Package ‘CompoundDb’

January 19, 2026
Type Package
Title Creating and Using (Chemical) Compound Annotation Databases
Version 1.14.1

Description CompoundDb provides functionality to create and use (chemical)
compound annotation databases from a variety of different sources such as
LipidMaps, HMDB, ChEBI or MassBank. The database format allows to store in
addition MS/MS spectra along with compound information. The package provides
also a backend for Bioconductor's Spectra package and allows thus to match
experimetal MS/MS spectra against MS/MS spectra in the database. Databases
can be stored in SQLite format and are thus portable.

Depends R (>=4.1), methods, AnnotationFilter, S4Vectors

Imports BiocGenerics, ChemmineR, tibble, jsonlite, dplyr, DBI, dbplyr,
RSQLite, Biobase, ProtGenerics (>= 1.35.3), xml2, IRanges,
Spectra (>= 1.15.10), MsCoreUtils, MetaboCoreUtils,
BiocParallel, stringi

Suggests knitr, rmarkdown, testthat, BiocStyle (>= 2.5.19),
MsBackendMgf
URL https://github.com/RforMassSpectrometry/CompoundDb

BugReports https://github.com/RforMassSpectrometry/CompoundDb/issues
biocViews MassSpectrometry, Metabolomics, Annotation

VignetteBuilder knitr

License Artistic-2.0

RoxygenNote 7.3.3

Roxygen list(markdown=TRUE)

Encoding UTF-8

Collate 'AllGenerics.R' 'AnnotationFilters.R' 'createCompDbPackage.R’
'CompDb.R' 'CompDb-methods.R' TonDb.R' TonDb-methods.R'
'MsBackendCompDb-functions.R' 'MsBackendCompDb.R'
'query-engine.R' 'spectrum-import-functions.R’
'utility-functions.R'

git_url https://git.bioconductor.org/packages/CompoundDb

git_branch RELEASE_3_22

git_last_commit 0d5feb3

git_last_commit_date 2026-01-12

https://github.com/RforMassSpectrometry/CompoundDb
https://github.com/RforMassSpectrometry/CompoundDb/issues

addJoinDefinition

Repository Bioconductor 3.22
Date/Publication 2026-01-19

Author Jan Stanstrup [aut] (ORCID: <https://orcid.org/0000-0003-0541-7369>),
Johannes Rainer [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6977-7147>),
Josep M. Badia [ctb] (ORCID: <https://orcid.org/0000-0002-5704-1124>),
Roger Gine [aut] (ORCID: <https://orcid.org/0000-0003-0288-9619>),
Andrea Vicini [aut] (ORCID: <https://orcid.org/0000-0001-9438-6909>),
Prateek Arora [ctb] (ORCID: <https://orcid.org/0000-0003-0822-9240>)

Maintainer Johannes Rainer <johannes.rainer@eurac.edu>

Contents
addJoinDefinition 2
CompDb e e 4
compound_tbl_lipidblast 10
compound_tbl_sdf 12
createCompDb L e 14
expandMzlntensity L e 18
Filter-classes L e 19
import_mona_sdf oL 21
IonDb e 22
MsBackendCompDb 26
msms_spectra_hmdb Lo 29
MSMS_SPECIra_MONA . . . « . . v v v v ettt e e e e e e e e e 30

Index 33

addJoinDefinition Expand a CompDb database with additional, related tables
Description

The CompDb object uses a simple relational database model that consists of the following database
tables, some of which are optional:

ms_compound: annotation(s) of compounds.

metadata: general metadata information on the database. This database table is not related
to any other table in the database and its content is thus also not joined with other database
tables.

synonym (optional): database table containing optional additional synonym(s) for compounds
in the ms_compound table. Rows in this table are linked to a row in ms_compound through
the "compound_id" database table column.

msms_spectrum (optional): database table with information on individual mass spectra (each
row containing the metadata for one spectrum). Database table column "compound_id"” links
entries in this database table to a single row in the ms_compound table.

msms_spectrum_peak (otional): database table containing mass peak data. Each row in this
table is related to one row in the msms_spectrum table (through the "spectrum_id"” column
present in both tables).

https://orcid.org/0000-0003-0541-7369
https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0002-5704-1124
https://orcid.org/0000-0003-0288-9619
https://orcid.org/0000-0001-9438-6909
https://orcid.org/0000-0003-0822-9240

addJoinDefinition 3

In addition, the CompDb database layout can be extended by adding additional tables. To make
their content automatically available through the built-in compounds () or Spectra() functions, the
information on how to combine/join these tables with the existing ones needs to be provided. This
can be done using the addJoinDefinition() function: the relationship of a new table with one
of the existing tables can be defined with this function providing the names of the two database
tables as well as the names of the columns containing the primary/foreign keys defining the the
relationship.

See the section Extending CompDb databases in the Creating CompoundDb annotation resources
package vignette for a detailed example.

Usage

addJoinDefinition(
X,
table_a = character(),
table_b = character(),
column_a = character(),
column_b = character(),

join = "left outer join”
)
Arguments
X CompDb to which the join definition should be added.
table_a character (1) with the name of one of the two tables that are related to each
other (and can be joined).
table_b character (1) with the name of the second of the two tables that are related to
each other (and can be joined).
column_a character (1) with the name of the column in table_a containing the keys for
the relationship to table table_b.
column_b character (1) with the name of the column in table_b containing the keys for
the relationship to table table_a.
join character (1) with the type of join. Defaults to join = "left outer join".
Value

The input CompDb with tha added information on how to join the respective database tables.

Author(s)

Johannes Rainer

Examples

The pre-defined table join definitions:
CompoundDb: : : . JOINS

See section "Extending CompDb databases” in the xCreating CompoundDb
annotation resources* package vignette for examples

4 CompDb

CompDb Simple compound (metabolite) databases

Description

CompDb objects provide access to general (metabolite) compound annotations along with metadata
information such as the annotation’s source, date and release version. The data is stored internally
in a database (usually an SQLite database).

hasMsMsSpectra returns TRUE if MS/MS spectrum data is available in the database and FALSE
otherwise.

Usage
CompDb(x, flags = SQLITE_RO)

hasMsMsSpectra(x)
src_compdb(x)
tables(x)
copyCompDb(x, y)

S4 method for signature 'CompDb'
dbconn(x)

S4 method for signature 'CompDb'’
Spectra(object, filter, ...)

S4 method for signature 'CompDb'
supportedFilters(object)

S4 method for signature 'CompDb'
metadata(x, ...)

S4 method for signature 'CompDb'
spectraVariables(object, ...)

S4 method for signature 'CompDb'
compoundVariables(object, includeId = FALSE, ...)

S4 method for signature 'CompDb'
compounds (
object,
columns = compoundVariables(object),
filter,
return.type = c("data.frame”, "tibble"),

CompDb 5

S4 method for signature 'CompDb,Spectra’
insertSpectra(object, spectra, columns = spectraVariables(spectra), ...)

S4 method for signature 'CompDb'
deleteSpectra(object, ids = integer(@), ...)

S4 method for signature 'CompDb'’
mass2mz(x, adduct = c("[M+H]+"), name = "formula")

S4 method for signature 'CompDb'
insertCompound(object, compounds = data.frame(), addColumns = FALSE)

S4 method for signature 'CompDb'

deleteCompound(object, ids = character(), recursive = FALSE, ...)
Arguments
X For CompDb(): character(1) with the file name of the SQLite compound

database. Alternatively it is possible to provide the connection to the database
with parameter x. For copyCompDb(): either a CompDb or a database connection.

For all other methods: a ~CompDb~ object.

flags flags passed to the SQLite database connection. See RSQLite: :SQLite(). De-
faults to read-only, i.e. RSQLite: : SQLITE_RO.
y For copyCompDb(): connection to a database to which the content should be
copied.
object For all methods: a CompDb object.
filter For compounds () and Spectra(): filter expression or AnnotationFilter: :AnnotationFilter()

defining a filter to be used to retrieve specific elements from the database.

additional arguments. Currently not used.

includeld for compoundVariables(): logical(1) whether the comound ID (column
"compound_id") should be included in the result. The default is includeIds =
FALSE.

columns For compounds (), Spectra: character with the names of the database columns

that should be retrieved. Use compoundVariables() and/or spectraVariables()
for a list of available column names. For insertSpectra(): columns (spectra
variables) that should be inserted into the database (to avoid inserting all vari-
ables).

return.type For compounds(): either "data.frame” or "tibble” to return the result as a
data.frame() or tibble::tibble(), respectively.

spectra For insertSpectra(): Spectra object containing the spectra to be added to
the IonDb database.

ids For deleteSpectra(): integer () specifying the IDs of the spectra to delete.
IDs in ids that are not associated to any spectra in the CompDb object are ignored.
For deleteCompound: character() with the compound IDs to be deleted.

adduct either a character specifying the name(s) of the adduct(s) for which the m/z
should be calculated or a data. frame with the adduct definition. See adductNames ()
for supported adduct names and the description for more information on the ex-
pected format if a data. frame is provided.

6 CompDb

name For mass2mz(): character(1). Defines the CompDb column that will be used
to name/identify the returned m/z values. By default (name = "formula”) m/z
values for all unique molecular formulas are calculated and these are used as
rownames for the returned matrix. With name = "compound_id" the adduct m/z
for all compounds (even those with equal formulas) are calculated and returned.

compounds For insertCompound(): data. frame with compound data to be inserted into a
CompDb database. See function description for details.

addColumns For insertCompound(): logical(1) whether all (extra) columns in param-
eter compounds should be stored also in the database table. The default is
addColumns = FALSE.

recursive For deleteCompound(): logical (1) whether also MS2 spectra associated with
the compounds should be deleted.

Details

CompDb objects should be created using the constructor function CompDb () providing the name of
the (SQLite) database file providing the compound annotation data.

Value

See description of the respective function.

Retrieve annotations from the database

Annotations/compound informations can be retrieved from a CompDb database with the compounds ()
and Spectra() functions:

* compounds() extracts compound data from the CompDb object. In contrast to src_compdb it
returns the actual data as adata. frame (if return. type = "data.frame")ora tibble: : tibble()
@if return.type = "tibble"). A compounds() call will always return all elements from the
ms_compound table (unless a filter is used).

* Spectra() extract spectra from the database and returns them as a Spectra: : Spectra() ob-
ject from the Spectra package. Additional annotations requested with the columns parameter
are added as additional spectra variables.

General functions

* CompDb(): connect to a compound database.
e compoundVariables(): returns all available columns/database fields for compounds.

e copyCompDb(): allows to copy the content from a CompDb to another database. Parameter
x is supposed to be either a CompDb or a database connection from which the data should be
copied and y a connection to a database to which it should be copied.

* dbconn(): returns the connection (of type DBIConnection) to the database.
» metadata(): returns general meta data of the compound database.
* spectraVariables(): returns all spectra variables (i.e. columns) available in the CompDb.

* src_compdb () provides access to the CompDb’s database via the functionality from the dplyr/dbplyr
package.

* supportedFilters(): provides an overview of the filters that can be applied on a CompDb
object to extract only specific data from the database.

CompDb 7

* tables(): returns a named list (names being table names) with the fields/columns from
each table in the database.

* mass2mz(): calculates a table of the m/z values for each compound based on the provided set
of adduct(s). Adduct definitions can be provided with parameter adduct. See MetaboCoreUtils: :mass2mz()
for more details. Parameter name defines the database table column that should be used as
rownames of the returned matrix. By default name = "formula”, m/z values are calculated
for each unique formula in the CompDb x.

Adding and removing data from a database

Note that inserting and deleting data requires read-write access to the database. Databases returned
by CompDb are by default read-only. To get write access CompDb should be called with parameter
flags =RSQLite: :SQLITE_RW.

* insertCompound(): adds additional compound(s) to a CompDb. The compound(s) to be
added can be specified with parameter compounds that is expected to be a data.frame with
columns "compound_id"”, "name”, "inchi"”, "inchikey"”, "formula"”, "exactmass”. Col-
umn "exactmass” is expected to contain numeric values, all other columns character.
Missing values are allowed for all columns except "compound_id”. An optional column
"synonyms” can be used to provide alternative names for the compound. This column can con-
tain a single character by row, or a 1ist with multiple character (names) per row/compound
(see examples below for details). By setting parameter addColumns = TRUE any additional
columns in compound will be added to the database table. The default is addColumns = FALSE.
The function returns the CompDb with the compounds added. See also createCompDb() for
more information and details on expected compound data and the examples below for general

usage.

* deleteCompound(): removes specified compounds from the CompDb database. The IDs of
the compounds that should be deleted need to be provided with parameter ids. To include
compound IDs in the output of a compounds() call "compound_id" should be added to the
columns parameter. By default an error is thrown if for some of the specified compounds also
MS?2 spectra are present in the database. To force deletion of the compounds along with all
associated MS2 spectra use recursive = TRUE. See examples below for details. The function
returns the updated CompDb database.

e insertSpectra(): adds further spectra to the database. The method always adds all the
spectra specified through the spectra parameter and does not check if they are already in the
database. Note that the input spectra must have the variable compound_id and only Spectra
whose compound_id values are also in compounds (object, "compound_id") can be added.
Parameter columns defines which spectra variables from the spectra should be inserted into
the database. By default, all spectra variables are added but it is strongly suggested to specif-
ically select (meaningful) spectra variables that should be stored in the database. Note that
a spectra variable "compound_id"” is mandatory. If needed, the function adds additional
columns to the msms_spectrum database table. The function returns the updated CompDb
object.

* deleteSpectra(): deletes specified spectra from the database. The IDs of the spectra to be
deleted need to be provided with parameter ids.

Note that it is also possible to add new database tables and include them in the data retrieval queries.
See addJoinDefinition() for more information.
Filtering the database

Data access methods such as compounds() and Spectra allow to filter the results using specific
filter classes and expressions. Filtering uses the concepts from Bioconductor’s AnnotationFilter

8 CompDb

package. All information for a certain compound with the ID "HMDB@Q0@0@1" can for example
be retrieved by passing the filter expression filter =~ compound_id == "HMDB@Q@00@01" to the
compounds function.

Use the AnnotationFilter::supportedFilters() function on the CompDb object to get a list
of all supported filters. See also examples below or the usage vignette for details.

Author(s)

Johannes Rainer

See Also

* createCompDb() for the function to create a SQLite compound database.
e CompoundIdFilter() for filters that can be used on the CompDb database.
e addJoinDefinition() to expand a CompDb with additional, related, database tables.

Examples

We load a small compound test database based on MassBank which is

distributed with this package.

cdb <- CompDb(system.file("sgl/CompDb.MassBank.sql", package = "CompoundDb"))
cdb

Get general metadata information from the database, such as originating
source and version:
metadata(cdb)

List all available compound annotations/fields
compoundVariables(cdb)

Extract a data.frame with these annotations for all compounds
compounds (cdb)

Note that the ~compounds™ function will by default always return a

data frame of **unique** entries for the specified columns. Including
also the ~"compound_id"~ to the requested columns will ensure that all
data is returned from the tables.

compounds(cdb, columns = c("compound_id"”, compoundVariables(cdb)))

Add also the synonyms (aliases) for the compounds. This will cause the
tables compound and synonym to be joined. The elements of the compound_id
and name are now no longer unique

res <- compounds(cdb, columns = c("name”, "synonym"))

head(res)

List all database tables and their columns
tables(cdb)

Any of these columns can be used in the ~compounds™ call to retrieve

the specific annotations. The corresponding database tables will then be
joined together

compounds(cdb, columns = c("formula”, "publication”))

Calculating m/z values for the exact masses of unique chemical formulas
in the database:

CompDb

mass2mz(cdb, adduct = c(”"[M+HI+", "[M+Nal+"))

By using “name = "compound_id"”" the calculation will be performed for
each unique compound ID instead (resulting in potentially redundant
results)

mass2mz(cdb, adduct = c("[M+H]+", "[M+Nal+"), name = "compound_id")

Create a Spectra object with all MS/MS spectra from the database.

library(Spectra)
sps <- Spectra(cdb)
sps

Extract spectra for a specific compound.
sps <- Spectra(cdb, filter = ~ name == "Mellein")
sps

List all available annotations for MS/MS spectra
spectraVariables(sps)

Get access to the m/z values of these

mz(sps)

library(Spectra)

Plot the first spectrum

plotSpectra(sps[1])

HHEHHHHHEE

Filtering the database

#H#

Get all compounds with an exact mass between 310 and 320

res <- compounds(cdb, filter = ~ exactmass > 310 & exactmass < 320)
res

Get all compounds that have an H14 in their formula.

res <- compounds(cdb, filter = FormulaFilter("H14", "contains"))
res

HHHHHHH

Using CompDb with the xtidyversex

#H#

Using return.type = "tibble” the result will be returned as a "tibble”
compounds(cdb, return.type = "tibble")

Use the CompDb in a dplyr setup

library(dplyr)
src_cmp <- src_compdb(cdb)
src_cmp

Get a tbl for the ms_compound table
cmp_tbl <- tbl(src_cmp, "ms_compound”)

Extract the id, name and inchi
cmp_tbl %>% select(compound_id, name, inchi) %>% collect()

T
Creating an empty CompDb and sequentially adding content

compound_tbl_lipidblast

#H#

Create an empty CompDb and store the database in a temporary file
cdb <- emptyCompDb(tempfile())

cdb

Define a data.frame with some compounds to add
cmp <- data.frame(
compound_id = c(1, 2),
name = c("Caffeine”, "Glucose"),
formula = c("C8H10N402", "C6H1206"),
exactmass = c(194.080375584, 180.063388116))

We can also add multiple synonyms for each compound
cmp$synonyms <- list(c("Cafeina”, "Koffein”), "D Glucose")
cmp

These compounds can be added to the empty database with insertCompound
cdb <- insertCompound(cdb, compounds = cmp)
compounds (cdb)

insertCompound would also allow to add additional columns/annotations to
the database. Below we define a new compound adding an additional column
hmdb_id
cmp <- data.frame(

compound_id = 3,

name = "Alpha-Lactose”,

formula = "C12H22011",

exactmass = 342.116211546,

hmdb_id = "HMDB@00Q186")

To add additional columns we need to set addColumns = TRUE
cdb <- insertCompound(cdb, compounds = cmp, addColumns = TRUE)
cdb

compounds (cdb)

HHHHH

Deleting selected compounds from a database

#H#

Compounds can be deleted with the deleteCompound function providing the

IDs of the compounds that should be deleted. IDs of compounds in the

database can be retrieved by adding "compound_id"” to the columns parameter
of the compounds function:

compounds(cdb, columns = c("compound_id"”, "name"))

Compounds can be deleted with the deleteCompound function. Below we delete
the compounds with the IDs "1" and "3" from the database

cdb <- deleteCompound(cdb, ids = c("1", "3"))

compounds (cdb)

If also MS2 spectra associated with any of these two compounds an error
would be thrown. Setting the parameter “recursive = TRUE™ in the

~deleteCompound™ call would delete the compounds along with their MS2
spectra.

compound_tbl_lipidblast 11

compound_tbl_lipidblast
Extract compound data from LipidBlast

Description

compound_tbl_lipidblast() extracts basic compound annotations from a LipidBlast file in (json
format) downloaded from http://mona.fiehnlab.ucdavis.edu/downloads . Note that no mass spectra
data is extracted from the json file.

Usage
compound_tbl_lipidblast(
file,
collapse = character(),
n=-1L,
verbose = FALSE,
BPPARAM = bpparam()
)
Arguments

file character (1) with the name of the file name.

collapse optional character(1) to be used to collapse multiple values in the columns
"synonyms”. See examples for details.

n integer (1) defining the number of rows from the json file that should be read
and processed at a time. By default (n = -1L) the complete file is imported and
processed. For large json files it is suggested to set e.g. n = 100000 to enable
chunk-wise processing and hence reduce the memory demand.

verbose logical (1) whether some progress information should be provided. Defaults
to verbose = FALSE, but for parsing very large files (specifically with chunk-
wise processing enabled with n > 0) it might be helpful to set to verbose =
TRUE.

BPPARAM BiocParallelParamobject to configure parallel processing. Defaults to bpparam().

Value

A tibble::tibble with general compound information (one row per compound):

* compound_id: the ID of the compound.

* name: the compound’s name.

 inchi: the InChlI of the compound.

* inchikey: the InChlI key.

* smiles: the SMILES representation of the compound.
» formula: the chemical formula.

* exactmass: the compound’s mass.

* compound_class: the class of the compound.

* ionization_mode: the ionization mode.

* precursor_mz: the precursor m/z value.

12 compound_tbl_sdf

* precursor_type: the precursor type.

* retention_time: the retention time.

* ccs: the collision cross-section.

* spectrum: the spectrum data (i.e. the mass peaks, as a concatenated character string).

* synonyms: the compound’s synonyms (aliases). This type of this column is by default a 1ist
to support multiple aliases per compound, unless argument collapse is provided, in which
case multiple synonyms are pasted into a single element separated by the value of collapse.

Author(s)

Johannes Rainer, Jan Stanstrup and Prateek Arora

See Also

Other compound table creation functions: compound_tbl_sdf ()

Examples

Read compound information from a subset of HMDB

fl <- system.file(”json/MoNa-LipidBlast_sub.json", package = "CompoundDb")
cmps <- compound_tbl_lipidblast(fl, n = 50000, verbose = TRUE)

cmps

compound_tbl_sdf Extract compound data from a file in SDF format

Description

compound_tbl_sdf () extracts basic compound annotations from a file in SDF format (structure-
data file). The function currently supports SDF files from:
 HMDB (Human Metabolome Database): http://www.hmdb.ca
ChEBI (Chemical Entities of Biological Interest): http://ebi.ac.uk/chebi
LMSD (LIPID MAPS Structure Database): http://www.lipidmaps.org
PubChem: https://pubchem.ncbi.nlm.nih.gov/

* MoNa: http://mona.fiehnlab.ucdavis.edu/ (see notes below!)

Usage
compound_tbl_sdf (file, collapse, onlyValid = TRUE, nonStop = TRUE)

Arguments
file character (1) with the name of the SDF file.
collapse optional character (1) to be used to collapse multiple values in the columns
"synonyms”. See examples for details.
onlyValid logical (1) to import only valid or all elements (defaults to onlyValid = TRUE)
nonStop logical(1) whether file content specific errors should only reported as warn-

ings and not break the full import process. The value of this parameter is passed
to parameter skipErrors of the ChemmineR: : read.SDFset () function.

compound_tbl_sdf 13

Details

Column "name” reports for HMDB files the "GENERIC_NAME", for ChEBI the "ChEBI Name", for
PubChem the "PUBCHEM_IUPAC_TRADITIONAL_NAME", and for Lipid Maps the "COMMON_NAME", if
that is not available, the first of the compounds synonyms and, if that is also not provided, the
"SYSTEMATIC_NAME".

Value
A tibble::tibble with general compound information (one row per compound):

* compound_id: the ID of the compound.

* name: the compound’s name.

* inchi: the InChlI of the compound.

e inchikey: the InChl key.

* formula: the chemical formula.

* exactmass: the compound’s (monoisotopic exact) mass.

* synonyms: the compound’s synonyms (aliases). This type of this column is by default a 1ist
to support multiple aliases per compound, unless argument collapse is provided, in which
case multiple synonyms are pasted into a single element separated by the value of collapse.

* smiles: the compound’s SMILES (if provided).

Note

compound_tb1_sdf () supports also to read/process gzipped files.

MoNa SDF files organize the data by individual spectra (i.e. each element is one spectrum) and
individual compounds can not easily and consistently defined (i.e. not all entries have an InChl
ID or other means to uniquely identify compounds). Thus, the function returns a highly redundant
compound table. Feedback on how to reduce this redundancy would be highly welcome!

LIPID MAPS was tested August 2020. Older SDF files might not work as the field names were
changed.
Author(s)

Johannes Rainer and Jan Stanstrup

See Also

createCompDb () for a function to create a SQLite-based compound database.

Other compound table creation functions: compound_tbl_lipidblast()

Examples

Read compound information from a subset of HMDB

fl <- system.file("sdf/HMDB_sub.sdf.gz", package = "CompoundDb")
cmps <- compound_tbl_sdf (f1)

cmps

Column synonyms contains a list
cmps$synonyms

If we provide the optional argument collapse, multiple entries will be

14 createCompDb

collapsed.

cmps <- compound_tbl_sdf(fl, collapse = "|")
cmps
cmps$synonyms
createCompDb Create a CompDb database
Description

CompDb databases can be created with the createCompDb() or the emptyCompDb() functions, the
former creating and initializing (filling) the database with existing data, the latter creating an empty
database that can be subsequently filled with insertCompound() or insertSpectra() calls.

emptyCompDb() requires only the file name of the database that should be created as input and
returns a CompDb representing the empty database.

createCompDb () creates a SQLite-based CompDb object/database from a compound resource pro-
vided as a data.frame or tbl. Alternatively, the name(s) of the file(s) from which the annotation
should be extracted can be provided. Supported are SDF files (such as those from the Human
Metabolome Database HMDB) that can be read using the compound_tb1_sdf () or LipidBlast files
(see compound_tbl_lipidblast().

An additional data. frame providing metadata information including the data source, date, version
and organism is mandatory. By default, the function will define the name of the database based on
the provided metadata, but it is also possible to define this manually with the dbFile parameter.

Optionally MS/MS (MS2) spectra for compounds can be also stored in the database. Currently
only MS/MS spectra from HMDB are supported. These can be downloaded in XML format from
HMDB (http://www.hmdb.ca), loaded with the msms_spectra_hmdb() or msms_spectra_mona()
function and passed to the function with the msms_spectra argument. See msms_spectra_hmdb ()
or msms_spectra_mona() for information on the expected columns and format.

Required columns for the data. frame providing the compound information (parameter x) are:
* "compound_id": the ID of the compound. Can be an integer or character. Duplicated IDs
are supported (for compatibility reasons), but not suggested. No missing values allowed.
* "name”: the compound’s name.
e "inchi”: the InChl of the compound.
* "inchikey": the InChI key.
* "formula"”: the chemical formula.
* "exactmass”: the compound’s (exact) mass.
* "synonyms": additional synonyms/aliases for the compound. Should be either a single char-
acter or a list of values for each compound.
Any additional columns in the provided data.frame (such as e.g. "smiles” providing the com-
pound’s SMILES) are also supported and will be inserted into the database table.

See e.g. compound_tb1_sdf () or compound_tbl_lipidblast() for functions creating such com-
pound tables.

The table containing the MS2 spectra data should have the following format and columns:

* "spectrum_id": an arbitrary ID for the spectrum. Has to be an integer.

createCompDb 15

* "compound_id": the ID of the compound to which the spectrum can be associated with. This
has to be present in the data. frame defining the compounds.

e "polarity”: the polarity (as an integer, @ for negative, 1 for positive, NA for not set).

e "collision_energy": the collision energy.

* "predicted”: whether the spectrum was predicted or measured.

* "splash”: the SPLASH of the spectrum.

* "instrument_type": the instrument type.

* "instrument": the name of the instrument.

* "precursor_mz": the precursor m/z (as a numeric).

* "mz": the m/z values.

e "intensity": the intensity values.
Only for columns "spectrum_id"”, "compound_id", "mz" and "intensity"” a value has to be pro-
vided in each row of the data.frame. The others are optional. Note that the data.frame can
be either in the format as in the example below (i.e. each row being one spectrum and columns
"mz" and "intensity” being of type list each element being the m/z or intensity values of one
spectrum) or in a full form, in which each row represents one peak and all columns except "mz"

and "intensity"” containing redundant information of each spectrum (hence columns "mz" and
"intensity" being of type numeric).

The metadata data. frame is supposed to have two columns named "name” and "value” providing
the following minimal information as key-value pairs (see make_metadata for a utility function to
create such a data. frame):

* "source": the source from which the data was retrieved (e.g. "HMDB").

e "url”: the url from which the original data was retrieved.

* "source_version": the version from the original data source (e.g. "v4").
* "source_date": the date when the original data source was generated.

* "organism”: the organism. Should be in the form "Hsapiens” or "Mmusculus”.

createCompDbPackage creates an R data package with the data from a CompDb object.

make_metadata() helps generating a metadata data. frame in the correct format expected by the
createCompDb function. The function returns a data. frame.

Usage

createCompDb(x, metadata, msms_spectra, path = ".", dbFile = character())

createCompDbPackage (
X,
version,
maintainer,
author,
path = ".",
license = "Artistic-2.0"

make_metadata(
source = character(),
url = character(),

16 createCompDb

source_version = character(),
source_date = character(),
organism = NA_character_

)

emptyCompDb(dbFile = character())

Arguments
X For createCompDb(): data.frame or tbl with the compound annotations or
character with the file name(s) from which the compound annotations should
be retrieved. See description for details.
For ~createCompDbPackage()~: “character(1)™ with the file name of the
“CompDb™ SQLite file (created by “createCompDb™).
metadata For createCompDb(): data. frame with metadata information. See description

for details.

msms_spectra For createCompDb(): data. frame with MS/MS spectrum data. See msms_spectra_hmdb ()
for the expected format and a function to import such data from spectrum xml
files from HMDB.

path character (1) with the path to the directory where the database file or package
folder should be written. Defaults to the current directory.

dbFile character (1) to optionally provide the name of the SQLite database file. If not
provided (the default) the database name is defined using information from the
provided metadata.

version For createCompDbPackage(): character (1) with the version of the package
(ideally in the format "x.y.z").

maintainer For createCompDbPackage(): character (1) with the name and email address
of the package maintainer (in the form "First Last <first.last@provider.com>".

author For createCompDbPackage(): character(1) with the name of the package
author.

license For createCompDbPackage(): character (1) with the license of the package

respectively the originating provider.

source For make_metadata(): character (1) with the name of the resource that pro-
vided the compound annotation.

url For make_metadata(): character (1) with the url to the original resource.

source_version Formake_metadata(): character (1) with the version of the original resource
providing the annotation.

source_date For make_metadata(): character (1) with the date of the resource’s release.

organism For make_metadata(): character(1) with the name of the organism. This
should be in the format "Hsapiens"” for human, "Mmusculus” for mouse etc.
Leave to NA if not applicable.

Details

Metadata information is also used to create the file name for the database file. The name starts with
"CompDb", followed by the organism, the data source and its version. A compound database file for
HMDB version 4 with human metabolites will thus be named: "CompDb.Hsapiens.HMDB.v4".

A single CompDb database is created from multiple SDF files (e.g. for PubChem) if all the file names
are provided with parameter x. Parallel processing is currently not enabled because SQLite does
not support it yet natively.

createCompDb 17

Value

For createCompDb(): a character (1) with the database name (invisibly).

Author(s)

Johannes Rainer

See Also

compound_tbl_sdf () and compound_tbl_lipidblast() for functions to extract compound an-
notations from files in SDF format, or files from LipidBlast.

import_mona_sdf () to import both the compound and spectrum data from a SDF file from MoNa
(Massbank of North America) in one call.

msms_spectra_hmdb() and msms_spectra_mona() for functions to import MS/MS spectrum data
from xml files from HMDB or an SDF file from MoNa.

CompDb () for how to use a compound database.

Examples

Read compounds for a HMDB subset
fl <- system.file("sdf/HMDB_sub.sdf.gz", package = "CompoundDb")
cmps <- compound_tbl_sdf (f1)

Create a metadata data.frame for the compounds.

metad <- data.frame(name = c("source”, "url”, "source_version”,
"source_date”, "organism"”), value = c("HMDB", "http://www.hmdb.ca",
"v4" "2017-08-27", "Hsapiens"))

Alternatively use the make_metadata helper function

metad <- make_metadata(source = "HMDB", source_version = "v4",
source_date = "2017-08", organism = "Hsapiens”,
url = "http://www.hmdb.ca")

Create a SQLite database in the temporary folder

db_f <- createCompDb(cmps, metadata = metad, path = tempdir())

The database can be loaded and accessed with a CompDb object
db <- CompDb(db_f)
db

Create a database for HMDB that includes also MS/MS spectrum data

metad2 <- make_metadata(source = "HMDB_with_spectra”, source_version = "v4",
source_date = "2017-08", organism = "Hsapiens”,
url = "http://www.hmdb.ca")

Import spectrum information from selected MS/MS xml files from HMDB
that are provided in the package

xml_path <- system.file(”"xml"”, package = "CompoundDb")

spctra <- msms_spectra_hmdb(xml_path)

Create a SQLite database in the temporary folder
db_f2 <- createCompDb(cmps, metadata = metad2, msms_spectra = spctra,
path = tempdir())

The database can be loaded and accessed with a CompDb object
db2 <- CompDb(db_f2)

18 expandMzlIntensity

db2

Does the database contain MS/MS spectrum data?
hasMsMsSpectra(db2)

Create a database for a ChEBI subset providing the file name of the
corresponding SDF file
metad <- make_metadata(source = "ChEBI_sub”, source_version = "2",
source_date = NA, organism = "Hsapiens”, url = "www.ebi.ac.uk/chebi")
db_f <- createCompDb(system.file("sdf/ChEBI_sub.sdf.gz",
package = "CompoundDb"), metadata = metad, path = tempdir())
db <- CompDb(db_f)
db

compounds (db)

connect to the database and query it's tables using RSQlite
library(RSQLite)

con <- dbConnect(dbDriver("”SQLite"), db_f)

dbGetQuery(con, "select * from metadata”)
dbGetQuery(con, "select * from ms_compound”)

To create a CompDb R-package we could simply use the
createCompDbPackage function on the SQLite database file name.

expandMzIntensity Expand m/z and intensity values in a data.frame

Description

expandMzIntensity() expands a data.frame with m/z and/or intensity values stored as a list
in columns "mz" and "intensity"”. The resulting data.frame has the m/z and intensity values
stored as numeric in columns "mz" and "intensity”, one value per row, with the content of other
columns repeated as many times as there are m/z and intensity values.

Usage
expandMzIntensity(x)
Arguments
X data. frame with collapsed m/z and intensity values in columns "mz" and "intensity”,
such as returned by msms_spectra_hmdb() with parameter collapsed = TRUE,
or by spectra or compounds calls.
Value

data.frame with "mz" and "intensity” columns expanded. See description for details.

Author(s)

Johannes Rainer

Filter-classes 19

Examples

Read a data.frame with collapsed columns mz and intensity columns
dr <- system.file(”"xml/", package = "CompoundDb")
msms_spctra <- msms_spectra_hmdb(dr)

msms_spctra

Columns mz and intensity are "collased”
msms_spctra$mz

Expand the data.frame to get one row per m/z and intensity value
spctra_exp <- expandMzIntensity(msms_spctra)
spctra_exp

Filter-classes Filters supported by CompDb and lonDb

Description

A variety of different filters can be applied to the CompDb object to retrieve only subsets of the data.
These filters extend the AnnotationFilter:: AnnotationFilter class and support the filtering concepts
introduced by Bioconductor’s AnnotationFilter package.

The supported filters are:

* CompoundIdFilter: filter based on the compound ID.

* FormulaFilter: filter based on the compound’s formula.

* InchiFilter: filter based on the compound’s InChl.

* InchikeyFilter: filter based on the compound’s InChlI key.

* ExactmassFilter: filter based on the compound’s (exact) mass.
* NameFilter: filter based on the compound name.

* MsmsMzRangeMinFilter: retrieve entries based on the smallest m/z of all peaks of their
MS/MS spectra. Requires that MS/MS spectra data are present (i.e. hasMsMsSpectra(cmp_db)
returns TRUE).

* MsmsMzRangeMaxFilter: retrieve entries based on the largest m/z of all peaks of their MS/MS
spectra. Requires that MS/MS spectra data are present (i.e. hasMsMsSpectra(cmp_db) re-
turns TRUE).

* SpectrumIdFilter: retrieve entries associated with the provided IDs of MS/MS spectra.

In addition to the filters listed above, the following ones are supported by a IonDb (but not by a
CompDb):

e IonIdFilter: filter based on the ion ID.

e TonAdductFilter: filter based on the adduct.

e TonMzFilter: filter based on the mz of the ion.

e TonRtFilter: filter based on the rt of the ion.

20 Filter-classes

Usage

CompoundIdFilter(value, condition

SpectrumIdFilter(value, condition

NameFilter(value, condition = "=="

MsmsMzRangeMinFilter(value, condition = ">=")
MsmsMzRangeMaxFilter(value, condition = "<=")
ExactmassFilter(value, condition = "==")

n n

FormulaFilter(value, condition = "==

InchiFilter(value, condition = "=="

n n

InchikeyFilter(value, condition = "==

IonIdFilter(value, condition = "=="

IonAdductFilter(value, condition = "=="

IonMzFilter(value, condition

TonRtFilter(value, condition

Arguments
value The value for the filter. For details see AnnotationFilter: :AnnotationFilter().
condition The condition for the filter. For details see AnnotationFilter: :AnnotationFilter().
Value

Constructor functions return an instance of the respective class.

Author(s)

Johannes Rainer

See Also

AnnotationFilter: :supportedFilters() for the method to list all supported filters for a CompDb
(or a IonDb) object.

Examples

Create a filter for the compound id
cf <- CompoundIdFilter(”comp_a")
cf

Create a filter using a formula expression
AnnotationFilter(~ compound_id == "comp_b")

import_mona_sdf 21

Combine filters
AnnotationFilterList(CompoundIdFilter(”a"), NameFilter("b"))

Using a formula expression

AnnotationFilter(~ compound_id == "a" | name != "b")
import_mona_sdf Import compound and spectrum information from MoNa
Description

import_mona_sdf () allows to import compound and spectrum information from an SDF file from
MoNa (Massbank of North America http://mona.fiehnlab.ucdavis.edu/). This function is a con-
venience function using the compound_tbl_sdf () and msms_spectra_mona() functions for data
import but avoiding to read the SDF files twice.

Usage

import_mona_sdf (x, nonStop = TRUE)

Arguments
X character (1) being the SDF file name.
nonStop logical (1) whether file content specific errors should only reported as warn-
ings and not break the full import process. The value of this parameter is passed
to parameter skipErrors of the ChemmineR: : read.SDFset () function.
Value

A list with elements "compound” and "msms_spectrum” containing data.frames with compound
and MS/MS spectrum data, respectively.

Note

MoNa SDF files organize the data by individual spectra (i.e. each element is one spectrum) and
individual compounds can not easily and consistently defined (i.e. not all entries have an InChl
ID or other means to uniquely identify compounds). Thus, the function returns a highly redundant
compound table. Feedback on how to reduce this redundancy would be highly welcome!

Author(s)

Johannes Rainer

See Also

compound_tbl_sdf () to read only the compound information.

msms_spectra_mona() to read only the spectrum data.

22 IonDb

Examples

Define the test file containing a small subset from MoNa
fl <- system.file("sdf/MoNa_export-All_Spectra_sub.sdf.gz",
package = "CompoundDb")

Import the data
res <- import_mona_sdf (fl)

IonDb lonDb: compound database with additional ion information

Description

IonDb objects extends CompDb by allowing to store also information about measured ions to a
CompDb () database. This information includes the type (adduct) of the ion, it’s measured (or ex-
pected) retention time for a certain LC-MS setup and its mass-to-charge ratio.

As suggested use case, users might create (or download) a CompDb (SQLite) database e.g. containing
compound (and eventually MS/MS spectra) annotations from public databases such as the Human
Metabolome Database (HMDB) or MassBank. To store now measured ions (e.g. of lab-internal
standards) for a certain LC-MS setup, such a CompDb can then be converted to an IonDb using the
TonDb() constructor function. Ions can be subsequently added using the insertIon() function. In
general, it is suggested to create one IonDb database for one specific LC-MS setup. Such an IonDb
database can then be used to match experimental m/z and retention times against ions defined in the
database (using the functionality of the MetaboAnnotation package).

Usage

S4 method for signature 'IonDb'
ionVariables(object, includeId = FALSE, ...)

S4 method for signature 'IonDb'
ions(
object,
columns = ionVariables(object),
filter,
return.type = c("data.frame”, "tibble"),

)

S4 method for signature 'IonDb'
insertIon(object, ions, addColumns = FALSE)

S4 method for signature 'IonDb'
deletelon(object, ids = integer(@), ...)

S4 method for signature 'missing,missing'
IonDb(x, cdb, flags = SQLITE_RWC, ...)

S4 method for signature 'CompDb,missing'
IonDb(x, cdb, ions = data.frame(), ...)

https://rformassspectrometry.github.io/MetaboAnnotation

IonDb 23

S4 method for signature 'character,missing'’
IonDb(x, cdb, flags = SQLITE_RW, ...)

S4 method for signature 'DBIConnection,missing'’
TonDb(

X,

cdb,

ions = data.frame(),

flags = SQLITE_RW,

.DBNAME = character()
)

S4 method for signature 'character,CompDb'
IonDb(x, cdb, ions = data.frame(), flags = SQLITE_RW, ...)

S4 method for signature 'DBIConnection,CompDb'
TonDb(

X,

cdb,

ions = data.frame(),

flags = SQLITE_RW,

.DBNAME = character()

)
Arguments

object For all methods: a IonDb object.

includeld For ionVariables(): logical(1) whether the ion ID (column "ion_id")
should be included in the result. The default is includeId = FALSE.
additional arguments. Currently not used.

columns For ions(): character with the names of the database columns that should be
retrieved. Use ionVariables for a list of available column names.

filter For ions(): filter expression or AnnotationFilter::AnnotationFilter()
defining a filter to be used to retrieve specific elements from the database.

return.type For ions(): either "data.frame” or "tibble" to return the result as adata. frame()
or tibble::tibble(), respectively.

ions for insertIon() and IonDb(): data.frame with ion definitions to be added to
the ITonDb database. Columns "compound_id" (character()), "ion_adduct”
(character()), "ion_mz" (numeric())and "ion_rt"” (numeric()) are manda-
tory (but, with the exception of "compound_id"”, can contain NA).

addColumns For insertIons(): logical(1) whether columns being present in the submit-
ted data. frame but not in the database table should be added to the database’s
ion table.

ids For deleteIon(): character() or (alternatively integer()) specifying the
IDs of the ions to delete. IDs in ids that are not associated to any ion in the
IonDb object are ignored.

X For IonDb(): database connection or character (1) with the file name of the

SQLite database where the IonDb data will be stored or a CompDb () object that
should be converted into an IonDb object.

24 IonDb

For all other methods: an “IonDb™ object.

cdb For IonDb(): CompDb object from which data should be transferred to the IonDb
database.
flags For IonDb(): optional integer (1) defining the flags for the SQLite database

connection. Only used if x is a character().

. DBNAME character (1) defining the SQLite database file. This is an internal parameter
not intended to be used/provided by the user.

Value

See description of the respective function.

Creation of IonDb objects/databases

* A new IonDb database can be created and initialized with data from an existing CompDb
database by passing either the database connection (e.g. an SQLiteConnection) or the file
path of a (to be created) SQLite database with parameter x to the IonDb() function and the
CompDb object with parameter cdb. Optional parameter ions allows insert in addition ion
definitions (which can also be added later using insertIon() function calls).

* An existing CompDb can be converted to an IonDb by passing the CompDb() object with pa-
rameter x to the IonDb function. Optional parameter ions allows to provide a data.frame
with ion definitions to be inserted in to the database (which can also be added later using
insertIon() function calls). Note that this fails if the database connection for the CompDb is
read-only.

» Previously created IonDb databases can be loaded by passing either the database connection
(e.g. an SQLiteConnection) or the file path of the (SQLite) database with parameter x to the
IonDb() function.

Retrieve annotations and ion information from the database

Annotations/compound informations can be retrieved from a IonDb in the same way as thay are
extracted from a CompDb. In addition, the function ions() allows to retrieve the specific ion
information from the database. It returns the actual data as a data.frame (if return.type =
"data.frame") or a tibble::tibble() (if return.type = "tibble"). An ions() call will al-
ways return all elements from the ms_ion table (unless a filter is used).

General functions (beside those inherited from CompDb)

* TonDb(): connect to or create a compound/ion database.

e ionVariables(): returns all available columns/database fields for ions.

Adding and removing data from a database

IonDb inherits the insertCompound(), insertSpectra(), deleteCompound() and deleteSpectra()
functions from CompDb (). In addition, IonDb defines the functions:

* insertIon(): adds ions to the IonDb object. Note that insertIon() always adds all the ions
specified through the ions parameter and does not check if they are already in the database.
To add columns present in the submitted data. frame to the database table set addColumns =
TRUE (default is addColumns = FALSE).

* deleteIon(): deletes ions from the IonDb object by specifying their IDs.

IonDb 25

Filtering the database

Like compounds () and Spectra() also ions() allows to filter the results using specific filter classes
and expressions. Filtering uses the concepts from Bioconductor’s AnnotationFilter package. All
information for a certain compound with the ID "1" can for example be retrieved by passing the
filter expression filter = ~ion_id == 1 to the ions() function.

Use the AnnotationFilter: :supportedFilters() function on the IonDb object to get a list of
all supported filters. See also examples below or the usage vignette for details.

Author(s)

Andrea Vicini, Johannes Rainer

Examples

We load a small compound test database based on MassBank which is

distributed with this package.

cdb <- CompDb(system.file("sql/CompDb.MassBank.sql"”, package = "CompoundDb"))
cdb

We next want to convert this CompDb into an IonDb, but the original CompDb
database is read only, thus we have to provide the name (or connection) of
an other database to transfer all the data from the CompDb to that.

idb <- IonDb(paste@(tempdir(), "/idb_ex.db"), cdb)

idb

It is also possible to load a previously created IonDb passing only the
connection to the database.
idb2 <- IonDb(paste@(tempdir(), "/idb_ex.db"))

Ion definitions can be added to the database with the “insertIon™ function
providing a “data.frame™ with ion definition. This “data.frame™ is expected
to provide the IDs of the compounds, an adduct name/definition and the

(experimentally determined) m/z and retention time of the ion. To list

compound IDs from the CompDb database:

head(compounds (cdb, c(”compound_id”, "name")))

ions = data.frame(compound_id = c("1", "1", "2", "3" 6 "6", "35"),
ion_adduct = c("[M+H]+", "[M+NaJ+", "[M+Nal+",
"[M+Nal+", "[M+2H]2+", "[M+H-NH3]+"),

ion_mz = c(179.0703, 201.0522, 201.0522,
201.0522, 253.66982, 312.0390),
ion_rt = 1:6)

Inserting ion definitions.
idb <- insertIon(idb, ions)
idb

ions(idb, columns = c("name”, "formula”, "ion_adduct”, "ion_mz", "ion_rt"))

List all available ion variables
ionVariables(idb)

Extract a data.frame with ion variables for all ions
ions(idb)

List all database tables and their columns

26 MsBackendCompDb

tables(idb)

Filtering the database

#H#

Get all ions with an m/z between 200 and 300

res <- ions(idb, filter = ~ ion_mz > 200 & ion_mz < 300)
res

Get all ions that have a H in their adduct definition.
res <- ions(idb, filter = IonAdductFilter("H", "contains"))
res

MsBackendCompDb CompDb-based MS spectrum backend

Description

The MsBackendCompDb represents MS2 spectra data from a CompDb() object/database. The ob-
ject keeps only the primary keys of the spectra, the associated compound IDs and the precursor
m/z values in memory and has thus only a very low memory footprint. All spectra variables, in-
cluding m/z and intensity values are retrieved from the database on-demand. By extending the
Spectra: :MsBackendCached() class directly, MsBackendCompDb supports adding/replacing spec-
tra variables. These values are however only cached within the object and not propagated (written)
to the database.

It is not intended that users create or use instances of this class directly, the Spectra: :Spectra()
call on CompDb () will return a Spectra object that uses this backend.

The MsBackendCompDb does not support parallel processing because the database connection stored
within the object can not be used across multiple parallel processes. The backendBpparam()
method for MsBackendCompDb thus returns always SerialParam and hence any function that uses
this method to check for parallel processing capability of a MsBackend will by default disable par-
allel processing.

Usage
MsBackendCompDb ()

S4 method for signature 'MsBackendCompDb'
backendInitialize(object, x, filter, ...)

S4 method for signature 'MsBackendCompDb'
show(object)

S4 method for signature 'MsBackendCompDb'
peaksData(object, columns = c("mz", "intensity"))

S4 method for signature 'MsBackendCompDb'
peaksVariables(object)

S4 method for signature 'MsBackendCompDb'
dataStorage(object)

MsBackendCompDb 27

S4 replacement method for signature 'MsBackendCompDb'
intensity(object) <- value

S4 replacement method for signature 'MsBackendCompDb'
mz(object) <- value

S4 method for signature 'MsBackendCompDb'
spectraData(object, columns = spectraVariables(object))

S4 method for signature 'MsBackendCompDb'
spectraNames(object)

S4 replacement method for signature 'MsBackendCompDb'
spectraNames(object) <- value

S4 method for signature 'MsBackendCompDb,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'MsBackendCompDb,ANY'
extractByIndex(object, i)

S4 replacement method for signature 'MsBackendCompDb'
x$name <- value

S4 method for signature 'MsBackendCompDb'
tic(object, initial = TRUE)

S4 method for signature 'MsBackendCompDb'
backendBpparam(object, BPPARAM = bpparam())

Arguments

object an MsBackendCompDb instance.

X an MsBackendCompDb instance.

filter for backendInitialize(): optional filter expression to specify which elements
to retrieve from the database.
ignored.

columns for spectraData(): character with names of columns/spectra variables that
should be returned. Defaults to spectraVariables(object). Database columns
"ms_level”, "precursor_mz", "precursor_intensity", "precursor_charge"”
are mapped to the core Spectra variables msLevel, precursorMz, precursorIntensity
and precursorCharge, respectively. For peaksData: character with the names
of the peaks columns to return. Use peaksVariables for supported values.

value for $<-: the replacement values.

i For [: integer, logical or character to subset the object.

j For [: not supported.

drop For [: not considered.

name for $<-: the name of the spectra variable to replace.

initial for tic(): logical(1) whether original total ion current values should be re-

turned or if the values should be calculated based on the actual intensity values
of each spectrum.

28

BPPARAM

Value

MsBackendCompDb

for more information.

See the description of the respective function.

Methods implemented for MsBackendCompDb

The methods listed here are implemented for the MsBackendCompDb. All other methods are inherited

directly from the parent Spectra: :MsBackendCached() class. See the help of Spectra: :MsBackend()

in the Spectra package for a complete listing of methods.

Note

peaksData(): gets the full list of peak matrices. Returns a 1ist (), length equal to the number
of spectra and each element being a matrix with columns "mz"” and "intensity"” with the
spectra’s m/z and intensity values.

peaksVariables(): lists the available peaks variables in the backend (database). These can
be used for parameter columns of peaksData().

intensity<-: not supported.

mz<-: not supported.

spectraData(): returns the complete spectrum data including m/z and intensity values as a
S4Vectors: :DataFrame().

$<-: replace or add a spectrum variable. Note that mz, intensity and spectrum_id variables
can not be replaced.

spectraNames(): returns values from spectrum_id database column.

For higher performance it is suggested to change the backend of the Spectra: :Spectra() ob-
ject to an Spectra: :MsBackendMemory () backend with the Spectra: : setBackend() method of
Spectra objects.

Author(s)

Johannes Rainer

Examples

#it
#i#
#it
#it
#i#
#it
#it
#it

#it

MsBackendCompDb are not expected to be created/instanciated by users
directly. Users also almost never directly interact with this type of
object, as it is intented as a pure data backend for the ~Spectra™ object.
Users will thus access MS data through such ~Spectra™ object, which can
be created for “CompDb~ objects using the ~Spectra” method (see help

of the ~CompDb™ object for more information. This examples shows how

a ~“MsBackendCompDb~ could be created purely from an SQLite database

with data from a CompoundDb database.

Connect to the SQLite database of a ~CompDb™ distributed via this package
library(RSQLite)
library(Spectra)
cdb <- CompDb(system.file("sql/CompDb.MassBank.sql"”, package = "CompoundDb"))

be <- backendInitialize(MsBackendCompDb(), cdb)

be

for backendBpparam(): BiocParallel parallel processing setup. See BiocParallel

::bpparam()

msms_spectra_hmdb 29

Accessing m/z values
mz(be)

msms_spectra_hmdb Import MS/MS spectra from HMDB xml files

Description

msms_spectra_hmdb () imports MS/MS spectra from corresponding xml files from HMDB (http://www.hmdb.ca)
and returns the data as a data.frame. HMDB stores MS/MS spectrum data in xml files, one file
per spectrum.

Depending on the parameter collapsed, the returned data. frame is either collapsed, meaning that
each row represents data from one spectrum xml file, or expanded with one row for each m/z and
intensity pair for each spectrum. Columns "mz"” and "intensity"” are of type list for collapsed
= TRUE and numeric for collapsed = FALSE.

Usage

msms_spectra_hmdb(x, collapsed = TRUE)

Arguments
X character(1): with the path to directory containing the xml files.
collapsed logical (1) whether the returned data. frame should be collapsed or expanded.
See description for more details.
Value

data. frame with as many rows as there are peaks and columns:

* spectrum_id (integer): an arbitrary, unique ID identifying values from one xml file.

* original_spectrum_id (character): the HMDB-internal ID of the spectrum.

* compound_id (character): the HMDB compound ID the spectrum is associated with.

* polarity (integer): O for negative, 1 for positive, NA for not set.

* collision_energy (numeric): collision energy voltage.

* predicted (logical): whether the spectrum is predicted or experimentally verified.

* splash (character): the SPLASH (SPectral. hASH) key of the spectrum (Wohlgemuth 2016).

* instrument_type (character): the type of MS instrument on which the spectrum was mea-
sured.

* instrument (character): the MS instrument (not available for all spectra in HMDB).
* precursor_mz (numeric): not provided by HMDB and thus NA.
* mz (numeric or list of numeric): m/z values of the spectrum.

* intensity (numeric or list of numeric): intensity of the spectrum.

30 msms_spectra_mona

Note

The HMDB xml files are supposed to be extracted from the downloaded zip file into a folder and
should not be renamed. The function identifies xml files containing MS/MS spectra by their file
name.

The same spectrum ID can be associated with multiple compounds. Thus, the function assignes an
arbitrary ID (column "spectrum_id") to values from each file. The original ID of the spectrum in
HMDB is provided in column "original_spectrum_id".

Author(s)

Johannes Rainer

References

Wohlgemuth G, Mehta SS, Mejia RF, Neumann S, Pedrosa D, Pluskal T, Schymanski EL, Willigha-
gen EL, Wilson M, Wishart DS, Arita M, Dorrestein PC, Bandeira N, Wang M, Schulze T, Selak
RM, Steinbeck C, Nainala VC, Mistrik R, Nishioka T, Fiehn O. SPLASH, A hashed identifier for
mass spectra. Nature Biotechnology 2016 34(11):1099-1101

See Also

createCompDb() for the function to create a CompDb database with compound annotation and
spectrum data.

Other spectrum data import functions.: msms_spectra_mona()

Examples

Locate the folder within the package containing test xml files.
pth <- system.file("xml"”, package = "CompoundDb")

List all files in that directory
dir(pth)

Import spectrum data from HMDB MS/MS spectrum xml files in that directory
msms_spectra_hmdb(pth)

Import the data as an *expandedx data frame, i.e. with a row for each
single m/z (intensity) value.
msms_spectra_hmdb(pth, collapsed = FALSE)

msms_spectra_mona Import MS/MS spectra from MoNa

Description

msms_spectra_mona() imports MS/MS spectra from a MoNa (Massbank of North America, http://mona.fiehnlab.ucdavi
SDF file and returns the data as a data. frame.

Depending on the parameter collapsed, the returned data. frame is either collapsed, meaning that
each row represents data from one spectrum, or expanded with one row for each m/z and intensity
pair for each spectrum. Columns "mz" and "intensity” are of type list for collapsed = TRUE
and numeric for collapsed = FALSE.

msms_spectra_mona 31

Usage

msms_spectra_mona(x, collapsed = TRUE)

Arguments
X character(1): with the path to directory containing the xml files.
collapsed logical (1) whether the returned data. frame should be collapsed or expanded.
See description for more details.
Value

data. frame with as many rows as there are peaks and columns:

* spectrum_id (integer): an arbitrary, unique ID for each spectrum.

* original_spectrum_id (character): The ID from the spectrum as specified in the MoNa SDF.
» compound_id (character): the compound ID the spectrum is associated with.

* polarity (integer): O for negative, 1 for positive, NA for not set.

* collision_energy (character): collision energy voltage.

* predicted (logical): whether the spectrum is predicted or experimentally verified.

* splash (character): NA since SPLASH (SPectral. hASH) keys are not provided.

* instrument_type (character): the type of MS instrument on which the spectrum was mea-
sured.

e instrument (character): the MS instrument.

* precursor_mz (numeric): precursor m/z.

* adduct (character): ion formed from the precursor ion.

* ms_level (integer): stage of the sequential mass spectrometry (MSn).
* mz (numeric or list of numeric): m/z values of the spectrum.

* intensity (numeric or list of numeric): intensity of the spectrum.

Note

The identifiers provided by MoNa are used as original_spectrum_id. Note also that the MoNa
data is not normalized in the sense that each spectrum is associated to one compound and the
compound data is partially redundant. Also, MoNa does not provide a splash for a spectrum, hence
the corresponding column will only contain NA.

Author(s)

Johannes Rainer

See Also

createCompDb() for the function to create a CompDb database with compound annotation and
spectrum data.

Other spectrum data import functions.: msms_spectra_hmdb ()

32 msms_spectra_mona

Examples

Define the test file containing the data
fl <- system.file("sdf/MoNa_export-All_Spectra_sub.sdf.gz",
package = "CompoundDb")
Import spectrum data from the SDF file with a subset of the MoNa data
msms_spectra_mona(fl)

Import the data as an *expandedx data frame, i.e. with a row for each
single m/z (intensity) value.
msms_spectra_mona(fl, collapsed = FALSE)

Index

* compound table creation functions
compound_tbl_lipidblast, 11
compound_tbl_sdf, 12

* spectrum data import functions.
msms_spectra_hmdb, 29
msms_spectra_mona, 30

[,MsBackendCompDb, ANY-method

(MsBackendCompDb), 26
$<-,MsBackendCompDb-method
(MsBackendCompDb), 26

addJoinDefinition, 2

addJoinDefinition(), 7, 8

adductNames(), 5

AnnotationFilter::AnnotationFilter, /9

AnnotationFilter::AnnotationFilter(),
5,20,23

AnnotationFilter: :supportedFilters(),
8, 20,25

backendBpparam,MsBackendCompDb-method
(MsBackendCompDb), 26
backendInitialize,MsBackendCompDb-method
(MsBackendCompDb), 26
BiocParallel: :bpparam(), 28

ChemmineR: :read.SDFset(), 12, 21
CompDb, 4, 8, 14, 15, 30, 31
CompDb (), 17, 22-24, 26
CompDb-class (CompDb), 4
compound_tbl_lipidblast, 10, 13
compound_tbl_lipidblast(), I14, 17
compound_tbl_sdf, 12, 12
compound_tbl_sdf (), 14, 17, 21
CompoundIdFilter (Filter-classes), 19
CompoundIdFilter(), 8
CompoundIdFilter-class
(Filter-classes), 19
compounds (CompDb), 4
compounds(), 3
compounds, CompDb-method (CompDb), 4
compoundVariables (CompDb), 4
compoundVariables,CompDb-method
(CompDb), 4

33

copyCompDb (CompDb), 4

createCompDb, 14
createCompDb(), 7, 8, 13, 30, 31
createCompDbPackage (createCompDb), 14

data.frame(), 5, 23
dataStorage,MsBackendCompDb-method
(MsBackendCompDb), 26
dbconn, CompDb-method (CompDb), 4
deleteCompound (CompDb), 4
deleteCompound, CompDb-method (CompDb), 4
deleteCompound, IonDb-method (CompDb), 4
deletelIon (IonDb), 22
deletelIon, IonDb-method (IonDb), 22
deleteSpectra (CompDb), 4
deleteSpectra, CompDb-method (CompDb), 4

emptyCompDb (createCompDb), 14
ExactmassFilter (Filter-classes), 19
ExactmassFilter-class (Filter-classes),
19
expandMzIntensity, 18
extractByIndex,MsBackendCompDb,ANY-method
(MsBackendCompDb), 26

Filter-classes, 19
FormulaFilter (Filter-classes), 19
FormulaFilter-class (Filter-classes), 19

hasMsMsSpectra (CompDb), 4

import_mona_sdf, 21

import_mona_sdf (), 17

InchiFilter (Filter-classes), 19

InchiFilter-class (Filter-classes), 19

InchikeyFilter (Filter-classes), 19

InchikeyFilter-class (Filter-classes),
19

insertCompound (CompDb), 4

insertCompound(), /4

insertCompound, CompDb-method (CompDb), 4

insertIon (IonDb), 22

insertIon, IonDb-method (IonDb), 22

insertSpectra (CompDb), 4

insertSpectra(), 14

34

insertSpectra, CompDb, Spectra-method
(CompDb), 4

intensity<-,MsBackendCompDb-method
(MsBackendCompDb), 26

TonAdductFilter (Filter-classes), 19

IonAdductFilter-class (Filter-classes),
19

IonDb, 22

IonDb, character,CompDb-method (IonDb),
22

IonDb,character,missing-method (IonDb),
22

IonDb, CompDb,missing-method (IonDb), 22

IonDb,DBIConnection,CompDb-method
(IonDb), 22

IonDb,DBIConnection,missing-method
(IonDb), 22

IonDb,missing,missing-method (IonDb), 22

IonDb-class (IonDb), 22

IonIdFilter (Filter-classes), 19

IonIdFilter-class (Filter-classes), 19

TonMzFilter (Filter-classes), 19

IonMzFilter-class (Filter-classes), 19

IonRtFilter (Filter-classes), 19

TIonRtFilter-class (Filter-classes), 19

ions (IonDb), 22

ions, IonDb-method (IonDb), 22

ionVariables (IonDb), 22

ionVariables, IonDb-method (IonDb), 22

list(), 28

make_metadata (createCompDb), 14
mass2mz (CompDb), 4
mass2mz , ANY-method (CompDb), 4
mass2mz , CompDb-method (CompDb), 4
MetaboCoreUtils: :mass2mz(), 7
metadata, CompDb-method (CompDb), 4
MsBackendCompDb, 26
MsBackendCompDb-class
(MsBackendCompDb), 26
msms_spectra_hmdb, 29, 31
msms_spectra_hmdb(), 14, 16-18
msms_spectra_mona, 30, 30
msms_spectra_mona(), 14, 17, 21
MsmsMzRangeMaxFilter (Filter-classes),
19
MsmsMzRangeMaxFilter-class
(Filter-classes), 19
MsmsMzRangeMinFilter (Filter-classes),
19
MsmsMzRangeMinFilter-class
(Filter-classes), 19

INDEX

mz<-,MsBackendCompDb-method
(MsBackendCompDb), 26

NameFilter (Filter-classes), 19
NameFilter-class (Filter-classes), 19

peaksData,MsBackendCompDb-method
(MsBackendCompDb), 26

peaksVariables,MsBackendCompDb-method
(MsBackendCompDb), 26

RSQLite::SQLite(), 5

S4Vectors: :DataFrame(), 28

show (CompDb), 4

show, CompDb-method (CompDb), 4

show, IonDb-method (IonDb), 22

show,MsBackendCompDb-method
(MsBackendCompDb), 26

Spectra, CompDb-method (CompDb), 4

Spectra: :MsBackend(), 28

Spectra: :MsBackendCached(), 26, 28

Spectra: :MsBackendMemory (), 28

Spectra: :setBackend(), 28

Spectra: :Spectra(), 6, 26, 28

spectraData,MsBackendCompDb-method
(MsBackendCompDb), 26

spectraNames,MsBackendCompDb-method
(MsBackendCompDb), 26

spectraNames<-,MsBackendCompDb-method
(MsBackendCompDb), 26

spectraVariables,CompDb-method
(CompDDb), 4

SpectrumIdFilter (Filter-classes), 19

SpectrumIdFilter-class
(Filter-classes), 19

src_compdb (CompDb), 4

supportedFilters,CompDb-method
(CompDDb), 4

tables (CompDb), 4
tibble::tibble, /17, 13
tibble::tibble(), 5, 6, 23, 24
tic,MsBackendCompDb-method
(MsBackendCompDb), 26

	addJoinDefinition
	CompDb
	compound_tbl_lipidblast
	compound_tbl_sdf
	createCompDb
	expandMzIntensity
	Filter-classes
	import_mona_sdf
	IonDb
	MsBackendCompDb
	msms_spectra_hmdb
	msms_spectra_mona
	Index

