Package ‘DEP’

January 19, 2026
Title Differential Enrichment analysis of Proteomics data
Version 1.32.0

Description This package provides an integrated analysis workflow for robust
and reproducible analysis of mass spectrometry proteomics data for
differential protein expression or differential enrichment.

It requires tabular input (e.g. txt files) as generated by

quantitative analysis softwares of raw mass spectrometry data,

such as MaxQuant or IsobarQuant. Functions are provided for

data preparation, filtering, variance normalization and

imputation of missing values, as well as statistical testing of
differentially enriched / expressed proteins. It also includes tools to
check intermediate steps in the workflow, such as normalization and
missing values imputation. Finally, visualization tools are provided
to explore the results, including heatmap, volcano plot and barplot
representations. For scientists with limited experience in R,

the package also contains wrapper functions that entail the complete
analysis workflow and generate a report. Even easier to use are the
interactive Shiny apps that are provided by the package.

License Artistic-2.0
Depends R (>=3.5)
Encoding UTF-8
LazyData true

Imports ggplot2, dplyr, purrr, readr, tibble, tidyr,
SummarizedExperiment (>= 1.11.5), MSnbase, limma, vsn, fdrtool,
ggrepel, ComplexHeatmap, RColorBrewer, circlize, shiny,
shinydashboard, DT, rmarkdown, assertthat, gridExtra, grid,
stats, imputeLCMD, cluster

RoxygenNote 7.3.2
Suggests testthat, enrichR, knitr, BiocStyle

biocViews ImmunoOncology, Proteomics, MassSpectrometry,
DifferentialExpression, DataRepresentation

VignetteBuilder knitr

PackageStatus Deprecated

git_url https://git.bioconductor.org/packages/DEP
git_branch RELEASE_3_22

git_last commit 251eef4

2 Contents

git_last_commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2026-01-19

Author Arne Smits [cre, aut],
Wolfgang Huber [aut]

Maintainer Arne Smits <smits.arne@gmail.com>

Contents
add_rejectionso e e e e e e e 3
analyze_dep 4
DEP . . . e e e e 5
DiUbi e 7
DiUbi_ExpDesign. e 8
filter_missval e e e e e e e 9
filter_proteins e 9
get_df long e 10
get df_wide 11
get_prefiX 12
get_results L e e e 13
get_suffix 14
import_IsobarQuant e 14
import_MaxQuant. e 15
IMPULE o o o e e 16
LEQ e e 17
make SE e e 19
Make _SE_PAISE v i e e e e e e e e e e e e e e e e e 19
make _unique L. e e e e 20
manual_impute e e 21
meanSdPIot L e e e 22
normalize VSN e e 23
plot_all e e e e 24
plot_cond e e 25
plot_cond_freq 26
plot_cond_overlap L e 27
pPlot_cor 28
PIOL_COVETAgE o o o e e e e e e e e e e e 29
plot_detect. e e e e 30
plot_dist 30
plot_frequency e 32
plot_gsea 32
plot_heatmap e e e e e 34
plot_imputation L. e e e e e 35
plot_missval 36
plot_normalization e 37
plot_numbers 38
PlOt_pCca o e e e e 38
plot_p_hist 40
plot_single 41

plot_volcano e e e 42

add_rejections

PIOCESS © o v v v e e e i e e e e e e e e e e
TEPOIE . . v v it e e e e e e e e e e

(eSt_gS@a e e e e e e e
theme DEP1 e
theme DEP2 e

UbiLength e
UbiLength_ExpDesign e

Index

add_rejections Mark significant proteins

Description

add_rejections marks significant proteins based on defined cutoffs.

Usage
add_rejections(diff, alpha = .05, 1fc = 1)

Arguments
diff SummarizedExperiment, Proteomics dataset on which differential enrichment
analysis has been performed (output from test_diff()).
alpha Numeric(1), Sets the threshold for the adjusted P value.
1fc Numeric(1), Sets the threshold for the log2 fold change.
Value

A SummarizedExperiment object annotated with logical columns indicating significant proteins.

Examples

Load example

data <- UbilLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, g = 0.01)

4 analyze_dep

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1lfc = 1)

analyze_dep Differential expression analysis

Description

analyze_dep tests for differential expression of proteins based on protein-wise linear models and
empirical Bayes statistics using limma.

Usage

analyze_dep(
se,
type = c("all”, "control”, "manual"),
control = NULL,

alpha = 0.05,
1fc =1,
test = NULL,
design_formula = formula(~@ + condition)
)
Arguments
se SummarizedExperiment, Proteomics data with unique names and identifiers an-
notated in name’ and 'ID’ columns. Additionally, the colData should contain
sample annotation including ’label’, ’condition’ and ’replicate’ columns. The
appropriate columns and objects can be generated using make_se or make_se_parse.
type "all", "control" or "manual", The type of contrasts that will be tested. This can
be all possible pairwise comparisons ("all"), limited to the comparisons versus
the control ("control"), or manually defined contrasts ("manual").
control Character(1), The condition to which contrasts are generated (a control condi-
tion would be most appropriate).
alpha Numeric(1), Sets the threshold for the adjusted P value.
1fc Numeric(1), Sets the threshold for the log2 fold change.
test Character, The contrasts that will be tested if type = "manual”. These should

be formatted as "SampleA_vs_SampleB" or c¢("SampleA_vs_SampleC", "Sam-
pleB_vs_SampleC").

design_formula Formula, Used to create the design matrix.

Value

A SummarizedExperiment object containing FDR estimates of differential expression and logical
columns indicating significant proteins.

DEP 5

Examples

Load datasets
data <- UbiLength
exp_design <- UbiLength_ExpDesign

Import and process data
se <- import_MaxQuant(data, exp_design)
processed <- process(se)

Differential protein expression analysis
dep <- analyze_dep(processed, "control”, "Ctrl")
dep <- analyze_dep(processed, "control”, "Ctrl”,
alpha = 0.01, 1fc = log2(1.5))
dep <- analyze_dep(processed, "manual”, test = c("Ubi6_vs_Ubi4"))

DEP DEP: A package for Differential Enrichment analysis of Proteomics
data.

Description

This package provides an integrated analysis workflow for robust and reproducible analysis of mass
spectrometry proteomics data for differential protein expression or differential enrichment. It re-
quires tabular input (e.g. txt files) as generated by quantitative analysis softwares of raw mass
spectrometry data, such as MaxQuant or IsobarQuant. Functions are provided for data preparation,
filtering, variance normalization and imputation of missing values, as well as statistical testing of
differentially enriched / expressed proteins. It also includes tools to check intermediate steps in
the workflow, such as normalization and missing values imputation. Finally, visualization tools are
provided to explore the results, including heatmap, volcano plot and barplot representations. For
scientists with limited experience in R, the package also entails wrapper functions that entail the
complete analysis workflow and generate a report. Even easier to use are the interactive Shiny apps
that are provided by the package.

Shiny apps

e run_app: Shiny apps for interactive analysis.

Workflow functions

* LFQ: Label-free quantification (LFQ) workflow wrapper.
e TMT: Tandem-mass-tags (TMT) workflow wrapper.

* report: Create a rmarkdown report wrapper.

Wrapper functions

e import_MaxQuant: Import data from MaxQuant into a SummarizedExperiment object.

* import_IsobarQuant: Import data from IsobarQuant into a SummarizedExperiment object.
* process: Perform filtering, normalization and imputation on protein data.

* analyze_dep: Differential protein expression analysis.

* plot_all: Visualize the results in different types of plots.

http://www.nature.com/nbt/journal/v26/n12/full/nbt.1511.html
http://www.nature.com/nprot/journal/v10/n10/full/nprot.2015.101.html

DEP

Main functions

make_unique: Generate unique names.

make_se_parse: Turn data.frame into SummarizedExperiment by parsing column names.
make_se: Turn data.frame into SummarizedExperiment using an experimental design.
filter_proteins: Filter proteins based on missing values.

normalize_vsn: Normalize data using vsn.

impute: Impute missing values.

test_diff: Differential enrichment analysis.

add_rejections: Mark significant proteins.

get_results: Generate a results table.

Visualization functions

plot_single: Barplot for a protein of interest.

plot_volcano: Volcano plot for a specified contrast.

plot_heatmap: Heatmap of all significant proteins.

plot_normalization: Boxplots to inspect normalization.

plot_detect: Density and CumSum plots of proteins with and without missing values.
plot_imputation: Density plots to inspect imputation.

plot_missval: Heatmap to inspect missing values.

plot_numbers: Barplot of proteins identified.

plot_frequency: Barplot of protein identification overlap between conditions.
plot_coverage: Barplot of the protein coverage in conditions.

plot_pca: PCA plot of top variable proteins.

plot_cor: Plot correlation matrix.

plot_cor: Plot Gower’s distance matrix.

plot_p_hist: P value histogram.

plot_cond_freq: Barplot of the number of significant conditions per protein.
plot_cond_overlap: Barplot of the number of proteins for overlapping conditions.

plot_cond: Barplot of the frequency of significant conditions per protein and the overlap in
proteins between conditions.

Gene Set Enrichment Analysis functions

test_gsea: Gene Set Enrichment Analysis using enrichR.

plot_gsea: Barplot of enriched gene sets.

Additional functions

get_df_wide: Generate a wide data.frame from a SummarizedExperiment.
get_df_long: Generate a long data.frame from a SummarizedExperiment.

se2msn: SummarizedExperiment object to MSnSet object conversion.
filter_missval: Filter on missing values.

manual_impute: Imputation by random draws from a manually defined distribution.
get_prefix: Obtain the longest common prefix.

get_suffix: Obtain the longest common suffix.

DiUbi 7

Example data

e UbilLength: Ubiquitin interactors of different linear ubiquitin lengths (UbIA-MS dataset)
(Zhang, Smits, van Tilburg et al. Mol. Cell 2017).

* UbiLength_ExpDesign: Experimental design of the UbiLength dataset.

* DiUbi: Ubiquitin interactors for different diubiquitin-linkages (UbIA-MS dataset) (Zhang,
Smits, van Tilburg et al. Mol. Cell 2017).

* DiUbi_ExpDesign: Experimental design of the DiUbi dataset.

Author(s)

Maintainer: Arne Smits <smits.arne@gmail.com>
Authors:

* Wolfgang Huber <wolfgang.huber@embl.de>

DiUbi DiUbi - Ubiquitin interactors for different diubiquitin-linkages (UbIA-
MS dataset)

Description

The DiUbi dataset contains label free quantification (LFQ) and intensity-based absolute quantifica-
tion (iBAQ) data for ubiquitin interactors of different diubiquitin-linkages, generated by Zhang et
al 2017. The dataset contains the proteingroups output file from MaxQuant.

Usage
DiUbi

Format
A data.frame with 4071 observations and 102 variables:

Protein.IDs Uniprot IDs

Majority.protein.IDs Uniprot IDs of major protein(s) in the protein group
Protein.names Full protein names

Gene.names Gene name

Fasta.headers Header as present in the Uniprot fasta file

Peptides Number of peptides identified for this protein group

Razor...unique.peptides Number of peptides used for the quantification of this protein group
Unique.peptides Number of peptides identified which are unique for this protein group
Intensity columns (30) Raw mass spectrometry intensity, A.U.

iBAQ columns (30) iBAQ normalized mass spectrometry intensity, A.U.

LFQ.intensity columns (30) LFQ normalized mass spectrometry intensity, A.U.
Only.identified.by.site The protein is only identified by a modification site if marked ("+’)
Reverse The protein is identified in the decoy database if marked ("+’)
Potential.contaminant The protein is a known contaminant if marked ("+")

id The protein group ID

http://www.maxquant.org

8 DiUbi_ExpDesign

Value

A data.frame.

Source

Zhang, Smits, van Tilburg, et al (2017). An interaction landscape of ubiquitin signaling. Molecular
Cell 65(5): 941-955. doi: 10.1016/j.molcel.2017.01.004.

DiUbi_ExpDesign Experimental design of the DiUbi dataset

Description

The DiUbi_ExpDesign object annotates 30 different samples of the DiUbi dataset in 10 conditions
and 3 replicates.

Usage

DiUbi_ExpDesign

Format

A data.frame with 30 observations and 3 variables:

label Label names
condition Experimental conditions

replicate Replicate number

Value

A data.frame.

Source

Zhang, Smits, van Tilburg, et al (2017). An interaction landscape of ubiquitin signaling. Molecular
Cell 65(5): 941-955. doi: 10.1016/j.molcel.2017.01.004.

http://www.cell.com/molecular-cell/fulltext/S1097-2765(17)30004-7
http://www.cell.com/molecular-cell/fulltext/S1097-2765(17)30004-7

filter_missval 9

filter_missval Filter on missing values

Description
filter_missval filters a proteomics dataset based on missing values. The dataset is filtered for
proteins that have a maximum of ’thr’ missing values in at least one condition.

Usage

filter_missval(se, thr = 0)

Arguments
se SummarizedExperiment, Proteomics data (output from make_se () or make_se_parse()).
thr Integer(1), Sets the threshold for the allowed number of missing values in at
least one condition.
Value

A filtered SummarizedExperiment object.

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names", "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter
stringent_filter <- filter_missval(se, thr = 0)
less_stringent_filter <- filter_missval(se, thr = 1)

filter_proteins Filter proteins based on missing values

Description

filter_proteins filters a proteomic dataset based on missing values. Different types of filtering
can be applied, which range from only keeping proteins without missing values to keeping proteins
with a certain percent valid values in all samples or keeping proteins that are complete in at least
one condition.

10 get_df long

Usage
filter_proteins(
se,
type = c("complete”, "condition”, "fraction"),
thr = NULL,
min = NULL
)
Arguments
se SummarizedExperiment, Proteomics data (output from make_se () or make_se_parse()).
type "complete”, "condition" or "fraction”, Sets the type of filtering applied. "com-
plete" will only keep proteins with valid values in all samples. "condition" will
keep proteins that have a maximum of ’thr’ missing values in at least one condi-
tion. "fraction" will keep proteins that have a certain fraction of valid values in
all samples.
thr Integer(1), Sets the threshold for the allowed number of missing values in at
least one condition if type = "condition".
min Numeric(1), Sets the threshold for the minimum fraction of valid values allowed
for any protein if type = "fraction".
Value

A filtered SummarizedExperiment object.

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter
stringent_filter <- filter_proteins(se, type = "complete”)
less_stringent_filter <- filter_proteins(se, type = "condition”, thr = @)
get_df_long Generate a long data.frame from a SummarizedExperiment
Description

get_df_long generate a wide data.frame from a SummarizedExperiment.

Usage
get_df_long(se)

get_df_wide 11

Arguments

se SummarizedExperiment, Proteomics data (output from make_se () or make_se_parse()).

Value

A data.frame object containing all data in a wide format, where each row represents a single mea-
surement.

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs", delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbilLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb"”, q = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1lfc = 1)

Get a long data.frame
long <- get_df_long(dep)
colnames(long)

get_df_wide Generate a wide data.frame from a SummarizedExperiment

Description

get_df_wide generate a wide data.frame from a SummarizedExperiment.

Usage

get_df_wide(se)

Arguments

se SummarizedExperiment, Proteomics data (output from make_se () or make_se_parse()).

Value

A data.frame object containing all data in a wide format, where each row represents a protein.

12 get_prefix

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs", delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbilLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb"”, q = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1lfc = 1)

Get a wide data.frame
wide <- get_df_wide(dep)
colnames(wide)

get_prefix Obtain the longest common prefix

Description

get_prefix returns the longest common prefix of the supplied words.

Usage

get_prefix(words)

Arguments

words Character vector, A list of words.

Value

A character vector containing the prefix.

Examples

Load example
data <- UbilLength
columns <- grep("LFQ.", colnames(data))

Get prefix
names <- colnames(data[, columns])
get_prefix(names)

get_results 13

get_results Generate a results table

Description
get_results generates a results table from a proteomics dataset on which differential enrichment
analysis was performed.

Usage

get_results(dep)

Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff () and add_rejections()).
Value

A data.frame object containing all results variables from the performed analysis.

Examples

Load example

data <- UbilLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, g = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1lfc = 1)

Get results
results <- get_results(dep)
colnames(results)

significant_proteins <- results[results$significant,]
nrow(significant_proteins)
head(significant_proteins)

14

import_IsobarQuant

get_suffix Obtain the longest common suffix

Description

get_suffix returns the longest common suffix of the supplied words.

Usage

get_suffix(words)

Arguments

words Character vector, A list of words.

Value

A character vector containing the suffix

Examples

Get suffix
names <- c("xyz_rep"”, "abc_rep")
get_suffix(names)

import_IsobarQuant Import from IsobarQuant

Description

import_IsobarQuant imports a protein table from IsobarQuant and converts it into a Summarized-

Experiment object.

Usage
import_IsobarQuant(
proteins,
expdesign,
intensities = "signal_sum”,
names = "gene_name",
ids = "protein_id",
delim = "[|]1"

import_MaxQuant

Arguments

proteins

expdesign

intensities
names
ids

delim

Value

15

Data.frame, Protein table for which unique names will be created.

Data.frame, Experimental design with ’label’, *condition’ and ’replicate’ infor-
mation. See UbilLength_ExpDesign for an example experimental design.

Character(1), Prefix of the columns containing sample intensities.
Character(1), Name of the column containing feature names.
Character(1), Name of the column containing feature IDs.

Character(1), Sets the delimiter separating the feature names within on protein
group.

A SummarizedExperiment object with log2-transformed values and "name" and "ID" columns con-
taining unique names and identifiers.

Examples

Not run:
Load data

isobarquant_table <- read.csv("testfile.txt"”, header = TRUE,

stringsAsFactors = FALSE, sep = "\t")

exp_design <- read.csv("test_experimental_design.txt"”, header = TRUE,

Import data

stringsAsFactors = FALSE, sep = "\t")

se <- import_IsobarQuant(isabarquant_table, exp_design)

End(Not run)

import_MaxQuant

Import from MaxQuant

Description

import_MaxQuant imports a protein table from MaxQuant and converts it into a SummarizedEx-

periment object.

Usage
import_MaxQuant(
proteins,
expdesign,
filter = c("Reverse”, "Potential.contaminant”),
intensities = "LFQ",
names = "Gene.names"”,
ids = "Protein.IDs",
delim = ";"

16 impute

Arguments
proteins Data.frame, Protein table originating from MaxQuant.
expdesign Data.frame, Experimental design with ’label’, *condition’ and ’replicate’ infor-
mation. See UbilLength_ExpDesign for an example experimental design.
filter Character, Name of the column(s) containing features to be filtered on.
intensities Character(1), Prefix of the columns containing sample intensities.
names Character(1), Name of the column containing feature names.
ids Character(1), Name of the column containing feature IDs.
delim Character(1), Sets the delimiter separating the feature names within on protein
group.
Value

A SummarizedExperiment object with log2-transformed values and "name" and "ID" columns con-
taining unique names and identifiers.

Examples

Load example data and experimental design
data <- UbiLength
exp_design <- UbiLength_ExpDesign

Import data
se <- import_MaxQuant(data, exp_design)

impute Impute missing values

Description

impute imputes missing values in a proteomics dataset.

Usage
impute(
se,
fun = c("bpca”, "knn”, "QRILC", "MLE", "MinDet"”, "MinProb”, "man"”, "min", "zero",
"mixed”, "nbavg"),
)
Arguments
se SummarizedExperiment, Proteomics data (output from make_se () or make_se_parse()).
It is adviced to first remove proteins with too many missing values using filter_missval()
and normalize the data using normalize_vsn().
fun "bpca", "knn", "QRILC", "MLE", "MinDet", "MinProb", "man", "min", "zero",
"mixed" or "nbavg", Function used for data imputation based on manual_impute
and impute.

Additional arguments for imputation functions as depicted in manual_impute
and impute.

LFQ

Value

An imputed SummarizedExperiment object.

Examples

Load example
data <- UbiLength
data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]

’
data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs", delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbilLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter and normalize
filt <- filter_missval(se, thr = 0)
norm <- normalize_vsn(filt)

Impute missing values using different functions
imputed_MinProb <- impute(norm, fun = "MinProb”, q = 0.05)
imputed_QRILC <- impute(norm, fun = "QRILC")

imputed_knn <- impute(norm, fun = "knn", k = 10, rowmax = 0.9)
imputed_MLE <- impute(norm, fun = "MLE")

17

imputed_manual <- impute(norm, fun = "man”, shift = 1.8, scale = 0.3)
LFQ LFQ workflow
Description

LFQ is a wrapper function running the entire differential enrichment/expression analysis workflow
for label free quantification (LFQ)-based proteomics data. The protein table from MaxQuant is used

as direct input.

Usage
LFQ(

proteins,

expdesign,

fun = ¢("man”, "bpca”, "knn", "QRILC", "MLE", "MinDet”, "MinProb",
"mixed”, "nbavg"),

type = c("all”, "control”, "manual"),

control = NULL,

test = NULL,

filter = c("Reverse”, "Potential.contaminant”),
name = "Gene.names”,

ids = "Protein.IDs",

alpha = 0.05,

1fc =1

"o

min

n

n n
, "zero",

http://www.nature.com/nbt/journal/v26/n12/full/nbt.1511.html

18

Arguments
proteins
expdesign

fun

type

control

test

filter
name
ids
alpha
1fc

Value

A list of 9 objects:

data

se

filt
norm
imputed
diff

dep

results

param

Examples

data <- UbiLength
expdesign <- UbilL
results <- LFQ(da

LFQ

Data.frame, The data object.
Data.frame, The experimental design object.

Hman"’ llbpcall, llknnﬂ, IIQRILC"’ IIMLE”’ "MinDet"’ "MinPrOb”’ ||minll’ "Zero”,
"mixed" or "nbavg", Function used for data imputation based on manual_impute
and impute.

"all’, *control’ or "'manual’, The type of contrasts that will be generated.

Character(1), The sample name to which the contrasts are generated (the control
sample would be most appropriate).

Character, The contrasts that will be tested if type = "manual”. These should
be formatted as "SampleA_vs_SampleB" or c("SampleA_vs_SampleC", "Sam-
pleB_vs_SampleC").

Character, Name(s) of the column(s) to be filtered on.
Character(1), Name of the column representing gene names.
’Character(1), Name of the column representing protein IDs.
Numeric(1), sets the false discovery rate threshold.

Numeric(1), sets the log fold change threshold.

data.frame containing the original data
SummarizedExperiment object containing the original data
SummarizedExperiment object containing the filtered data
SummarizedExperiment object containing the normalized data
SummarizedExperiment object containing the imputed data

SummarizedExperiment object containing FDR estimates of differential expres-
sion

SummarizedExperiment object annotated with logical columns indicating sig-
nificant proteins

data.frame containing containing all results variables from the performed anal-
ysis

data.frame containing the test parameters

ength_ExpDesign
ta, expdesign, 'MinProb', 'control', 'Ctrl')

make_se 19

make_se Data.frame to SummarizedExperiment object conversion using an ex-
perimental design

Description

make_se creates a SummarizedExperiment object based on two data.frames: the protein table and
experimental design.

Usage

make_se(proteins_unique, columns, expdesign)

Arguments

proteins_unique
Data.frame, Protein table with unique names annotated in the 'name’ column
(output from make_unique()).

columns Integer vector, Column numbers indicating the columns containing the assay
data.
expdesign Data.frame, Experimental design with ’label’, ’condition’ and ’replicate’ infor-

mation. See UbilLength_ExpDesign for an example experimental design.

Value

A SummarizedExperiment object with log2-transformed values.

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

make_se_parse Data.frame to SummarizedExperiment object conversion using pars-
ing from column names

Description

make_se_parse creates a SummarizedExperiment object based on a single data.frame.

20 make_unique

Usage

make_se_parse(
proteins_unique,

columns,
mode = c("char”, "delim"),
chars = 1,
sep = n n
)
Arguments

proteins_unique
Data.frame, Protein table with unique names annotated in the 'name’ column
(output from make_unique()).

columns Integer vector, Column numbers indicating the columns containing the assay
data.
mode "char" or "delim", The mode of parsing the column headers. "char" will parse

the last number of characters as replicate number and requires the ’chars’ pa-
rameter. "delim" will parse on the separator and requires the ’sep’ parameter.

chars Numeric(1), The number of characters to take at the end of the column headers
as replicate number (only for mode == "char").
sep Character(1), The separator used to parse the column header (only for mode ==
"delim").
Value

A SummarizedExperiment object with log2-transformed values.

Examples

Load example

data <- UbiLength

data <- datal[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs", delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
se <- make_se_parse(data_unique, columns, mode = "char”, chars = 1)
se <- make_se_parse(data_unique, columns, mode = "delim", sep = "_")
make_unique Make unique names
Description

make_unique generates unique identifiers for a proteomics dataset based on "name" and "id" columns.

Usage

make_unique(proteins, names, ids, delim = ";")

manual_impute

Arguments

proteins
names
ids

delim

Value

21

Data.frame, Protein table for which unique names will be created.
Character(1), Name of the column containing feature names.
Character(1), Name of the column containing feature IDs.

Character(1), Sets the delimiter separating the feature names within one protein
group.

A data.frame with the additional variables "name" and "ID" containing unique names and identifiers,

respectively.

Examples

Load example
data <- UbiLength

Check colnames and pick the appropriate columns

colnames(data)

data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs", delim = ";")

manual_impute

Imputation by random draws from a manually defined distribution

Description

manual_impute imputes missing values in a proteomics dataset by random draws from a manually
defined distribution.

Usage

manual_impute(se, scale = 0.3, shift = 1.8)

Arguments

se

scale

shift

Value

SummarizedExperiment, Proteomics data (output from make_se () or make_se_parse()).
It is adviced to first remove proteins with too many missing values using filter_missval()
and normalize the data using normalize_vsn().

Numeric(1), Sets the width of the distribution relative to the standard deviation
of the original distribution.

Numeric(1), Sets the left-shift of the distribution (in standard deviations) from
the median of the original distribution.

An imputed SummarizedExperiment object.

22 meanSdPlot

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs", delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ."”, colnames(data_unique))
exp_design <- UbilLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter and normalize
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

Impute missing values manually

imputed_manual <- impute(norm, fun = "man”, shift = 1.8, scale = 0.3)
meanSdPlot Plot row standard deviations versus row means
Description

meanSdPlot generates a hexagonal heatmap of the row standard deviations versus row means from
SummarizedExperiment objects. See meanSdPlot.

Usage
meanSdPlot (
X)
ranks = TRUE,
xlab = ifelse(ranks, "rank(mean)", "mean"),
ylab = "sd",
pch,
plot = TRUE,
bins = 50,
)
Arguments
X SummarizedExperiment, Data object.
ranks Logical, Whether or not to plot the row means on the rank scale.
x1lab Character, x-axis label.
ylab Character, y-axis label.
pch Ignored - exists for backward compatibility.
plot Logical, Whether or not to produce the plot.
bins Numeric vector, Data object before normalization.

Other arguments, Passed to stat_binhex.

normalize_vsn 23

Value

A scatter plot of row standard deviations versus row means(generated by stat_binhex)

Examples

Load example
data <- UbilLength
data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]

", n

’
data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs", delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter and normalize
filt <- filter_missval(se, thr = 0)
norm <- normalize_vsn(filt)

Plot meanSdPlot
meanSdPlot (norm)

normalize_vsn Normalization using vsn

Description

normalize_vsn performs variance stabilizing transformation using the vsn-package.

Usage

normalize_vsn(se)

Arguments
se SummarizedExperiment, Proteomics data (output from make_se () or make_se_parse()).
Itis adviced to first remove proteins with too many missing values using filter_missval().
Value

A normalized SummarizedExperiment object.

Examples

Load example

data <- UbilLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+",]
data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs", delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

24 plot_all

Filter and normalize
filt <- filter_missval(se, thr = 0)
norm <- normalize_vsn(filt)

plot_all Visualize the results in different types of plots

Description

plot_all visualizes the results of the differential protein expression analysis in different types of
plots. These are (1) volcano plots, (2) heatmaps, (3) single protein plots, (4) frequency plots and/or
(5) comparison plots.

Usage

plot_all(dep, plots = c("volcano”, "heatmap”, "single"”, "freq", "comparison"))

Arguments
dep SummarizedExperiment, Data object which has been generated by analyze_dep
or the combination of test_diff and add_rejections.
plots "volcano", "heatmap", "single", "freq" and/or "comparison",
Value

Pdfs containg the desired plots.

Examples

Load datasets
data <- UbiLength
exp_design <- UbilLength_ExpDesign

Import and process data
se <- import_MaxQuant(data, exp_design)
processed <- process(se)

Differential protein expression analysis
dep <- analyze_dep(processed, "control”, "Ctrl")

Not run:
Plot all plots
plot_all(dep)

End(Not run)

plot_cond 25

plot_cond Plot frequency of significant conditions per protein and the overlap in
proteins between conditions

Description
plot_cond generates a histogram of the number of proteins per condition and stacks for overlapping
conditions.

Usage

plot_cond(dep, plot = TRUE)

Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff () and add_rejections()).
plot Logical(1), If TRUE (default) the barplot is produced. Otherwise (if FALSE), the
data which the barplot is based on are returned.
Value

A histogram (generated by ggplot)

Examples

Load example

data <- UbilLength

data <- datal[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, g = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1lfc = 1)

Plot histogram with overlaps
plot_cond(dep)

26 plot_cond_freq

plot_cond_freq Plot frequency of significant conditions per protein

Description

plot_cond_freq generates a histogram of the number of significant conditions per protein.

Usage

plot_cond_freq(dep, plot = TRUE)

Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff () and add_rejections()).
plot Logical(1), If TRUE (default) the histogram is produced. Otherwise (if FALSE),
the data which the histogram is based on are returned.
Value

A histogram (generated by ggplot)

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, gq = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

Plot frequency of significant conditions
plot_cond_freq(dep)

plot_cond_overlap 27

plot_cond_overlap Plot conditions overlap

Description

plot_cond_overlap generates a histogram of the number of proteins per condition or overlapping
conditions.

Usage

plot_cond_overlap(dep, plot = TRUE)

Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff() and add_rejections()).
plot Logical(1), If TRUE (default) the barplot is produced. Otherwise (if FALSE), the
data which the barplot is based on are returned.
Value

A histogram (generated by ggplot)

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, g = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

Plot condition overlap
plot_cond_overlap(dep)

28

plot_cor

plot_cor

Plot correlation matrix

Description

plot_cor generates a Pearson correlation matrix.

Usage
plot_cor(
dep,
significant = TRUE,
lower = -1,
upper = 1,
pal = "PRGn",
pal_rev = FALSE,
indicate = NULL,
font_size = 12,
plot = TRUE,
)
Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff() and add_rejections()).
significant Logical(1), Whether or not to filter for significant proteins.
lower Integer(1), Sets the lower limit of the color scale.
upper Integer(1), Sets the upper limit of the color scale.
pal Character(1), Sets the color panel (from RColorBrewer).
pal_rev Logical(1), Whether or not to invert the color palette.
indicate Character, Sets additional annotation on the top of the heatmap based on columns
from the experimental design (colData).
font_size Integer(1), Sets the size of the labels.
plot Logical(1), If TRUE (default) the correlation matrix plot is produced. Otherwise
(if FALSE), the data which the correlation matrix plot is based on are returned.
Additional arguments for Heatmap function as depicted in Heatmap
Value

A heatmap plot (generated by Heatmap)

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant !=

n+n’:|

data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs", delim = ";")

plot_coverage 29

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, gq = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

Plot correlation matrix
plot_cor(dep)

plot_coverage Plot protein coverage

Description

plot_coverage generates a barplot of the protein coverage in all samples.

Usage
plot_coverage(se, plot = TRUE)

Arguments
se SummarizedExperiment, Data object for which to plot observation frequency.
plot Logical(1), If TRUE (default) the barplot is produced. Otherwise (if FALSE), the
data which the barplot is based on are returned.
Value

Barplot of protein coverage in samples (generated by ggplot)

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names", "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter and plot coverage
filt <- filter_missval(se, thr = @)
plot_coverage(filt)

30 plot_dist

plot_detect Visualize intensities of proteins with missing values

Description

plot_detect generates density and CumSum plots of protein intensities with and without missing
values

Usage

plot_detect(se)

Arguments

se SummarizedExperiment, Data object with missing values.

Value

Density and CumSum plots of intensities of proteins with and without missing values (generated by
ggplot).

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter
filt <- filter_missval(se, thr = 0)

Plot intensities of proteins with missing values
plot_detect(filt)

plot_dist Plot Gower’s distance matrix

Description

plot_dist generates a distance matrix heatmap using the Gower’s distance.

plot_dist 31
Usage
plot_dist(
dep,
significant = TRUE,
pal = "Y10rRd",
pal_rev = TRUE,
indicate = NULL,
font_size = 12,
plot = TRUE,
)
Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff () and add_rejections()).
significant Logical(1), Whether or not to filter for significant proteins.
pal Character(1), Sets the color panel (from RColorBrewer).
pal_rev Logical(1), Whether or not to invert the color palette.
indicate Character, Sets additional annotation on the top of the heatmap based on columns
from the experimental design (colData).
font_size Integer(1), Sets the size of the labels.
plot Logical(1), If TRUE (default) the distance matrix plot is produced. Otherwise (if
FALSE), the data which the distance matrix plot is based on are returned.
Additional arguments for Heatmap function as depicted in Heatmap
Value

A heatmap plot (generated by Heatmap)

Examples

Load example

data <- UbiLength

data <- datal[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, g = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

Plot correlation matrix
plot_dist(dep)

32 plot_gsea

plot_frequency Plot protein overlap between samples

Description

plot_frequency generates a barplot of the protein overlap between samples

Usage

plot_frequency(se, plot = TRUE)

Arguments
se SummarizedExperiment, Data object for which to plot observation frequency.
plot Logical(1), If TRUE (default) the barplot is produced. Otherwise (if FALSE), the
data which the barplot is based on are returned.
Value

Barplot of overlap of protein identifications between samples (generated by ggplot)

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter and plot frequency
filt <- filter_missval(se, thr = 0)
plot_frequency(filt)

plot_gsea Plot enriched Gene Sets

Description

plot_gsea plots enriched gene sets from Gene Set Enrichment Analysis.

plot_gsea 33

Usage

plot_gsea(
gsea_results,
number = 10,

alpha = 0.05,
contrasts = NULL,
databases = NULL,
nrow = 1,
term_size = 8
)
Arguments

gsea_results Data.frame, Gene Set Enrichment Analysis results object. (output from test_gsea()).

number Numeric(1), Sets the number of enriched terms per contrast to be plotted.

alpha Numeric(1), Sets the threshold for the adjusted P value.

contrasts Character, Specifies the contrast(s) to plot. If 'NULL’ all contrasts will be plot-
ted.

databases Character, Specifies the database(s) to plot. If "NULL’ all databases will be
plotted.

nrow Numeric(1), Sets the number of rows for the plot.

term_size Numeric(1), Sets the text size of the terms.

Value

A barplot of the enriched terms (generated by ggplot).

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, q = 0.01)

Test for differentially expressed proteins
diff <- diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

Not run:
Test enrichments

gsea_results <- test_gsea(dep)
plot_gsea(gsea_results)

34 plot_heatmap

End(Not run)

plot_heatmap Plot a heatmap

Description

plot_heatmap generates a heatmap of all significant proteins.

Usage

plot_heatmap(
dep,
type = c("contrast”, "centered"),
kmeans = FALSE,
k =6,
col_limit = 6,
indicate = NULL,
clustering_distance = c("euclidean”, "maximum”, "manhattan”, "canberra”, "binary"”,
"minkowski”, "pearson”, "spearman", "kendall”, "gower"),
row_font_size = 6,
col_font_size = 10,

plot = TRUE,
)
Arguments

dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff () and add_rejections()).

type “contrast’ or "centered’, The type of data scaling used for plotting. Either the
fold change ("contrast’) or the centered log2-intensity (’centered’).

kmeans Logical(1), Whether or not to perform k-means clustering.

k Integer(1), Sets the number of k-means clusters.

col_limit Integer(1), Sets the outer limits of the color scale.

indicate Character, Sets additional annotation on the top of the heatmap based on columns

from the experimental design (colData). Only applicable to type = ’centered’.
clustering_distance
"euclidean", "maximum", "manhattan”, "canberra", "binary", "minkowski", "pear-

son", "spearman", "kendall" or "gower", Function used to calculate clustering
distance (for proteins and samples). Based on Heatmap and daisy.
row_font_size Integer(l), Sets the size of row labels.
col_font_size Integer(l), Sets the size of column labels.

plot Logical(1), If TRUE (default) the heatmap is produced. Otherwise (if FALSE), the
data which the heatmap is based on are returned.

Additional arguments for Heatmap function as depicted in Heatmap

plot_imputation 35

Value

A heatmap (generated by Heatmap)

Examples

Load example

data <- UbilLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, q = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

Plot heatmap

plot_heatmap(dep)

plot_heatmap(dep, 'centered', kmeans = TRUE, k = 6, row_font_size = 3)
plot_heatmap(dep, 'contrast', col_limit = 10, row_font_size = 3)

plot_imputation Visualize imputation

Description

plot_imputation generates density plots of all conditions for input objects, e.g. before and after

imputation.
Usage
plot_imputation(se, ...)
Arguments
se SummarizedExperiment, Data object, e.g. before imputation (output from normalize_vsn()).
Other SummarizedExperiment object(s), E.g. data object after imputation (out-
put from impute()).
Value

Density plots of all conditions of all conditions for input objects, e.g. before and after imputation
(generated by ggplot).

36 plot_missval

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names", "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, q = 0.01)

Plot imputation
plot_imputation(filt, norm, imputed)

plot_missval Plot a heatmap of proteins with missing values

Description
plot_missval generates a heatmap of proteins with missing values to discover whether values are
missing by random or not.

Usage

plot_missval(se)

Arguments

se SummarizedExperiment, Data object with missing values.

Value

A heatmap indicating whether values are missing (0) or not (1) (generated by Heatmap).

Examples

Load example

data <- UbilLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+",]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

plot_normalization 37

Plot missing values heatmap
plot_missval(filt)

plot_normalization Visualize normalization

Description

plot_normalization generates boxplots of all conditions for input objects, e.g. before and after

normalization.
Usage
plot_normalization(se, ...)
Arguments
se SummarizedExperiment, Data object, e.g. before normalization (output from
make_se() or make_se_parse()).
Additional SummarizedExperiment object(s), E.g. data object after normaliza-
tion (output from normalize_vsn).
Value

Boxplots of all conditions for input objects, e.g. before and after normalization (generated by
ggplot). Adding components and other plot adjustments can be easily done using the ggplot2
syntax (i.e. using ’+’)

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names"”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter and normalize
filt <- filter_missval(se, thr = 0)
norm <- normalize_vsn(filt)

Plot normalization
plot_normalization(se, filt, norm)

38 plot_pca

plot_numbers Plot protein numbers

Description

plot_numbers generates a barplot of the number of identified proteins per sample.

Usage

plot_numbers(se, plot = TRUE)

Arguments
se SummarizedExperiment, Data object for which to plot protein numbers (output
from make_se () or make_se_parse()).
plot Logical(1), If TRUE (default) the barplot is produced. Otherwise (if FALSE), the
data which the barplot is based on are returned.
Value

Barplot of the number of identified proteins per sample (generated by ggplot)

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter and plot numbers
filt <- filter_missval(se, thr = 0)
plot_numbers(filt)

plot_pca Plot PCA

Description

plot_pca generates a PCA plot using the top variable proteins.

plot_pca 39

Usage
plot_pca(
dep,
x =1,
y =2,
indicate = c("condition”, "replicate”),
label = FALSE,
n = 500,
point_size = 4,
label_size = 3,
plot = TRUE
)
Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff() and add_rejections()).
X Integer(1), Sets the principle component to plot on the x-axis.
y Integer(1), Sets the principle component to plot on the y-axis.
indicate Character, Sets the color, shape and facet_wrap of the plot based on columns
from the experimental design (colData).
label Logical, Whether or not to add sample labels.
n Integer(1), Sets the number of top variable proteins to consider.
point_size Integer(1), Sets the size of the points.
label_size Integer(1), Sets the size of the labels.
plot Logical(1), If TRUE (default) the PCA plot is produced. Otherwise (if FALSE),
the data which the PCA plot is based on are returned.
Value

A scatter plot (generated by ggplot).

Examples

Load example

data <- UbilLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, q = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

40 plot_p_hist
Plot PCA
plot_pca(dep)
plot_pca(dep, indicate = "condition")
plot_p_hist Plot a P value histogram
Description
plot_p_hist generates a p value histogram.
Usage
plot_p_hist(dep, adjusted = FALSE, wrap = FALSE)
Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff() and add_rejections()).
adjusted Logical(1), Whether or not to use adjusted p values.
wrap Logical(1), Whether or not to display different histograms for the different con-
trasts.
Value

A histogram (generated by ggplot).

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, gq = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

Plot p value histogram
plot_p_hist(dep)
plot_p_hist(dep, wrap = TRUE)

plot_single 41

plot_single Plot values for a protein of interest

Description

plot_single generates a barplot of a protein of interest.

Usage

plot_single(dep, proteins, type = c("contrast”, "centered”), plot = TRUE)

Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff () and add_rejections()).
proteins Character, The name(s) of the protein(s) to plot.
type “contrast’ or 'centered’, The type of data scaling used for plotting. Either the
fold change (’contrast’) or the centered log2-intensity (’centered’).
plot Logical(1), If TRUE (default) the barplot is produced. Otherwise (if FALSE), the
summaries which the barplot is based on are returned.
Value

A barplot (generated by ggplot).

Examples

Load example

data <- UbilLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, q = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

Plot single proteins

plot_single(dep, 'USP15")

plot_single(dep, 'USP15', 'centered')
plot_single(dep, c('USP15', 'CUL1"))
plot_single(dep, c('USP15"', 'CUL1"), plot = FALSE)

42 plot_volcano

plot_volcano Volcano plot

Description

plot_volcano generates a volcano plot for a specified contrast.

Usage

plot_volcano(
dep,
contrast,
label_size = 3,
add_names = TRUE,
adjusted = FALSE,

plot = TRUE
)
Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff () and add_rejections()).
contrast Character(1), Specifies the contrast to plot.
label_size Integer(1), Sets the size of name labels.
add_names Logical(1), Whether or not to plot names.
adjusted Logical(1), Whether or not to use adjusted p values.
plot Logical(1), If TRUE (default) the volcano plot is produced. Otherwise (if FALSE),
the data which the volcano plot is based on are returned.
Value

A volcano plot (generated by ggplot)

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names", "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbilLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = @)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, q = 0.01)

Test for differentially expressed proteins

process

43

diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

Plot volcano
plot_volcano(dep,
plot_volcano(dep,

TRUE)

5, add_names
5’

'Ubi6_vs_Ctrl', label_size
'Ubi6_vs_Ctrl', label_size

add_names = TRUE, adjusted = TRUE)

plot_volcano(dep,
plot_volcano(dep,

'Ubi6_vs_Ctrl', add_names = FALSE)
'Ubi4_vs_Ctrl', label_size = 5, add_names = TRUE)

process

Proteomics data processing

Description

process performs

data processing on a SummarizedExperiment object. It (1) filters a proteomics

dataset based on missing values, (2) applies variance stabilizing normalization and (3) imputes
eventual remaining missing values.

Usage
process(
se,
thr = 0,
fun = c¢("man", "bpca”, "knn", "QRILC", "MLE", "MinDet"”, "MinProb"”, "min", "zero"”,
"mixed"”, "nbavg"),
)
Arguments
se SummarizedExperiment, Proteomics data with unique names and identifiers an-
notated in 'name’ and ’ID’ columns. The appropriate columns and objects
can be generated using the wrapper import functions import_MaxQuant and
import_IsobarQuant or the generic functions make_se and make_se_parse.
thr Integer(1), Sets the threshold for the allowed number of missing values per con-
dition.
fun "man", "bpca", "knn", "QRILC", "MLE", "MinDet", "MinProb", "min", "zero",
"mixed" or "nbavg", Function used for data imputation based on manual_impute
and impute.
Additional arguments for imputation functions as depicted in manual_impute
and impute.
Value

A filtered, normalized and imputed SummarizedExperiment object.

44 report

Examples

Load datasets
data <- UbiLength
exp_design <- UbiLength_ExpDesign

Import data
se <- import_MaxQuant(data, exp_design)

Process data
processed <- process(se)

report Generate a markdown report

Description

report generates a report of the analysis performed by TMT and LFQ wrapper functions. Addition-
ally, the results table is saved as a tab-delimited file.

Usage
report(results)
Arguments
results List of SummarizedExperiment objects obtained from the LFQ or TMT wrapper
functions.
Value

A rmarkdown report is generated and saved. Additionally, the results table is saved as a tab-
delimited txt file.

Examples

Not run:

data <- UbilLength
expdesign <- UbiLength_ExpDesign

results <- LFQ(data, expdesign, 'MinProb', 'control', 'Ctrl')
report(results)

End(Not run)

run_app 45

run_app DEP shiny apps

Description

run_app launches an interactive shiny app for interactive differential enrichment/expression analy-
sis of proteomics data.

Usage

run_app(app)

Arguments

app ’LFQ’ or "TMT’, The name of the app.

Value

Launches a browser with the shiny app

Examples

Not run:
Run the app
run_app('LFQ")

run_app('T™MT")

End(Not run)

se2msn Deprecated Function to coerce SummarizedExperiment to MSnSet ob-
Jject

Description

Use as instead.

Usage

se2msn(se)

Arguments

se SummarizedExperiment, Object which will be turned into a MSnSet object.

Value

A MSnSet object.

46 test_diff

Examples

Load example

data <- UbiLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Convert to MSnSet

data_msn <- as(se, "MSnSet")

Convert back to SE

se_back <- as(data_msn, "SummarizedExperiment")

test_diff Differential enrichment test

Description

test_diff performs a differential enrichment test based on protein-wise linear models and empir-
ical Bayes statistics using limma. False Discovery Rates are estimated using fdrtool.

Usage
test_diff(
se,
type = c("control”, "all”, "manual"),
control = NULL,
test = NULL,
design_formula = formula(~@ + condition)
)
Arguments
se SummarizedExperiment, Proteomics data (output from make_se () or make_se_parse()).
It is adviced to first remove proteins with too many missing values using filter_missval(),
normalize the data using normalize_vsn() and impute remaining missing val-
ues using impute().
type "control", "all" or "manual”, The type of contrasts that will be tested. This can
be all possible pairwise comparisons ("all"), limited to the comparisons versus
the control ("control"), or manually defined contrasts ("manual™).
control Character(1), The condition to which contrasts are generated if type = "control"
(a control condition would be most appropriate).
test Character, The contrasts that will be tested if type = "manual”. These should

be formatted as "SampleA_vs_SampleB" or c("SampleA_vs_SampleC", "Sam-
pleB_vs_SampleC").

design_formula Formula, Used to create the design matrix.

test_gsea 47

Value

A SummarizedExperiment object containing fdr estimates of differential expression.

Examples

Load example

data <- UbilLength

data <- datal[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs"”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, g = 0.01)

Test for differentially expressed proteins
diff <- test_diff(imputed, "control”, "Ctrl")
diff <- test_diff(imputed, "manual”,

test = c("Ubi4_vs_Ctrl”, "Ubi6_vs_Ctrl"))

Test for differentially expressed proteins with a custom design formula
diff <- test_diff(imputed, "control”, "Ctrl”,
design_formula = formula(~ @ + condition + replicate))

test_gsea Gene Set Enrichment Analysis

Description

test_gsea tests for enriched gene sets in the differentially enriched proteins. This can be done
independently for the different contrasts.

Usage

test_gsea(
dep,
databases = c("GO_Molecular_Function_2017b", "GO_Cellular_Component_2017b",
"GO_Biological _Process_2017b"),
contrasts = TRUE

)
Arguments
dep SummarizedExperiment, Data object for which differentially enriched proteins
are annotated (output from test_diff() and add_rejections()).
databases Character, Databases to search for gene set enrichment. See http://amp.pharm.mssm.edu/Enrichr/
for available databases.
contrasts Logical(1), Whether or not to perform the gene set enrichment analysis inde-

pendently for the different contrasts.

48 theme_DEPI1

Value

A data.frame with enrichment terms (generated by enrichr)

Examples

Load example

data <- UbilLength

data <- data[data$Reverse != "+" & data$Potential.contaminant != "+"]
data_unique <- make_unique(data, "Gene.names”, "Protein.IDs”, delim = ";")

Make SummarizedExperiment

columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign

se <- make_se(data_unique, columns, exp_design)

Filter, normalize and impute missing values
filt <- filter_missval(se, thr = 0)

norm <- normalize_vsn(filt)

imputed <- impute(norm, fun = "MinProb”, g = 0.01)

Test for differentially expressed proteins

diff <- diff <- test_diff(imputed, "control”, "Ctrl")
dep <- add_rejections(diff, alpha = 0.05, 1fc = 1)

Not run:

Test enrichments

gsea_results_per_contrast <- test_gsea(dep)

gsea_results <- test_gsea(dep, contrasts = FALSE)

gsea_kegg <- test_gsea(dep, databases = "KEGG_2016")

End(Not run)

theme_DEP1 DEP ggplot theme 1

Description

theme_DEP1 is the default ggplot theme used for plotting in DEP with horizontal x-axis labels.

Usage

theme_DEP1()

Value

ggplot theme

theme_DEP2 49

Examples

data <- UbiLength

data <- data[data$Reverse != '+' & data$Potential.contaminant != '+']
data_unique <- make_unique(data, 'Gene.names', 'Protein.IDs', delim = ';')
columns <- grep('LFQ.', colnames(data_unique))

exp_design <- UbiLength_ExpDesign
se <- make_se(data_unique, columns, exp_design)

filt <- filter_missval(se, thr = 0)
plot_frequency(filt) # uses theme_DEP1() style

theme_DEP2 DEP ggplot theme 2

Description

theme_DEP2 is the ggplot theme used for plotting in DEP with vertical x-axis labels.

Usage
theme_DEP2()

Value
ggplot theme

Examples
data <- UbiLength
data <- datal[data$Reverse != '+' & data$Potential.contaminant != '+']
data_unique <- make_unique(data, 'Gene.names', 'Protein.IDs', delim = ';")
columns <- grep('LFQ.', colnames(data_unique))

exp_design <- UbilLength_ExpDesign
se <- make_se(data_unique, columns, exp_design)

filt <- filter_missval(se, thr = 0)
plot_numbers(filt) # uses theme_DEP2() style

TMT TMT workflow

Description

TMT is a wrapper function running the entire differential enrichment/expression analysis workflow
for TMT-based proteomics data. The protein table from IsobarQuant is used as direct input.

http://www.nature.com/nprot/journal/v10/n10/full/nprot.2015.101.html

50 T™T
Usage
TMT(
proteins,
expdesign,
fun = c("man", "bpca”, "knn", "QRILC", "MLE", "MinDet”, "MinProb"”, "min", "zero",
"mixed"”, "nbavg"),
type = c("all”, "control”, "manual"),
control = NULL,
test = NULL,
name = "gene_name",
ids = "protein_id",
alpha = 0.05,
1fc =1
)
Arguments
proteins Data.frame, The data object.
expdesign Data.frame, The experimental design object.
fun "man", "bpca", "knn", "QRILC", "MLE", "MinDet", "MinProb", "min", "zero",
"mixed" or "nbavg", Function used for data imputation based on manual_impute
and impute.
type "all’, *control’” or "'manual’, The type of contrasts that will be generated.
control Character(1), The sample name to which the contrasts are generated (the control
sample would be most appropriate).
test Character, The contrasts that will be tested if type = "manual”. These should
be formatted as "SampleA_vs_SampleB" or ¢("SampleA_vs_SampleC", "Sam-
pleB_vs_SampleC").
name Character(1), Name of the column representing gene names.
ids ’Character(1), Name of the column representing protein IDs.
alpha Numeric(1), sets the false discovery rate threshold.
1fc Numeric(1), sets the log fold change threshold.
Value

A list of 8 objects:

se

filt
norm
imputed
diff

dep

results

param

SummarizedExperiment object containing the original data
SummarizedExperiment object containing the filtered data
SummarizedExperiment object containing the normalized data
SummarizedExperiment object containing the imputed data
SummarizedExperiment object containing FDR estimates of differential expres-
sion

SummarizedExperiment object annotated with logical columns indicating sig-
nificant proteins

data.frame containing containing all results variables from the performed anal-
ysis

data.frame containing the test parameters

UbiLength 51

Examples

Not run:

TMT_res <- TMT()

End(Not run)

UbiLength UbiLength - Ubiquitin interactors of different linear ubiquitin lengths
(UbIA-MS dataset)

Description

The UbiLength dataset contains label free quantification (LFQ) data for ubiquitin interactors of
different linear ubiquitin lengths, generated by Zhang et al 2017. The dataset contains the protein-
groups output file from MaxQuant.

Usage
UbiLength

Format
A data.frame with 3006 observations and 35 variables:

Protein.IDs Uniprot IDs

Majority.protein.IDs Uniprot IDs of major protein(s) in the protein group
Protein.names Full protein names

Gene.names Gene name

Fasta.headers Header as present in the Uniprot fasta file

Peptides Number of peptides identified for this protein group

Razor...unique.peptides Number of peptides used for the quantification of this protein group
Unique.peptides Number of peptides identified which are unique for this protein group
Intensity columns (12) Raw mass spectrometry intensity, A.U.

LFQ.intensity columns (12) LFQ normalized mass spectrometry intensity, A.U.
Only.identified.by.site The protein is only identified by a modification site if marked ("+’)
Reverse The protein is identified in the decoy database if marked ("+’)

Potential.contaminant The protein is a known contaminant if marked ("+’)

Value

A data.frame.

Source

Zhang, Smits, van Tilburg, et al (2017). An interaction landscape of ubiquitin signaling. Molecular
Cell 65(5): 941-955. doi: 10.1016/j.molcel.2017.01.004.

http://www.maxquant.org
http://www.cell.com/molecular-cell/fulltext/S1097-2765(17)30004-7

52 UbiLength_ExpDesign

UbilLength_ExpDesign Experimental design of the UbiLength dataset

Description
The UbiLength_ExpDesign object annotates 12 different samples of the UbiLength dataset in 4
conditions and 3 replicates.

Usage
UbilLength_ExpDesign

Format
A data.frame with 12 observations and 3 variables:

label Label names
condition Experimental conditions

replicate Replicate number

Value

A data.frame.

Source

Zhang, Smits, van Tilburg, et al (2017). An interaction landscape of ubiquitin signaling. Molecular
Cell 65(5): 941-955. doi: 10.1016/j.molcel.2017.01.004.

http://www.cell.com/molecular-cell/fulltext/S1097-2765(17)30004-7

Index

+ datasets
DiUbi, 7
DiUbi_ExpDesign, 8
UbilLength, 51
UbiLength_ExpDesign, 52

add_rejections, 3, 6, 13, 24-28, 31, 34,
39-42,47

analyze_dep, 4, 5, 24

as, 45

daisy, 34
DEP, 5, 48, 49
DEP-package (DEP), 5
DiUbi, 7,7
DiUbi_ExpDesign, 7, 8

enrichr, 48

filter_missval, 6,9, 16, 21, 23,46
filter_proteins, 6,9

get_df_long, 6, 10
get_df_wide, 6, 11
get_prefix, 6, 12
get_results, 6, 13
get_suffix, 6, 14
ggplot, 25-27, 29, 30, 32, 33, 35, 3742

Heatmap, 28, 31, 34-36

import_IsobarQuant, 5, 14, 43
import_MaxQuant, 5, 15, 43
impute, 6, 16, 16, 18, 35, 43, 46, 50

LFQ, 5, 17, 44

make_se, 4,6, 9-11, 16, 19, 21, 23, 37, 38, 43,

46

make_se_parse, 4,6,9-11, 16,19, 21, 23, 37,

38, 43,46
make_unique, 6, 19, 20, 20
manual_impute, 6, 16, 18, 21, 43, 50
meanSdPlot, 22, 22

normalize_vsn, 6, 16, 21,23, 35, 37,46

plot_all, 5, 24
plot_cond, 6, 25
plot_cond_freq, 6, 26
plot_cond_overlap, 6, 27
plot_cor, 6, 28
plot_coverage, 6, 29
plot_detect, 6, 30
plot_dist, 30
plot_frequency, 6, 32
plot_gsea, 6, 32
plot_heatmap, 6, 34
plot_imputation, 6, 35
plot_missval, 6, 36
plot_normalization, 6, 37
plot_numbers, 6, 38
plot_p_hist, 6, 40
plot_pca, 6, 38
plot_single, 6, 41
plot_volcano, 6, 42
process, 5,43

report, 5, 44
rmarkdown, 44
run_app, 3, 45

se2msn, 6, 45
stat_binhex, 22, 23

test_diff, 3,6, 13, 24-28, 31, 34, 39-42, 46,
47

test_gsea, 6, 33,47

theme_DEP1, 48

theme_DEP2, 49

TMT, 5, 44, 49

UbiLength, 7, 51
UbiLength_ExpDesign, 7, 15, 16, 19, 52

	add_rejections
	analyze_dep
	DEP
	DiUbi
	DiUbi_ExpDesign
	filter_missval
	filter_proteins
	get_df_long
	get_df_wide
	get_prefix
	get_results
	get_suffix
	import_IsobarQuant
	import_MaxQuant
	impute
	LFQ
	make_se
	make_se_parse
	make_unique
	manual_impute
	meanSdPlot
	normalize_vsn
	plot_all
	plot_cond
	plot_cond_freq
	plot_cond_overlap
	plot_cor
	plot_coverage
	plot_detect
	plot_dist
	plot_frequency
	plot_gsea
	plot_heatmap
	plot_imputation
	plot_missval
	plot_normalization
	plot_numbers
	plot_pca
	plot_p_hist
	plot_single
	plot_volcano
	process
	report
	run_app
	se2msn
	test_diff
	test_gsea
	theme_DEP1
	theme_DEP2
	TMT
	UbiLength
	UbiLength_ExpDesign
	Index

