
Package ‘DNABarcodes’
January 19, 2026

Type Package

Title A tool for creating and analysing DNA barcodes used in Next
Generation Sequencing multiplexing experiments

Version 1.40.0

Date 2014-07-23

Author Tilo Buschmann <tilo.buschmann.ac@gmail.com>

Maintainer Tilo Buschmann <tilo.buschmann.ac@gmail.com>

Description The package offers a function to create DNA barcode sets
capable of correcting insertion, deletion, and substitution
errors. Existing barcodes can be analysed regarding their
minimal, maximal and average distances between barcodes.
Finally, reads that start with a (possibly mutated) barcode can
be demultiplexed, i.e., assigned to their original reference
barcode.

License GPL-2

Imports Rcpp (>= 0.11.2), BH

LinkingTo Rcpp, BH

Depends Matrix, parallel

Suggests knitr, BiocStyle, rmarkdown

VignetteBuilder knitr

biocViews Preprocessing, Sequencing

NeedsCompilation yes

git_url https://git.bioconductor.org/packages/DNABarcodes

git_branch RELEASE_3_22

git_last_commit 3d5853f

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents
DNABarcodes-package . 2
analyse.barcodes . 3

1

2 DNABarcodes-package

barcode.set.distances . 4
create.dnabarcodes . 5
create.pool . 9
demultiplex . 10
distance . 12
mutatedReads . 13
supplierSet . 13

Index 14

DNABarcodes-package Create and analyse DNA barcode sets that are capable of error cor-
rection.

Description

The package offers a function to create DNA barcode sets capable of correcting substitution errors
or insertion, deletion, and substitution errors. Existing barcodes can be analysed regarding their
minimal, maximal and average distances between barcodes. Finally, reads that start with a (possibly
mutated) barcode can be demultiplexed, i.e. assigned to their original reference barcode.

Details

Package: DNABarcodes
Type: Package
Version: 0.1
Date: 2014-07-23
License: GPL-2

The function create.dnabarcodes creates a set of barcodes of equal length that satisfies some
wished criteria regarding error correction.

After sequencing the DNA/RNA material, the researcher will have a set of reads that start with a
(possibly mutated) barcode. For Illumina HiSeq, this is the index read. For PacBio, this is the read
itself (with some other complications). The function demultiplex can then be used to assign reads
to their original reference barcodes. demultiplex will correct mutations in a best-effort way.

Existing sets of barcodes (e.g. supplied by a manufacturer) can be analysed with functions analyse.barcodes
and barcode.set.distances.

The advantage of this package over using already available barcode sets in the scientific com-
munity is the ability to flexibly generate new barcode sets of different properties. For example,
create.dnabarcodes can use a pre-existing barcode library as a candidate set for a better barcode
set. In another example, a higher distance (e.g., dist = 4) can be used. Such a parameter setting
would possibly increase the error detection property of the code as well as the average barcode
distance, increasing the probability of guessing a barcode during demultiplexing.

Author(s)

Tilo Buschmann (tilo.buschmann.ac@gmail.com)

analyse.barcodes 3

References

Buschmann, T. and Bystrykh, L. V. (2013) Levenshtein error-correcting barcodes for multiplexed
DNA sequencing. BMC bioinformatics, 14(1), 272. Available from http://www.biomedcentral.
com/1471-2105/14/272.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. In
Soviet physics doklady (Vol. 10, p. 707).

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System technical journal,
29(2), 147-160.

Conway, J. and Sloane, N. (1986) Lexicographic codes: error-correcting codes from game theory.
Information Theory, IEEE Transactions on, 32(3), 337-348.

Pattabiraman, B., Patwary, M. M. A., Gebremedhin, A. H., Liao, W. K. and Choudhary, A. (2013)
Fast algorithms for the maximum clique problem on massive sparse graphs. In Algorithms and
Models for the Web Graph (pp. 156-169). Springer International Publishing.

Ashlock, D., Guo, L. and Qiu, F. (2002) Greedy closure evolutionary algorithms. In Computational
Intelligence, Proceedings of the World on Congress on (Vol. 2, pp. 1296-1301). IEEE.

Brouwer, A. E., Shearer, L. B. and Sloane, N. I. A. (1990) A new table of constant weight codes. In
IEEE Trans Inform Theory.

Examples

Create Sequence Levenshtein Barcodes with the default heuristic
dnabarcodes1 <- create.dnabarcodes(5, metric="seqlev")

Create Sequence Levenshtein Barcodes with a better, but slower heuristic
dnabarcodes2 <- create.dnabarcodes(5, metric="seqlev", heuristic="ashlock")

analyse.barcodes Analyse Sets of Barcode

Description

The function analyses the properties of sets of (potential) barcodes. For various metrics, minimal,
maximal and average distances are calculated and hints on error correction capabilities of the code
are given.

Usage

analyse.barcodes(barcodes, metric = c("hamming", "seqlev", "levenshtein"), cores=detectCores()/2, cost_sub = 1, cost_indel = 1)

Arguments

barcodes A vector of characters that represent the barcodes. All barcodes must be of equal
length and consist only of letters A, C, G, and T. Lower case letters are allowed
but do not make a difference.

metric A vector of one or more metric names whose distances shall be calculated for
the barcode set. Default is to use all of them.

cores The number of cores (CPUs) that will be used for parallel (openMP) calcula-
tions.

cost_sub The cost weight given to a substitution.
cost_indel The cost weight given to insertions and deletions.

http://www.biomedcentral.com/1471-2105/14/272
http://www.biomedcentral.com/1471-2105/14/272

4 barcode.set.distances

Value

A data frame of properties of the barcode set with the following meanings:

Columns: The first column contains a description of the barcode set properties. Each next column
names the metric.

Rows: "Mean Distance", "Median Distance", "Minimum Distance", "Maximum Distance", "Guar-
anteed Error Correction", "Guaranteed Error Detection"

References

Buschmann, T. and Bystrykh, L. V. (2013) Levenshtein error-correcting barcodes for multiplexed
DNA sequencing. BMC bioinformatics, 14(1), 272. Available from http://www.biomedcentral.
com/1471-2105/14/272.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. In
Soviet physics doklady (Vol. 10, p. 707).

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System technical journal,
29(2), 147-160.

See Also

barcode.set.distances

Examples

barcodes <- c("ACG", "CGT", "TGC")
analyse.barcodes(barcodes)

##
Description hamming seqlev levenshtein
Mean Distance 2.666667 1.666667 2.333333
Median Distance 3.000000 2.000000 2.000000
Minimum Distance 2.000000 1.000000 2.000000
Maximum Distance 3.000000 2.000000 3.000000
Guaranteed Error Correction 0.000000 0.000000 0.000000
Guaranteed Error Detection 1.000000 0.000000 1.000000

barcode.set.distances Calculate distances between each barcode pair of a barcode set.

Description

The function calculates the distance between each pair of a set of barcodes. The user may choose
one of several distance metrics ("hamming", "seqlev", "levenshtein")).

Usage

barcode.set.distances(barcodes, metric=c("hamming", "seqlev", "levenshtein"), cores=detectCores()/2, cost_sub = 1, cost_indel = 1)

http://www.biomedcentral.com/1471-2105/14/272
http://www.biomedcentral.com/1471-2105/14/272

create.dnabarcodes 5

Arguments

barcodes A set of barcodes (as vector of characters)

metric The distance metric which should be calculated.

cores The number of cores (CPUs) that will be used for parallel (openMP) calcula-
tions.

cost_sub The cost weight given to a substitution.

cost_indel The cost weight given to insertions and deletions.

Details

The primary purpose of this function is the analysis of barcode sets. Seeing the individual paired
barcode distances helps to understand which pairings are exceptionally similar and which barcodes
have a smaller or higher average distance to other barcodes.

Details if the distance metrics can be found in the man page of create.dnabarcodes.

Value

A symmetric Matrix of distances between each pair of barcodes with zeros on the main diagonal.

References

Buschmann, T. and Bystrykh, L. V. (2013) Levenshtein error-correcting barcodes for multiplexed
DNA sequencing. BMC bioinformatics, 14(1), 272. Available from http://www.biomedcentral.
com/1471-2105/14/272.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. In
Soviet physics doklady (Vol. 10, p. 707).

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System technical journal,
29(2), 147-160.

See Also

analyse.barcodes

Examples

barcodes <- c("AGGT", "TTCC", "CTGA", "GCAA")
barcode.set.distances(barcodes)
barcode.set.distances(barcodes,metric="seqlev")

create.dnabarcodes Create a set of DNA barcodes using one of several heuristic methods.

http://www.biomedcentral.com/1471-2105/14/272
http://www.biomedcentral.com/1471-2105/14/272

6 create.dnabarcodes

Description

Creates a DNA barcode set that has error correction and detection properties. The function uses one
of four different heuristics to generate the set (clique, conway, sampling, and ashlock) and one of
three different distance metrics between individual barcodes (hamming, seqlev, and levenshtein).

For heuristics, inexperienced users should try "conway" and then "ashlock".

The Hamming Distance (metric="hamming") allows the correction/detection of substitutions. The
Sequence Levenshtein distance (metric="seqlev") allows the correction/detection of insertions,
deletions, and substitutions in barcodes in DNA context. The Levenshtein distance should not be
used except by experienced users (see Details).

The functions create.dnabarcodes.conway, create.dnabarcodes.clique, create.dnabarcodes.sampling,
and create.dnabarcodes.ashlock provide a shortcut to generating barcode sets based on one of
the available heuristics and use better default parameters for some.

Usage

create.dnabarcodes(n, dist=3, metric=c("hamming","seqlev","levenshtein", "phaseshift"),
heuristic=c("conway", "clique", "sampling", "ashlock"),

filter.triplets=TRUE, filter.gc=TRUE, filter.self_complementary=TRUE,
pool = character(), iterations=100, population=200,
cores=detectCores()/2, use_cache = FALSE,
cost_sub = 1, cost_indel = 1)

create.dnabarcodes.conway(n, heuristic="conway", ...)

create.dnabarcodes.clique(n, heuristic="clique", ...)

create.dnabarcodes.sampling(n, heuristic="sampling", iterations=20000, ...)

create.dnabarcodes.ashlock(n, heuristic="ashlock", iterations=100, population=200, ...)

Arguments

n The length of the barcodes (should be smaller than 14). No default.

dist The minimal distance between barcodes that shall be kept. Default is 3.

metric The distance metric that is used to calculate and keep the distance between bar-
codes. Default is "hamming"

heuristic The heuristic algorithm to generate the barcode set. Available are "conway",
"clique", "sampling", and "ashlock". The default is "conway".

filter.triplets

Should sequences that contain at least three repeated equal bases (e.g., AAA,
TTT, CCC, or GGG) be filtered out?

filter.gc Should sequences that have an unbalanced ratio of bases G or C versus A or T
be filtered out?

filter.self_complementary

Should self complementary sequences be filtered out?

pool An optional set of candidate sequences for the DNA barcode sets. If no pool is
given, the maximum possible pool is generated internally in the function accord-
ing to specifications (length n, filtered based on filter.triplets, filter.gc,
filter.self_complementary). If the pool is given, only sequences from the

create.dnabarcodes 7

pool are used as possible barcodes (but still filtered according to filtering param-
eters of this function). It is save to leave this option unset.

iterations In case of heuristic = "sampling": The number of samples that are tested for
maximal size. In case of heuristic = "ashlock": The number of iterations of
the genetic algorithm that are conducted. Not used in any other case.

population Only used for heuristic = "ashlock": The number of chromosomes of the ge-
netic algorithm that are tested. Note: For heuristic = "ashlock", the number
of barcode sets that are tested is population + population/2 * (iterations-1).

cores The number of cores (CPUs) that will be used for parallel (openMP) calcula-
tions.

use_cache Shall the distances between each candidate barcode of the pool be calculated in
advance? In many cases this increases speed but needs a lot of memory. When
in doubt, set to FALSE.

cost_sub The cost weight given to a substitution.

cost_indel The cost weight given to insertions and deletions.

... Arguments passed on to create.dnabarcodes.

Details

Different heuristics produce different results in different time. New users should first try "conway"
and then "ashlock".

The heuristics "conway" and "clique" produce fast results but are not nearly as good as the heuristics
"sampling" and "ashlock". The clique heuristic is a bit slower and needs more memory than the
Conway heuristic because it first constructs a graph representation of the pool.

The heuristic "ashlock" is assumed to produce the best heuristic results after a reasonable number
of iterations with a good population size.

Distance metrics are the mathematical fairy dust that make the error correction and detection of
the barcode sets possible. Different metrics and different distances allow different error correc-
tions/detections.

A high enough Hamming Distance (metric = "hamming") allows the correction/detection of sub-
stitutions. Due to the ignorance of insertions and deletions, any changes to the length of the barcode
as well as DNA context are ignored, which makes the Hamming distance a simple choice.

A high enough Sequence Levenshtein distance (metric = "seqlev") allows the correction/detection
of insertions, deletions, and substitutions in scenarios where the barcode was attached to a DNA se-
quence. Your sequence read, coming from a Illumina, Roche, PacBio NGS machine of your choice,
should then start with that barcode, followed by the insert or an adapter or some random base calls.

A high enough Levenshtein distance (metric = "levenshtein") allows the correction/detection of
insertions, deletions, and substitutions in scenarios where the barcode was not attached anywhere,
respective where the exact outline of the barcode is known. This is as far as we know in no current
NGS technology the case. Do not use this distance metric, except you know what you are doing.

The number of error corrections/detections of the code depends of the enforced distance dist. If
all conditions are correct, a barcode set with an enforced distance dist can correct k errors, if

k ≤ floor(
dist− 1

2
)

The detection of k errors is possible, if

k ≤ dist− 1

8 create.dnabarcodes

The advantage of this function over already available barcode sets in the scientific community is the
ability to flexibly generate new barcode sets of different properties. For example, the function can
use a pre-existing barcode library as a candidate set for a better barcode set. In another example, a
higher distance (e.g., dist = 4) is used. Such a parameter setting would possibly increase the error
detection property of the code as well as the average barcode distance, increasing the probability of
guessing a barcode during demultiplexing.

The heuristics for the generation of barcodes are as follows:

The Conway heuristic (heuristic = "conway", named after John Conway) starts with an empty
set of barcodes, goes through the list of candidate barcodes (the pool) in lexicographical order and
adds each candidate barcode to the initial set if the distance if the candidate barcode to each barcode
in the intial set is at least d >= dist.

The Clique heuristic (heuristic = "conway") first generates a graph representation of the pool.
Each barcode in the pool is a node of the graph and two barcodes/nodes are connected undirection-
ally if their distance is at least d >= dist. The barcode set problem is now reduced to finding the
maximal clique in this graph. Because that problem is also computationally infeasible, we use the
heuristic clique algorithm of Pattabiraman et al.

The sampling heuristic (heuristic = "sampling") extends the principle of the Conway heuristic.
Instead of starting with an empty initial set, we generate small random sets of barcodes as initial
sets (the so called seeds). Those seeds are then "closed" using the Conway method. The size of the
seed is fixed to three barcodes. The number of random seeds is given by the parameter iterations,
hence that often a Conway closure is calculated.

Finally, the Ashlock heuristic (heuristic = "ashlock", named after Daniel Ashlock) extends the
sampling heuristic by adding an evolutionary algorithm. A population of random seeds is generated
only for the first iteration. Each seed is then closed using the Conway method. The size of the
barcode set after closure defines the fitness of that seed. For the next iteration, succesful seeds
(with a higher fitness) are cloned and slightly mutated (some barcodes in the seed are replaced with
a random new barcode). Those changed seeds are now closed again and their respective fitness
calculated. In the first iteration, as many instances of the Conway closure are calculated as there are
seeds. In the second round, only half of the seeds (the changed ones) are calculated. Therefore, the
total number of calculated Conway closures is iterations + population/2 * (iterations - 1).

Value

A vector of characters, representing the DNA barcode set.

References

Buschmann, T. and Bystrykh, L. V. (2013) Levenshtein error-correcting barcodes for multiplexed
DNA sequencing. BMC bioinformatics, 14(1), 272. Available from http://www.biomedcentral.
com/1471-2105/14/272.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. In
Soviet physics doklady (Vol. 10, p. 707).

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System technical journal,
29(2), 147-160.

Conway, J. and Sloane, N. (1986) Lexicographic codes: error-correcting codes from game theory.
Information Theory, IEEE Transactions on, 32(3), 337-348.

Pattabiraman, B., Patwary, M. M. A., Gebremedhin, A. H., Liao, W. K. and Choudhary, A. (2013)
Fast algorithms for the maximum clique problem on massive sparse graphs. In Algorithms and
Models for the Web Graph (pp. 156-169). Springer International Publishing.

http://www.biomedcentral.com/1471-2105/14/272
http://www.biomedcentral.com/1471-2105/14/272

create.pool 9

Ashlock, D., Guo, L. and Qiu, F. (2002) Greedy closure evolutionary algorithms. In Computational
Intelligence, Proceedings of the World on Congress on (Vol. 2, pp. 1296-1301). IEEE.

Brouwer, A. E., Shearer, L. B. and Sloane, N. I. A. (1990) A new table of constant weight codes. In
IEEE Trans Inform Theory.

See Also

create.pool to get the pool of barcode candidates that are used in this function internally.

Examples

Create barcodes of length 5 and minimal Hamming distance of 3:
(these barcodes can correct up to 1 substitution mutation)
create.dnabarcodes(5) # 30 barcodes
create.dnabarcodes.ashlock(5) # Up to 48 barcodes

Create barcodes of length 5 with minimal SeqLev distance of 3:
(barcodes can correct up to 1 insertion/deletion/substitution
in DNA context)
create.dnabarcodes(5, metric="seqlev") # 8 barcodes
create.dnabarcodes.ashlock(5, metric="seqlev") # Up to 13

Create Seq-Lev-barcodes without filtering
length(create.dnabarcodes.ashlock(5, metric="seqlev", filter.triplets=FALSE, filter.gc=FALSE, filter.self_complementary=FALSE)) # Up to 15

Create pool, apply additional (useless) filters, create barcode set
pool <- create.pool(5)
length(pool) # 592
pool <- pool[grep("AT",pool,invert=TRUE)]
length(pool) # 468
create.dnabarcodes(5,pool=pool)

create.pool Create a pool of barcode candidates.

Description

This function creates a vector of sequences of equal length with some filtering applied. These se-
quences function as the pool of candidate sequences from which an actual DNA barcode set may be
constructed, for example by passing the pool as a parameter to the function create.dnabarcodes.

Sequences in the pool are constructed as all possible concatenations of n bases C,G,A, and T with
some of them filtered out for various technical reasons.

Users of this package usually do not need to use this function as the function create.dnabarcodes
already creates such a pool internally. However, there are some exceptions: A) The user might want
to know the set of barcode candidates from which the final DNA barcode set was generated. B) The
user might want apply some additional filtering to the pool before constructing a DNA barcode set.

Usage

create.pool(n, filter.triplets=TRUE, filter.gc=TRUE, filter.self_complementary=TRUE, cores=detectCores()/2)

10 demultiplex

Arguments

n The length of the sequences in the pool (should be smaller than 20)

filter.triplets

Should sequences that contain at least three repeated equal bases (e.g., AAA,
TTT, CCC, or GGG) be filtered out?

filter.gc Should sequences that have an unbalanced ratio of bases G or C versus A or T
be filtered out?

filter.self_complementary

Should self complementary sequences be filtered out?

cores The number of cores (CPUs) that will be used for parallel (openMP) calcula-
tions.

Value

A vector of characters representing the pool of barcode candidates.

See Also

create.dnabarcodes

Examples

create.pool(4)
length(create.pool(5))
length(create.pool(5, filter.triplets=FALSE, filter.gc=FALSE, filter.self_complementary=FALSE))
#
#
Create pool, apply additional (useless) filters, create barcode set
pool <- create.pool(5)
length(pool) # 592
pool <- pool[grep("AT",pool,invert=TRUE)]
length(pool) # 468
create.dnabarcodes(5,pool=pool)

demultiplex Demultiplex a set of reads.

Description

The function demultiplex takes a set of reads that start with a barcode and assigns those reads to
a reference barcode while possibly correcting errors.

The correct metric should be used, with metric = "hamming" to correct substitution errors and
metric = "seqlev" to correct insertion, deletion, and substitution errors.

Usage

demultiplex(reads, barcodes, metric=c("hamming","seqlev","levenshtein","phaseshift"), cost_sub = 1, cost_indel = 1)

demultiplex 11

Arguments

reads The reads coming from your sequencing machines that start with a barcode. For
metric = "seqlev" please provide some context after the (supposed) barcode,
at least as many bases as errors that you want to correct.

barcodes The reference barcodes that you used during library preparation and that you
want to correct in your reads.

metric The distance metric to be used to assign reads to reference barcodes.

cost_sub The cost weight given to a substitution.

cost_indel The cost weight given to insertions and deletions.

Details

Reads are matched to their correct reference barcodes by calculating the distances between each
read and each reference barcode. The reference barcode with the smallest distance to the read is
assumed to be the correct original barcode of that read.

For metric = "hamming", only the first n (with n being the length of the reference barcodes) bases
of the read are used for these comparisons and no bases afterwards. Reads with fewer than n bases
cannot be matched.

For metric = "seqlev", the whole read is compared with the reference barcodes. The Sequence
Levenshtein distance was especially developed for barcodes in DNA context and can cope with
ambiguities that stem from changes to the length of the barcode.

The Levenshtein distance (metric = "levenshtein") is largely undefined in DNA context and
should be avoided. The Levenshtein distance only works if the length both of the reference bar-
code and the barcode in the read is known. With possible insertions and deletions, this becomes an
unknown. For this reason, we always calculate the Levenshtein distance between the whole read
and the whole reference barcode without coping with potential side effects.

Value

A vector of reference barcodes of the same length as the input reads. Each reference barcode is the
corrected version of the input barcode.

Note

Do not try to correct errors in barcodes that were not systematically constructed for such a correc-
tion. To create such a barcode set, have a look into function create.dnabarcodes.

See Also

create.dnabarcodes, analyse.barcodes

Examples

Define some barcodes and inserts
barcodes <- c("AGGT", "TTCC", "CTGA", "GCAA")
insert <- 'ACGCAGGTTGCATATTTTAGGAAGTGAGGAGGAGGCACGGGCTCGAGCTGCGGCTGGGTCTGGGGCGCGG'

Choose and mutate a couple of thousand barcodes
used_barcodes <- sample(barcodes,10000,replace=TRUE)
mutated_barcodes <- unlist(lapply(strsplit(used_barcodes,""), function(x) { pos <- sample(1:length(x),1); x[pos] <- sample(c("C","G","A","T"),1); return(paste(x,collapse='')) }))

show(setequal(mutated_barcodes, used_barcodes)) # FALSE

12 distance

Construct reads (= barcodes + insert)
reads <- paste(mutated_barcodes, insert, sep='')

Demultiplex
demultiplexed <- demultiplex(reads,barcodes,metric="hamming")

Show correctness
show(setequal(demultiplexed, used_barcodes)) # TRUE

distance Calculate distance between two barcodes.

Description

The function calculates the distance between two barcodes. The user may choose one of several
distance metrics ("hamming", "seqlev", "levenshtein", "phaseshift").

Usage

distance(sequence1, sequence2, metric=c("hamming","seqlev","levenshtein", "phaseshift"), cost_sub=1, cost_indel=1)

Arguments

sequence1 The first sequence (a string)

sequence2 The second sequence (a string)

metric The distance metric which should be calculated.

cost_sub The cost weight given to a substitution.

cost_indel The cost weight given to insertions and deletions.

Value

The distance between the two sequences.

References

Buschmann, T. and Bystrykh, L. V. (2013) Levenshtein error-correcting barcodes for multiplexed
DNA sequencing. BMC bioinformatics, 14(1), 272. Available from http://www.biomedcentral.
com/1471-2105/14/272.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. In
Soviet physics doklady (Vol. 10, p. 707).

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System technical journal,
29(2), 147-160.

Examples

distance("AGGT", "TTCC")
distance("AGGT", "TTCC", metric="seqlev")

http://www.biomedcentral.com/1471-2105/14/272
http://www.biomedcentral.com/1471-2105/14/272

mutatedReads 13

mutatedReads Mock Set of Mutated Reads

Description

The mock set of mutated reads consists of DNA barcodes from the supplierSet dataset concate-
nated with random DNA bases. Each read has been mutated to a certain degree (i.e., single bases
have been substituted).

The set is only intended for the man page examples.

Format

A character vector of 10,000 DNA sequences.

supplierSet Mock Set of DNA Barcodes

Description

The mock set of DNA barcodes represents a set that could come from any sample tag or index
supplier. The set has a minimum Hamming distance of 3 and therefore allows the correction of a
single substitution.

The set is only intended for the manual examples and should not be used in real experiments.

Format

A character vector of 48 DNA barcodes.

Index

∗ DNA Barcodes
DNABarcodes-package, 2

∗ Demultiplexing
DNABarcodes-package, 2

∗ Error Correction
DNABarcodes-package, 2

∗ Hamming Distance
DNABarcodes-package, 2

∗ Levenshtein Distance
DNABarcodes-package, 2

∗ Multiplexing
DNABarcodes-package, 2

∗ Next Generation Sequencing
DNABarcodes-package, 2

∗ Sample Tags
DNABarcodes-package, 2

∗ datasets
mutatedReads, 13
supplierSet, 13

analyse.barcodes, 2, 3, 5, 11

barcode.set.distances, 2, 4, 4

create.dnabarcodes, 2, 5, 5, 9–11
create.pool, 9, 9

demultiplex, 2, 10
distance, 12
DNABarcodes (DNABarcodes-package), 2
DNABarcodes-package, 2

mutatedReads, 13

supplierSet, 13

14

	DNABarcodes-package
	analyse.barcodes
	barcode.set.distances
	create.dnabarcodes
	create.pool
	demultiplex
	distance
	mutatedReads
	supplierSet
	Index

