_expression(x)

common_precision(x, ...)

S4 method for signature 'dmDSprecision'
common_precision(x)

common_precision(x) <- value

S4 replacement method for signature 'dmDSprecision'
common_precision(x) <- value

genewise_precision(x, ...)

S4 method for signature 'dmDSprecision'

dmDSprecision-class 9

genewise_precision(x)
genewise_precision(x) <- value

S4 replacement method for signature 'dmDSprecision'
genewise_precision(x) <- value

Arguments
type Character indicating which design matrix should be returned. Possible values
"precision”, "full_model” or "null_model”.
X, object dmDSprecision object.
Other parameters that can be defined by methods using this generic.
value Values that replace current attributes.
Details

Normally, in the differential analysis based on RNA-seq data, such as, for example, differential
gene expression, dispersion (of negative-binomial model) is estimated. Here, we estimate precision
of the Dirichlet-multinomial model as it is more convenient computationally. To obtain dispersion
estimates, one can use a formula: dispersion = 1/ (1 + precision).

Value

* mean_expression(x): Get a data frame with mean gene expression.

e common_precision(x), common_precision(x) <- value: Get or set common precision. value
must be numeric of length 1.

* genewise_precision(x), genewise_precision(x) <- value: Get a data frame with gene-
wise precision or set new gene-wise precision. value must be a data frame with "gene_id"
and "genewise_precision" columns.

Slots

mean_expression Numeric vector of mean gene expression.
common_precision Numeric value of estimated common precision.
genewise_precision Numeric vector of estimated gene-wise precisions.

design_precision Numeric matrix of the design used to estimate precision.

Author(s)

Malgorzata Nowicka

See Also

dmDSdata, dmDSfit, dmDStest

10 dmDSprecision-class

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata”, package = "PasillaTranscriptExpr")

Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)

Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset, 1]

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d, design = design_full)

plotPrecision(d)

head(mean_expression(d))
common_precision(d)

dmDStest-class 11

head(genewise_precision(d))

dmDStest-class dmDStest object

Description

dmDStest extends the dmDSfit class by adding the null model Dirichlet-multinomial (DM) and
beta-binomial (BB) likelihoods and the gene-level and feature-level results of testing for differential
exon/transcript usage. Result of calling the dmTest function.

Usage

S4 method for signature 'dmDStest'
design(object, type = "null_model"”)

results(x, ...)

S4 method for signature 'dmDStest'

results(x, level = "gene")
Arguments
type Character indicating which design matrix should be returned. Possible values
"precision”, "full_model"” or "null_model”.
x, object dmDStest object.
Other parameters that can be defined by methods using this generic.
level Character specifying which type of results to return. Possible values "gene"” or
"feature”.
Value

* results(x): get a data frame with gene-level or feature-level results.

Slots

design_fit_null Numeric matrix of the design used to fit the null model.
lik_null Numeric vector of the per gene DM null model likelihoods.
lik_null_bb Numeric vector of the per gene BB null model likelihoods.

results_gene Data frame with the gene-level results including: gene_id - gene IDs, 1r - likeli-
hood ratio statistics based on the DM model, df - degrees of freedom, pvalue - p-values and
adj_pvalue - Benjamini & Hochberg adjusted p-values.

results_feature Dataframe with the feature-level results including: gene_id - gene IDs, feature_id
- feature IDs, 1r - likelihood ratio statistics based on the BB model, df - degrees of freedom,
pvalue - p-values and adj_pvalue - Benjamini & Hochberg adjusted p-values.

Author(s)

Malgorzata Nowicka

12 dmDStest-class

See Also

dmDSdata, dmDSprecision, dmDSfit

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata"”, package = "PasillaTranscriptExpr")

Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)

Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readlLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d, design = design_full)

dmFilter 13

plotPrecision(d)

head(mean_expression(d))
common_precision(d)
head(genewise_precision(d))

Fit full model proportions
d <- dmFit(d, design = design_full)

Get fitted proportions

head(proportions(d))

Get the DM regression coefficients (gene-level)
head(coefficients(d))

Get the BB regression coefficients (feature-level)
head(coefficients(d), level = "feature")

Fit null model proportions and perform the LR test to detect DTU
d <- dmTest(d, coef = "groupKD")

Plot the gene-level p-values
plotPValues(d)

Get the gene-level results
head(results(d))

Plot feature proportions for a top DTU gene
res <- results(d)
res <- res[order(res$pvalue, decreasing = FALSE), 1]

top_gene_id <- res$gene_id[1]

plotProportions(d, gene_id = top_gene_id, group_variable = "group")

plotProportions(d, gene_id = top_gene_id, group_variable = "group”,
plot_type = "lineplot”)

plotProportions(d, gene_id = top_gene_id, group_variable = "group”,
plot_type = "ribbonplot”)

dmFilter Filtering

Description
Filtering of genes and features with low expression. Additionally, for the dmSQTLdata object,
filtering of genotypes with low frequency.

Usage

dmFilter(x, ...)

S4 method for signature 'dmDSdata'
dmFilter(x, min_samps_gene_expr = 0,

14 dmbFilter

min_samps_feature_expr = 0, min_samps_feature_prop = 0,
min_gene_expr = @, min_feature_expr = @, min_feature_prop = 0,
run_gene_twice = FALSE)

S4 method for signature 'dmSQTLdata'

dmFilter(x, min_samps_gene_expr = 0,
min_samps_feature_expr = @, min_samps_feature_prop = 0,
minor_allele_freq = .05 * nrow(samples(x)), min_gene_expr = 0,
min_feature_expr = @, min_feature_prop = 0,
BPPARAM = BiocParallel::SerialParam())

Arguments

X dmDSdata or dmSQTLdata object.

Other parameters that can be defined by methods using this generic.
min_samps_gene_expr

Minimal number of samples where genes should be expressed. See Details.
min_samps_feature_expr

Minimal number of samples where features should be expressed. See Details.
min_samps_feature_prop

Minimal number of samples where features should be expressed. See details.

min_gene_expr Minimal gene expression.
min_feature_expr

Minimal feature expression.
min_feature_prop

Minimal proportion for feature expression. This value should be between 0 and
1.

run_gene_twice Whether to re-run the gene-level filter after the feature-level filters.
minor_allele_freq
Minimal number of samples where each of the genotypes has to be present.

BPPARAM Parallelization method used by bplapply.

Details

Filtering parameters should be adjusted according to the sample size of the experiment data and the
number of replicates per condition.

min_samps_gene_expr defines the minimal number of samples where genes are required to be ex-
pressed at the minimal level of min_gene_expr in order to be included in the downstream analysis.
Ideally, we would like that genes were expressed at some minimal level in all samples because this
would lead to better estimates of feature ratios.

Similarly, min_samps_feature_expr and min_samps_feature_prop defines the minimal number
of samples where features are required to be expressed at the minimal levels of counts min_feature_expr
or proportions min_feature_prop. In differential transcript/exon usage analysis, we suggest using
min_samps_feature_expr and min_samps_feature_prop equal to the minimal number of repli-
cates in any of the conditions. For example, in an assay with 3 versus 5 replicates, we would set
these parameters to 3, which allows a situation where a feature is expressed in one condition but
may not be expressed at all in another one, which is an example of differential transcript/exon usage.

By default, all the filtering parameters equal zero which means that features with zero expression in
all samples are removed as well as genes with only one non-zero feature.

dmFilter 15

In QTL analysis, usually, we deal with data that has many more replicates than data from a standard
differential usage assay. Our example data set consists of 91 samples. Requiring that genes are
expressed in all samples may be too stringent, especially since there may be missing values in the
data and for some genes you may not observe counts in all 91 samples. Slightly lower threshold
ensures that we do not eliminate such genes. For example, if min_samps_gene_expr = 70 and
min_gene_expr = 10, only genes with expression of at least 10 in at least 70 samples are kept.
Samples with expression lower than 10 have NAs assigned and are skipped in the analysis of this
gene. minor_allele_freq indicates the minimal number of samples for the minor allele presence.
Usually, it is equal to roughly 5% of total samples.

Value

Returns filtered dmDSdata or dmSQTLdata object.

Author(s)

Malgorzata Nowicka

See Also

plotData

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package

library(PasillaTranscriptExpr)

data_dir <- system.file("extdata"”, package = "PasillaTranscriptExpr")

Load metadata

pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),

header = TRUE, as.is = TRUE)

Load counts

pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),

header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readlLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

Differential transcript usage analysis - simple two group comparison

16 dmFit

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)

geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr::snp_ranges

colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)])

d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snp_ranges,
samples = geuv_samples, window = 5e3)

Filtering
d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5,
minor_allele_freq = 5, min_gene_expr = 10, min_feature_expr = 10)

plotData(d)
dmFit Fit the Dirichlet-multinomial and/or the beta-binomial full model re-
gression
Description

Obtain the maximum likelihood estimates of Dirichlet-multinomial (gene-level) and/or beta-binomial
(feature-level) regression coefficients, feature proportions in each sample and corresponding likeli-
hoods. In the differential exon/transcript usage analysis, the regression model is defined by a design
matrix. In the exon/transcript usage QTL analysis, regression models are defined by genotypes.
Currently, beta-binomial model is implemented only in the differential usage analysis.

dmPFit 17

Usage

dmFit(x, ...)

S4 method for signature 'dmDSprecision'

dmFit(x, design, one_way = TRUE, bb_model = TRUE,
prop_mode = "constrOptim”, prop_tol = 1e-12, coef_mode = "optim”,
coef_tol = 1e-12, verbose = @, add_uniform = FALSE,
BPPARAM = BiocParallel::SerialParam())

S4 method for signature 'dmSQTLprecision'

dmFit(x, one_way = TRUE,
prop_mode = "constrOptim”, prop_tol = 1e-12, coef_mode = "optim”,
coef_tol = 1e-12, verbose = @, BPPARAM = BiocParallel::SerialParam())

Arguments

X dmDSprecision or dmSQTLprecision object.
Other parameters that can be defined by methods using this generic.

design Numeric matrix defining the full model.

one_way Logical. Should the shortcut fitting be used when the design corresponds to
multiple group comparison. This is a similar approach as in edgeR. If TRUE (the
default), then proportions are fitted per group and regression coefficients are
recalculated from those fits.

bb_model Logical. Whether to perform the feature-level analysis using the beta-binomial
model.

prop_mode Optimization method used to estimate proportions. Possible value "constrOptim”.

prop_tol The desired accuracy when estimating proportions.

coef_mode Optimization method used to estimate regression coefficients. Possible value
"optim”.

coef_tol The desired accuracy when estimating regression coefficients.

verbose Numeric. Definie the level of progress messages displayed. O - no messages, 1
- main messages, 2 - message for every gene fitting.

add_uniform Whether to add a small fractional count to zeros, (adding a uniform random vari-
able between 0 and 0.1). This option allows for the fitting of genewise precision
and coefficients for genes with two features having all zero for one group, or the
last feature having all zero for one group.

BPPARAM Parallelization method used by bplapply.

Details

In the regression framework here, we adapt the idea from glmFit in edgeR about using a shortcut
algorithm when the design is equivalent to simple group fitting. In such a case, we estimate the
DM proportions for each group of samples separately and then recalculate the DM (and/or the BB)
regression coefficients corresponding to the design matrix. If the design matrix does not define
a simple group fitting, for example, when it contains a column with continuous values, then the
regression framework is used to directly estimate the regression coefficients.

Arguments that are used for the proportion estimation in each group when the shortcut fitting can
be used start with prop_, and those that are used in the regression framework start with coef_.

18 dmFit

In the differential transcript usage analysis, setting one_way = TRUE allows switching to the shortcut
algorithm only if the design is equivalent to simple group fitting. one_way = FALSE forces usage of
the regression framework.

In the QTL analysis, currently, genotypes are defined as numeric values 0, 1, and 2. When one_way
= TRUE, simple multiple group fitting is performed. When one_way = FALSE, a regression frame-
work is used with the design matrix defined by a formula ~ group where group is a continuous (not
categorical) variable with values 0, 1, and 2.

Value

Returns a dmDSfit or dmSQTLfit object.

Author(s)

Malgorzata Nowicka

References

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297.

See Also

plotProportions glmFit

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata"”, package = "PasillaTranscriptExpr")

Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)

Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readlLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

dmPrecision 19

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d, design = design_full)

plotPrecision(d)

head(mean_expression(d))
common_precision(d)
head(genewise_precision(d))

Fit full model proportions
d <- dmFit(d, design = design_full)

Get fitted proportions

head(proportions(d))

Get the DM regression coefficients (gene-level)
head(coefficients(d))

Get the BB regression coefficients (feature-level)
head(coefficients(d), level = "feature")

dmPrecision Estimate the precision parameter in the Dirichlet-multinomial model

Description
Maximum likelihood estimates of the precision parameter in the Dirichlet-multinomial model used
for the differential exon/transcript usage or QTL analysis.
Usage
dmPrecision(x, ...)
S4 method for signature 'dmDSdata’

dmPrecision(x, design, mean_expression = TRUE,
common_precision = TRUE, genewise_precision = TRUE, prec_adjust = TRUE,

20

dmPrecision

prec_subset = 0.1, prec_interval = c(0, 1000), prec_tol = 10,
prec_init = 100, prec_grid_length = 21, prec_grid_range = c(-10, 10),

prec_moderation = "trended”, prec_prior_df = @, prec_span = 0.1,
one_way = TRUE, prop_mode = "constrOptim”, prop_tol = le-12,
coef_mode = "optim”, coef_tol = 1e-12, verbose = 0,

add_uniform = FALSE, BPPARAM = BiocParallel::SerialParam())

S4 method for signature 'dmSQTLdata'
dmPrecision(x, mean_expression = TRUE,

common_precision = TRUE, genewise_precision = TRUE, prec_adjust = TRUE,

prec_subset = 0.1, prec_interval = c(@, 1000), prec_tol = 10,
prec_init = 100, prec_grid_length = 21, prec_grid_range = c(-10, 10),

prec_moderation = "none", prec_prior_df = @, prec_span = 0.1,
one_way = TRUE, speed = TRUE, prop_mode = "constrOptim”,
prop_tol = 1e-12, coef_mode = "optim", coef_tol = 1e-12, verbose = 0,

BPPARAM = BiocParallel::SerialParam())

Arguments
X dmDSdata or dmSQTLdata object.
Other parameters that can be defined by methods using this generic.
design Numeric matrix defining the model that should be used when estimating preci-

sion. Normally this should be a full model design used also in dmFit.

mean_expression

Logical. Whether to estimate the mean expression of genes.

common_precision

Logical. Whether to estimate the common precision.

genewise_precision

Logical. Whether to estimate the gene-wise precision.

prec_adjust Logical. Whether to use the Cox-Reid adjusted or non-adjusted profile likeli-

hood.

prec_subset Value from O to 1 defining the percentage of genes used in common precision

estimation. The default is 0.1, which uses 10 randomly selected genes to speed
up the precision estimation process. Use set . seed function to make the analysis
reproducible. See Examples.

prec_interval Numeric vector of length 2 defining the interval of possible values for the com-

mon precision.

prec_tol The desired accuracy when estimating common precision.

prec_init Initial precision. If common_precision is TRUE, then prec_init is overwritten

by common precision estimate.

prec_grid_length

Length of the search grid.

prec_grid_range

Vector giving the limits of grid interval.

prec_moderation

Precision moderation method. One can choose to shrink the precision estimates
toward the common precision ("common”) or toward the (precision versus mean
expression) trend ("trended")

dmPrecision 21

prec_prior_df Degree of moderation (shrinkage) in case when it can not be calculated auto-
maticaly (number of genes on the upper boundary of grid is smaller than 10).
By default it is equal to 0.

prec_span Value from O to 1 defining the percentage of genes used in smoothing sliding
window when calculating the precision versus mean expression trend.

one_way Logical. Should the shortcut fitting be used when the design corresponds to
multiple group comparison. This is a similar approach as in edgeR. If TRUE (the
default), then proportions are fitted per group and regression coefficients are
recalculated from those fits.

prop_mode Optimization method used to estimate proportions. Possible value "constrOptim”.

prop_tol The desired accuracy when estimating proportions.

coef_mode Optimization method used to estimate regression coefficients. Possible value
"optim”.

coef_tol The desired accuracy when estimating regression coefficients.

verbose Numeric. Definie the level of progress messages displayed. O - no messages, 1

- main messages, 2 - message for every gene fitting.

add_uniform Whether to add a small fractional count to zeros, (adding a uniform random vari-
able between 0 and 0.1). This option allows for the fitting of genewise precision
and coefficients for genes with two features having all zero for one group, or the
last feature having all zero for one group.

BPPARAM Parallelization method used by bplapply.

speed Logical. If FALSE, precision is calculated per each gene-block. Such calculation
may take a long time, since there can be hundreds of SNPs/blocks per gene. If

TRUE, there will be only one precision calculated per gene and it will be assigned
to all the blocks matched with this gene.

Details

Normally, in the differential analysis based on RNA-seq data, such as, for example, differential
gene expression, dispersion (of negative-binomial model) is estimated. Here, we estimate precision
of the Dirichlet-multinomial model as it is more convenient computationally. To obtain dispersion
estimates, one can use a formula: dispersion = 1/ (1 + precision).

Parameters that are used in the precision (dispersion = 1/ (1 + precision)) estimation start with prefix
prec_. Those that are used for the proportion estimation in each group when the shortcut fitting
one_way = TRUE can be used start with prop_, and those that are used in the regression framework
start with coef_.

There are two optimization methods implemented within dmPrecision: "optimize"” for the com-
mon precision and "grid” for the gene-wise precision.

Only part of the precision parameters in dmPrecision have an influence on a given optimization
method. Here is a list of such active parameters:

"optimize":
e prec_interval: Passed as interval.
* prec_tol: The accuracy defined as tol.

"grid"”, which uses the grid approach from estimateDisp in edgeR:

e prec_init, prec_grid_length, prec_grid_range: Parameters used to construct the search
grid prec_init * 2*seq(from = prec_grid_range[1], to =prec_grid_range[2], length
=prec_grid_length).

22 dmPrecision

* prec_moderation: Dipsersion shrinkage is available only with "grid" method.

* prec_prior_df: Used only when precision shrinkage is activated. Moderated likelihood is
equal to loglik + prec_prior_df * moderation. Higher prec_prior_df, more shrinkage
toward common or trended precision is applied.

* prec_span: Used only when precision moderation toward trend is activated.

Value

Returns a dmDSprecision or dmSQTLprecision object.

Author(s)

Malgorzata Nowicka

References

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297.

See Also

plotPrecision estimateDisp

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata”, package = "PasillaTranscriptExpr")

Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)

Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readlLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

dmSQTLdata 23

Differential transcript usage analysis - simple two group comparison

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d, design = design_full)

plotPrecision(d)
head(mean_expression(d))

common_precision(d)
head(genewise_precision(d))

dmSQTLdata Create dmSQTLdata object

Description
Constructor functions for a dnSQTLdata object. dmSQTLdata assignes to a gene all the SNPs that
are located in a given surrounding (window) of this gene.

Usage

dmSQTLdata(counts, gene_ranges, genotypes, snp_ranges, samples, window = 5000,
BPPARAM = BiocParallel::SerialParam())

Arguments

counts Data frame with counts. Rows correspond to features, for example, transcripts
or exons. This data frame has to contain a gene_id column with gene IDs,
feature_id column with feature IDs and columns with counts for each sample.
Column names corresponding to sample IDs must be the same as in the sample
data frame.

gene_ranges GRanges object with gene location. It must contain gene names when calling
names().

genotypes Data frame with genotypes. Rows correspond to SNPs. This data frame has to

contain a snp_id column with SNP IDs and columns with genotypes for each
sample. Column names corresponding to sample IDs must be the same as in the
sample data frame. The genotype of each sample is coded in the following way:
0 for ref/ref, 1 for ref/not ref, 2 for not ref/not ref, -1 or NA for missing value.

24 dmSQTLdata

snp_ranges GRanges object with SNP location. It must contain SNP names when calling
names().

samples Data frame with column sample_id corresponding to unique sample IDs

window Size of a down and up stream window, which is defining the surrounding for a

gene. Only SNPs that are located within a gene or its surrounding are considered
in the sQTL analysis.

BPPARAM Parallelization method used by bplapply.

Details

It is quite common that sample grouping defined by some of the SNPs is identical. Compare
dim(genotypes) and dim(unique(genotypes)). In our QTL analysis, we do not repeat tests
for the SNPs that define the same grouping of samples. Each grouping is tested only once. SNPs
that define such unique groupings are aggregated into blocks. P-values and adjusted p-values are
estimated at the block level, but the returned results are extended to a SNP level by repeating the
block statistics for each SNP that belongs to a given block.

Value

Returns a dmSQTLdata object.

Author(s)

Malgorzata Nowicka

See Also

plotData

Examples

Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)

geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr::snp_ranges

colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)1)

d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snhp_ranges,
samples = geuv_samples, window = 5e3)

dmSQTLdata-class 25

dmSQTLdata-class dmSQTLdata object

Description
dmSQTLdata contains genomic feature expression (counts), genotypes and sample information
needed for the transcript/exon usage QTL analysis. It can be created with function dmSQTLdata.
Usage

S4 method for signature 'dmSQTLdata'
counts(object)

S4 method for signature 'dmSQTLdata'
samples(x)

S4 method for signature 'dmSQTLdata'
names(x)

S4 method for signature 'dmSQTLdata'
length(x)

S4 method for signature 'dmSQTLdata,ANY'

x[i, 3]
Arguments

X, object dmSQTLdata object.

i,] Parameters used for subsetting.
Value

* names(x): Get the gene names.
* length(x): Get the number of genes.

e x[i, j1: Get a subset of dmDSdata object that consists of counts, genotypes and blocks
corresponding to genes i and samples j.

Slots

counts MatrixList of expression, in counts, of genomic features. Rows correspond to genomic
features, such as exons or transcripts. Columns correspond to samples. MatrixList is parti-
tioned in a way that each of the matrices in a list contains counts for a single gene.

genotypes MatrixList of unique genotypes. Rows correspond to blocks, columns to samples. Each
matrix in this list is a collection of unique genotypes that are matched with a given gene.

blocks MatrixList with two columns block_id and snp_id. For each gene, it identifies SNPs with
identical genotypes across the samples and assigns them to blocks.

samples Data frame with information about samples. It must contain variable sample_id with
unique sample names.

26 dmSQTLfit-class

Author(s)

Malgorzata Nowicka

See Also

dmSQTLprecision, dmSQTLfit, dmSQTLtest

Examples

Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)

geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr: :snp_ranges

colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)1)

d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snp_ranges,
samples = geuv_samples, window = 5e3)

dmSQTLfit-class dmSQTLfit object

Description

dmSQTLfit extends the dmSQTLprecision class by adding the full model Dirichlet-multinomial
(DM) likelihoods, regression coefficients and feature proportion estimates needed for the tran-
script/exon usage QTL analysis. Full model is defined by the genotype of a SNP associated with a
gene. Estimation takes place for all the genes and all the SNPs/blocks assigned to the genes. Result
of dmFit.

Slots

fit_full List of MatrixList objects containing estimated feature ratios in each sample based on
the full Dirichlet-multinomial (DM) model.

lik_full List of numeric vectors of the per gene DM full model likelihoods.

coef_full MatrixList with the regression coefficients based on the DM model.

Author(s)

Malgorzata Nowicka

dmSQTLprecision-class 27

See Also

dmSQTLdata, dmSQTLprecision, dmSQTLtest

Examples

Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)

geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr: :snp_ranges

colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)]1)

d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snp_ranges,
samples = geuv_samples, window = 5e3)

Filtering
d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5,
minor_allele_freq = 5, min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d)

plotPrecision(d)

Fit full model proportions
d <- dmFit(d)

dmSQTLprecision-class dmSQTLprecision object

Description

dmSQTLprecision extends the dnSQTLdata by adding the precision estimates of Dirichlet-multinomial
distribution used to model the feature (e.g., transcript, exon, exonic bin) counts for each gene-SNP
pair in the QTL analysis. Result of dmPrecision.

28 dmSQTLprecision-class

Usage

S4 method for signature 'dmSQTLprecision'
mean_expression(x)

S4 method for signature 'dmSQTLprecision'
common_precision(x)

S4 method for signature 'dmSQTLprecision'
genewise_precision(x)
Arguments

X dmSQTLprecision object.

Value

* mean_expression(x): Get a data frame with mean gene expression.
e common_precision(x): Get common precision.

* genewise_precision(x): Get a data frame with gene-wise precision.

Slots

mean_expression Numeric vector of mean gene expression.
common_precision Numeric value of estimated common precision.

genewise_precision List of estimated gene-wise precisions. Each element of this list is a vector
of precisions estimated for all the genotype blocks assigned to a given gene.

Author(s)

Malgorzata Nowicka

See Also

dmSQTLdata, dmSQTLfit, dmSQTLtest

Examples

Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)

geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr: :snp_ranges

colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)]1)

dmSQTLtest-class 29

d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snhp_ranges,
samples = geuv_samples, window = 5e3)

Filtering
d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5,
minor_allele_freq = 5, min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d)

plotPrecision(d)

dmSQTLtest-class dmSQTLtest object

Description

dmSQTLtest extends the dmSQTLfit class by adding the null model Dirichlet-multinomial likeli-
hoods and the gene-level results of testing for differential transcript/exon usage QTLs. Result of
dmTest.

Usage
S4 method for signature 'dmSQTLtest'
results(x)

Arguments

X dmSQTLtest object.

Other parameters that can be defined by methods using this generic.

Value

* results(x): Get a data frame with gene-level results.

Slots

lik_null List of numeric vectors with the per gene-snp DM null model likelihoods.

results_gene Data frame with the gene-level results including: gene_id - gene IDs, block_id
- block IDs, snp_id - SNP IDs, 1r - likelihood ratio statistics based on the DM model, df
- degrees of freedom, pvalue - p-values estimated based on permutations and adj_pvalue -
Benjamini & Hochberg adjusted p-values.

30 dmSQTLtest-class

Author(s)

Malgorzata Nowicka

See Also

dmSQTLdata, dmSQTLprecision, dmSQTLfit

Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)

geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr::snp_ranges

colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)1)

d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snhp_ranges,
samples = geuv_samples, window = 5e3)

Filtering
d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5,
minor_allele_freq = 5, min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d)

plotPrecision(d)

Fit full model proportions
d <- dmFit(d)

Fit null model proportions, perform the LR test to detect tuQTLs
and use the permutation approach to adjust the p-values
d <- dmTest(d)

Plot the gene-level p-values
plotPValues(d)

dmTest

31

Get the gene-level results

head(results(d))

dmTest

Likelihood ratio test to detect differential transcript/exon usage

Description

First, estimate the null Dirichlet-multinomial and beta-binomial model parameters and likelihoods
using the null model design. Second, perform the gene-level (DM model) and feature-level (BB
model) likelihood ratio tests. In the differential exon/transcript usage analysis, the null model is
defined by the null design matrix. In the exon/transcript usage QTL analysis, null models are
defined by a design with intercept only. Currently, beta-binomial model is implemented only in the
differential usage analysis.

Usage

dmTest(x,

)

S4 method for signature 'dmDSfit'

dmTest(x, coef = NULL, design = NULL, contrast = NULL,
one_way = TRUE, bb_model = TRUE, prop_mode = "constrOptim”,
prop_tol = 1e-12, coef_mode = "optim", coef_tol = 1e-12, verbose = 0,
BPPARAM = BiocParallel::SerialParam())

S4 method for signature 'dmSQTLfit'

dmTest(x, permutation_mode = "all_genes”,
one_way = TRUE, prop_mode = "constrOptim”, prop_tol = le-12,
coef_mode = "optim”, coef_tol = 1e-12, verbose = 0,

BPPARAM = BiocParallel::SerialParam())

Arguments

X

coef

design

contrast

one_way

bb_model

dmDSfit or dmSQTLfit object.
Other parameters that can be defined by methods using this generic.

Integer or character vector indicating which coefficients of the linear model are
to be tested equal to zero. Values must indicate column numbers or column
names of the design used in dmFit.

Numeric matrix defining the null model.

Numeric vector or matrix specifying one or more contrasts of the linear model
coefficients to be tested equal to zero. For a matrix, number of rows (for a vector,
its length) must equal to the number of columns of design used in dmFit.

Logical. Should the shortcut fitting be used when the design corresponds to
multiple group comparison. This is a similar approach as in edgeR. If TRUE (the
default), then proportions are fitted per group and regression coefficients are
recalculated from those fits.

Logical. Whether to perform the feature-level analysis using the beta-binomial
model.

32 dmTest

prop_mode Optimization method used to estimate proportions. Possible value "constrOptim”.

prop_tol The desired accuracy when estimating proportions.

coef_mode Optimization method used to estimate regression coefficients. Possible value
"optim”.

coef_tol The desired accuracy when estimating regression coefficients.

verbose Numeric. Definie the level of progress messages displayed. O - no messages, 1
- main messages, 2 - message for every gene fitting.

BPPARAM Parallelization method used by bplapply.

permutation_mode
Character specifying which permutation scheme to apply for p-value calcula-
tion. When equal to "all_genes”, null distribution of p-values is calculated
from all genes and the maximum number of permutation cycles is 10. When
permutation_mode = "per_gene”, null distribution of p-values is calculated
for each gene separately based on permutations of this individual gene. The
latter approach may take a lot of computational time. We suggest using the first
option.
Details

One must specify one of the arguments: coef, design or contrast.

When contrast is used to define the null model, the null design matrix is recalculated using the
same approach as in glmLRT function from edgeR.

Value

Returns a dmDStest or dmnSQTLtest object.

Author(s)

Malgorzata Nowicka

References

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297.

See Also

plotPValues gIlmLRT

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata"”, package = "PasillaTranscriptExpr")

Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),

dmTest

header = TRUE, as.is = TRUE)

Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readlLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d, design = design_full)

plotPrecision(d)

head(mean_expression(d))
common_precision(d)
head(genewise_precision(d))

Fit full model proportions
d <- dmFit(d, design = design_full)

Get fitted proportions

head(proportions(d))

Get the DM regression coefficients (gene-level)
head(coefficients(d))

Get the BB regression coefficients (feature-level)
head(coefficients(d), level = "feature")

Fit null model proportions and perform the LR test to detect DTU

34

d <- dmTest(d, coef = "groupkD")

Plot the gene-level p-values
plotPValues(d)

Get the gene-level results
head(results(d))

Plot feature proportions for a top DTU gene
res <- results(d)

res <- res[order(res$pvalue, decreasing = FALSE),]

top_gene_id <- res$gene_id[1]

dm_plotDataDSInfo

plotProportions(d, gene_id = top_gene_id, group_variable = "group”)
plotProportions(d, gene_id = top_gene_id, group_variable = "group”,
plot_type = "lineplot”)
plotProportions(d, gene_id = top_gene_id, group_variable = "group”,
plot_type = "ribbonplot")
dm_plotDataDSInfo Plot the frequency of present features
Description
Plot the frequency of present features
Usage
dm_plotDataDSInfo(info, ds_info)
Arguments
info Data frame with gene_id and feature_id of ALL features
ds_info Data frame with gene_id and feature_id of ONLY DS features
Value

ggplot object

dm_plotProportions 35

dm_plotProportions Plot feature proportions

Description

Plot observed and/or estimated feature proportions.

Usage

dm_plotProportions(counts, group, md = NULL, fit_full = NULL, main = NULL,
plot_type = "boxplotl”, order_features = TRUE, order_samples = TRUE,
group_colors = NULL, feature_colors = NULL)

Arguments

counts Matrix with rows corresponding to features and columns corresponding to sam-
ples. Row names are used as labels on the plot.

group Factor that groups samples into conditions.

md Data frame with additional sample information.

fit_full Matrix of estimated proportions with rows corresponding to features and columns
corresponding to samples. If NULL, nothing is plotted.

main Character vector with main title for the plot. If NULL, nothing is plotted.

plot_type Character defining the type of the plot produced. Possible values "barplot”,

"boxplot1”, "boxplot2”, "lineplot”, "ribbonplot”.
order_features Logical. Whether to plot the features ordered by their expression.

order_samples Logical. Whether to plot the samples ordered by the group variable. If FALSE
order from the sample(x) is kept.

group_colors Character vector with colors for each group.

feature_colors Character vector with colors for each feature.

Value

ggplot object with the observed and/or estimated with Dirichlet-multinomial model feature ratios.
Estimated proportions are marked with diamond shapes.

MatrixList-class MatrixList object

Description

A MatrixList object is a container for a list of matrices which have the same number of columns but
can have varying number of rows. Additionally, one can store an extra information corresponding
to each of the matrices in metadata matrix.

36 MatrixList-class

Usage

S4 method for signature 'MatrixList’
names (x)

S4 replacement method for signature 'MatrixList'
names(x) <- value

S4 method for signature 'MatrixList'
rownames (x)

S4 replacement method for signature 'MatrixList'
rownames(x) <- value

S4 method for signature 'MatrixList'
colnames(x)

S4 replacement method for signature 'MatrixList'
colnames(x) <- value

S4 method for signature 'MatrixList'
length(x)

S4 method for signature 'MatrixList'
elementNROWS (x)

S4 method for signature 'MatrixList'
dim(x)

S4 method for signature 'MatrixList'
nrow(x)

S4 method for signature 'MatrixList'
ncol(x)

S4 method for signature 'MatrixList'
x[[i, 311

S4 method for signature 'MatrixList'
x$name

S4 method for signature 'MatrixList,ANY'

x[i, j]
Arguments
X MatrixList object.

value, i, j, name Parameters used for subsetting and assigning new attributes to x.

Value

* names(x), names(x) <- value: Get or set names of matrices.

plotData 37

¢ rownames(x), rownames(x) <- value, colnames(x), colnames(x) <- value: Get or set
row names or column names of unlistData slot.

¢ length(x): Get the number of matrices in a list.
* elementNROWS(x): Get the number of rows of each of the matrices.

e dim(x), nrow(x), ncol(x): Get the dimensions, number of rows or number of columns of
unlistData slot.

e x[[il1]1, xL[i, j11: Get the matrix i, and optionally, get only columns j of this matrix.
* x$name: Shortcut for x[["name"]1].

* x[i, j1: Get a subset of MatrixList that consists of matrices i with columns j.

Slots

unlistData Matrix which is a row binding of all the matrices in a list.

partitioning List of indexes which defines the row partitioning of unlistData matrix into the
original matrices.

metadata Matrix of additional information where each row corresponds to one of the matrices in
a list.

Author(s)

Malgorzata Nowicka

plotData Plot data summary

Description

Plot data summary

Usage

plotData(x, ...)

S4 method for signature 'dmDSdata'
plotData(x)

S4 method for signature 'dmSQTLdata'
plotData(x, plot_type = "features”)

Arguments
X dmDSdata or dmSQTLdata object.
Other parameters that can be defined by methods using this generic.
plot_type Character specifying which type of histogram to plot. Possible values "features”,

"snps" or "blocks".

38 plotData

Value

Returns a ggplot object and can be further modified, for example, using theme (). Plots a histogram
of the number of features per gene. Additionally, for dmSQTLdata object, plots a histogram of the
number of SNPs per gene and a histogram of the number of unique SNPs (blocks) per gene.

Author(s)

Malgorzata Nowicka

See Also

plotPrecision, plotProportions, plotPValues

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata"”, package = "PasillaTranscriptExpr")

Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)

Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotPrecision 39

plotData(d)

Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)

geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr::snp_ranges

colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)])

d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snp_ranges,
samples = geuv_samples, window = 5e3)

Filtering
d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5,
minor_allele_freq = 5, min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

plotPrecision Precision versus mean expression plot

Description

Precision versus mean expression plot

Usage

plotPrecision(x, ...)

S4 method for signature 'dmDSprecision'
plotPrecision(x)

S4 method for signature 'dmSQTLprecision'

plotPrecision(x)
Arguments
X dmDSprecision or dmSQTLprecision object.

Other parameters that can be defined by methods using this generic.

40 plotPrecision

Value

Normally in the differential analysis based on RNA-seq data, such plot has dispersion parameter
plotted on the y-axis. Here, the y-axis represents precision since in the Dirichlet-multinomial model
this is the parameter that is directly estimated. It is important to keep in mind that the precision
parameter (gammaQ) is inverse proportional to dispersion (theta): theta = 1 / (1 + gamma0). In
RNA-seq data, we can typically observe a trend where the dispersion decreases (here, precision
increases) for genes with higher mean expression.

Author(s)

Malgorzata Nowicka

See Also

plotData, plotProportions, plotPValues

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata"”, package = "PasillaTranscriptExpr")

Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)

Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readlLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

plotProportions 41

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d, design = design_full)

plotPrecision(d)
head(mean_expression(d))

common_precision(d)
head(genewise_precision(d))

plotProportions Plot feature proportions

Description

This plot is available only for a group design, i.e., a design that is equivalent to multiple group
fitting.

Usage

plotProportions(x, ...)

S4 method for signature 'dmDSfit'

plotProportions(x, gene_id, group_variable,
plot_type = "barplot”, order_features = TRUE, order_samples = TRUE,
plot_fit = TRUE, plot_main = TRUE, group_colors = NULL,
feature_colors = NULL)

S4 method for signature 'dmSQTLfit'

plotProportions(x, gene_id, snp_id,
plot_type = "boxplotl”, order_features = TRUE, order_samples = TRUE,
plot_fit = FALSE, plot_main = TRUE, group_colors = NULL,
feature_colors = NULL)

Arguments
X dmDSfit, dmDStest or dmSQTLfit, dmSQTLtest object.
Other parameters that can be defined by methods using this generic.
gene_id Character indicating a gene ID to be plotted.

group_variable Character indicating the grouping variable which is one of the columns in the
samples slot of x.

42 plotProportions

plot_type Character defining the type of the plot produced. Possible values "barplot”,
"boxplot1”, "boxplot2”, "lineplot”, "ribbonplot”.

order_features Logical. Whether to plot the features ordered by their expression.

order_samples Logical. Whether to plot the samples ordered by the group variable. If FALSE
order from the sample(x) is kept.

plot_fit Logical. Whether to plot the proportions estimated by the full model.
plot_main Logical. Whether to plot a title with the information about the Dirichlet-multinomial
estimates.

group_colors Character vector with colors for each group defined by group_variable.
feature_colors Character vector with colors for each feature of gene defined by gene_id.

snp_id Character indicating the ID of a SNP to be plotted.

Details

In the QTL analysis, plotting of fitted proportions is deactivated even when plot_fit = TRUE. It
is due to the fact that neither fitted values nor regression coefficients are returned by the dmFit
function as they occupy a lot of memory.

Value

For a given gene, plot the observed and estimated with Dirichlet-multinomial model feature propor-
tions in each group. Estimated group proportions are marked with diamond shapes.

Author(s)

Malgorzata Nowicka

See Also

plotData, plotPrecision, plotPValues

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata"”, package = "PasillaTranscriptExpr")

Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)

Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame
pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

plotProportions

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset,]

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d, design = design_full)

plotPrecision(d)

head(mean_expression(d))
common_precision(d)
head(genewise_precision(d))

Fit full model proportions
d <- dmFit(d, design = design_full)

Get fitted proportions

head(proportions(d))

Get the DM regression coefficients (gene-level)
head(coefficients(d))

Get the BB regression coefficients (feature-level)
head(coefficients(d), level = "feature")

Fit null model proportions and perform the LR test to detect DTU
d <- dmTest(d, coef = "groupkKD")

Plot the gene-level p-values
plotPValues(d)

Get the gene-level results
head(results(d))

Plot feature proportions for a top DTU gene

44 plotPValues

res <- results(d)
res <- res[order(res$pvalue, decreasing = FALSE),]

top_gene_id <- res$gene_id[1]

plotProportions(d, gene_id = top_gene_id, group_variable = "group")

plotProportions(d, gene_id = top_gene_id, group_variable = "group”,
plot_type = "lineplot”)

plotProportions(d, gene_id = top_gene_id, group_variable = "group”,
plot_type = "ribbonplot")

plotPValues Plot p-value distribution

Description

Plot p-value distribution
Usage
plotPValues(x, ...)

S4 method for signature 'dmDStest'
plotPValues(x, level = "gene")

S4 method for signature 'dmSQTLtest'

plotPValues(x)
Arguments
X dmDStest or dmSQTLtest object.
Other parameters that can be defined by methods using this generic.
level Character specifying which type of results to return. Possible values "gene"” or
"feature”.
Value

Plot a histogram of p-values.

Author(s)

Malgorzata Nowicka

See Also

plotData, plotPrecision, plotProportions

plotPValues

Examples

Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata”, package = "PasillaTranscriptExpr")

Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)

Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)

Create a pasilla_samples data frame

pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)

levels(pasilla_samples$group)

Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)

Use a subset of genes, which is defined in the following file
gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))

d <- d[names(d) %in% gene_id_subset, 1]

Filtering
Check what is the minimal number of replicates per condition
table(samples(d)$group)

d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)

plotData(d)

Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))

To make the analysis reproducible
set.seed(123)

Calculate precision

d <- dmPrecision(d, design = design_full)

plotPrecision(d)

head(mean_expression(d))
common_precision(d)

46

head(genewise_precision(d))

Fit full model proportions
d <- dmFit(d, design = design_full)

Get fitted proportions

head(proportions(d))

Get the DM regression coefficients (gene-level)
head(coefficients(d))

Get the BB regression coefficients (feature-level)
head(coefficients(d), level = "feature")

Fit null model proportions and perform the LR test to detect DTU
d <- dmTest(d, coef = "groupkD")

Plot the gene-level p-values
plotPValues(d)

Get the gene-level results
head(results(d))

Plot feature proportions for a top DTU gene

res <- results(d)

res <- resl[order(res$pvalue, decreasing = FALSE),]
top_gene_id <- res$gene_id[1]

plotProportions(d, gene_id = top_gene_id, group_variable = "group")

plotProportions(d, gene_id = top_gene_id, group_variable = "group”,
plot_type = "lineplot”)

plotProportions(d, gene_id = top_gene_id, group_variable = "group”,
plot_type = "ribbonplot”)

plotPValues

Index

[,MatrixList,ANY-method
(MatrixList-class), 35
[,MatrixList-method (MatrixList-class),
35

[,dmDSdata, ANY-method (dmDSdata-class),
4

[,dmDSdata-method (dmDSdata-class), 4

[,dmSQTLdata, ANY-method
(dmSQTLdata-class), 25

[,dmSQTLdata-method (dmSQTLdata-class),
25

[[,MatrixList-method
(MatrixList-class), 35

$,MatrixList-method (MatrixList-class),
35

bplapply, 14, 17,21, 24, 32

coefficients,dmDSfit-method
(dmDSfit-class), 6
colnames,MatrixList-method
(MatrixList-class), 35
colnames<-,MatrixList-method
(MatrixList-class), 35
common_precision (dmDSprecision-class),
8
common_precision,dmDSprecision-method
(dmDSprecision-class), 8
common_precision,dmSQTLprecision-method
(dmSQTLprecision-class), 27
common_precision<-
(dmDSprecision-class), 8
common_precision<-,dmDSprecision-method
(dmDSprecision-class), 8
counts,dmDSdata-method
(dmDSdata-class), 4
counts,dmSQTLdata-method
(dmSQTLdata-class), 25

design,dmDSfit-method (dmDSfit-class), 6

design,dmDSprecision-method
(dmDSprecision-class), 8

design,dmDStest-method
(dmDStest-class), 11

47

dim,MatrixList-method
(MatrixList-class), 35
dm_plotDataDSInfo, 34
dm_plotProportions, 35
dmDSdata, 3, 3, 4, 7-9, 12, 14, 15, 20, 37
dmDSdata-class, 4
dmDSfit, 5,9,11, 12,18, 31,41
dmDSfit-class, 6
dmDSprecision, 5-7, 12,17, 22, 39
dmDSprecision-class, 8
dmDStest, 5,7, 9, 32,41, 44
dmDStest-class, 11
dmFilter, 13
dmFilter,dmDSdata-method (dmFilter), 13
dmFilter,dmSQTLdata-method (dmFilter),
13
dmFit, 6, 16, 20, 26, 31
dmFit,dmDSprecision-method (dmFit), 16
dmFit,dmSQTLprecision-method (dmFit), 16
dmPrecision, 8, 19, 27
dmPrecision,dmDSdata-method
(dmPrecision), 19
dmPrecision,dmSQTLdata-method
(dmPrecision), 19
dmSQTLdata, 14, 15, 20, 23, 23, 24, 25, 27, 28,
30, 37, 38
dmSQTLdata-class, 25
dmSQTLfit, 18, 26, 28-31, 41
dmSQTLfit-class, 26
dmSQTLprecision, 17, 22, 26, 27, 30, 39
dmSQTLprecision-class, 27
dmSQTLtest, 26-28, 32,41, 44
dmSQTLtest-class, 29
dmTest, 11, 29, 31
dmTest,dmDSfit-method (dmTest), 31
dmTest,dmSQTLfit-method (dmTest), 31

edgeR, 17, 21, 31, 32

elementNROWS ,MatrixList-method
(MatrixList-class), 35

estimateDisp, 21, 22

genewise_precision
(dmDSprecision-class), 8

48

genewise_precision,dmDSprecision-method
(dmDSprecision-class), 8

genewise_precision,dmSQTLprecision-method

(dmSQTLprecision-class), 27
genewise_precision<-
(dmDSprecision-class), 8

genewise_precision<-,dmDSprecision-method

(dmDSprecision-class), 8
glmFit, 17, 18
glmLRT, 32
GRanges, 23, 24

length, dmDSdata-method
(dmDSdata-class), 4

length,dmSQTLdata-method
(dmSQTLdata-class), 25

length,MatrixList-method
(MatrixList-class), 35

MatrixList, 5, 6, 25, 26

MatrixList-class, 35

mean_expression (dmDSprecision-class), 8

mean_expression,dmDSprecision-method
(dmDSprecision-class), 8

mean_expression,dmSQTLprecision-method
(dmSQTLprecision-class), 27

names,dmDSdata-method (dmDSdata-class),
4
names,dmSQTLdata-method
(dmSQTLdata-class), 25
names,MatrixList-method
(MatrixList-class), 35
names<-,MatrixList-method
(MatrixList-class), 35
ncol,MatrixList-method
(MatrixList-class), 35
nrow,MatrixList-method
(MatrixList-class), 35

plotData, 3, 15, 24, 37, 40, 42, 44
plotData,dmDSdata-method (plotData), 37
plotData,dmSQTLdata-method (plotData),
37
plotPrecision, 22, 38, 39, 42, 44
plotPrecision,dmDSprecision-method
(plotPrecision), 39
plotPrecision,dmSQTLprecision-method
(plotPrecision), 39
plotProportions, 18, 38, 40, 41, 44
plotProportions,dmDSfit-method
(plotProportions), 41
plotProportions,dmSQTLfit-method
(plotProportions), 41

INDEX

plotPValues, 32, 38, 40, 42, 44
plotPValues, dmDStest-method
(plotPValues), 44
plotPValues,dmSQTLtest-method
(plotPValues), 44
proportions (dmDSfit-class), 6
proportions,dmDSfit-method
(dmDSfit-class), 6

results (dmDStest-class), 11
results,dmDStest-method
(dmDStest-class), 11
results,dmSQTLtest-method
(dmSQTLtest-class), 29
rownames,MatrixList-method
(MatrixList-class), 35
rownames<-,MatrixList-method
(MatrixList-class), 35

samples (dmDSdata-class), 4

samples, dmDSdata-method
(dmDSdata-class), 4

samples,dmSQTLdata-method
(dmSQTLdata-class), 25

	dmDSdata
	dmDSdata-class
	dmDSfit-class
	dmDSprecision-class
	dmDStest-class
	dmFilter
	dmFit
	dmPrecision
	dmSQTLdata
	dmSQTLdata-class
	dmSQTLfit-class
	dmSQTLprecision-class
	dmSQTLtest-class
	dmTest
	dm_plotDataDSInfo
	dm_plotProportions
	MatrixList-class
	plotData
	plotPrecision
	plotProportions
	plotPValues
	Index

