
Package ‘CellBench’
January 19, 2026

Type Package

Title Construct Benchmarks for Single Cell Analysis Methods

Version 1.26.0

Description This package contains infrastructure for benchmarking analysis
methods and access to single cell mixture benchmarking data. It provides
a framework for organising analysis methods and testing combinations of
methods in a pipeline without explicitly laying out each combination. It
also provides utilities for sampling and filtering SingleCellExperiment
objects, constructing lists of functions with varying parameters, and
multithreaded evaluation of analysis methods.

biocViews Software, Infrastructure, SingleCell

URL https://github.com/shians/cellbench

BugReports https://github.com/Shians/CellBench/issues

License GPL-3

Encoding UTF-8

Depends R (>= 3.6), SingleCellExperiment, magrittr, methods, stats,
tibble, utils

Imports assertthat, BiocGenerics, BiocFileCache, BiocParallel, dplyr,
rlang, glue, memoise, purrr (>= 0.3.0), rappdirs, tidyr,
tidyselect, lubridate

Suggests BiocStyle, covr, knitr, rmarkdown, testthat, limma, ggplot2

VignetteBuilder knitr

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/CellBench

git_branch RELEASE_3_22

git_last_commit 452edea

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Shian Su [cre, aut],
Saskia Freytag [aut],
Luyi Tian [aut],
Xueyi Dong [aut],

1

https://github.com/shians/cellbench
https://github.com/Shians/CellBench/issues

2 Contents

Matthew Ritchie [aut],
Peter Hickey [ctb],
Stuart Lee [ctb]

Maintainer Shian Su <su.s@wehi.edu.au>

Contents

CellBench-package . 3
all_unique . 3
any_task_errors . 4
apply_methods . 4
arrow_sep . 5
as_pipeline_list . 6
cache_method . 7
cellbench_case_study . 8
cellbench_file . 8
check_class . 9
clear_cached_datasets . 9
clear_cellbench_cache . 10
collapse_pipeline . 10
data_list . 11
filter_zero_genes . 12
fn_arg_seq . 13
fn_list . 14
is.task_error . 14
keep_high_count_cells . 15
keep_high_count_genes . 15
keep_high_var_genes . 16
load_sc_data . 16
mhead . 17
print.fn_arg_seq . 18
print.task_error . 18
sample_cells . 19
sample_genes . 19
sample_sce_data . 20
set_cellbench_bpparam . 20
set_cellbench_cache_path . 21
set_cellbench_threads . 21
split_step . 22
strip_timing . 23
summary.benchmark_tbl . 24
time_methods . 25
unpack_timing . 26

Index 27

CellBench-package 3

CellBench-package A framework for benchmarking combinations of methods in multi-
stage pipelines

Description

This package contains a framework for benchmarking combinations of methods in a multi-stage
pipeline. It is mainly based around the apply_methods function, which takes lists of functions to
be applied in stages of a pipeline.

Author(s)

Shian Su <https://www.github.com/shians>

See Also

The core function in this package is apply_methods, see vignette("Introduction", package
= "CellBench") for basic usage. Run cellbench_case_study() to see a case study using Cell-
Bench. The data loading functions from load_all_data may also be of interest.

all_unique Check if all values in a vector are unique

Description

Check if all values in a vector are unique

Usage

all_unique(x)

Arguments

x the vector to check

Value

TRUE if all values in the vector are unique

Examples

all_unique(c(1, 2, 3)) # TRUE
all_unique(c(1, 2, 2)) # FALSE

https://www.github.com/shians

4 apply_methods

any_task_errors Check if any tasks produced errors

Description

Check the results column of a benchmark tibble for any task_error objects.

Usage

any_task_errors(x, verbose)

S3 method for class 'benchmark_tbl'
any_task_errors(x, verbose = FALSE)

Arguments

x the tibble to check
verbose TRUE if the rows with errors should be reported

Value

TRUE if any entry in the result column is a task_error object

Methods (by class)

• any_task_errors(benchmark_tbl):

apply_methods Apply methods

Description

apply_methods() and its aliases apply_metrics and begin_benchmark take either lists of datasets or
benchmark_tbl objects and applies a list of functions. The output is a benchmark_tbl where each
method has been applied to each dataset or preceeding result.

Usage

apply_methods(x, fn_list, name = NULL, suppress.messages = TRUE)

S3 method for class 'list'
apply_methods(x, fn_list, name = NULL, suppress.messages = TRUE)

S3 method for class 'benchmark_tbl'
apply_methods(x, fn_list, name = NULL, suppress.messages = TRUE)

S3 method for class 'tbl_df'
apply_methods(x, fn_list, name = NULL, suppress.messages = TRUE)

apply_metrics(x, fn_list, name = NULL, suppress.messages = TRUE)

begin_benchmark(x, fn_list, name = NULL, suppress.messages = TRUE)

arrow_sep 5

Arguments

x the list of data or benchmark tibble to apply methods to

fn_list the list of methods to be applied

name (optional) the name of the column for methods applied
suppress.messages

TRUE if messages from running methods should be suppressed

Value

benchmark_tbl object containing results from methods applied, the first column is the name of the
dataset as factors, middle columns contain method names as factors and the final column is a list of
results of applying the methods.

See Also

time_methods

Examples

list of data
datasets <- list(

set1 = rnorm(500, mean = 2, sd = 1),
set2 = rnorm(500, mean = 1, sd = 2)

)

list of functions
add_noise <- list(

none = identity,
add_bias = function(x) { x + 1 }

)

res <- apply_methods(datasets, add_noise)

arrow_sep Unicode arrow separators

Description

Utility function for generating unicode arrow separators.

Usage

arrow_sep(towards = c("right", "left"), unicode = FALSE)

Arguments

towards the direction the unicode arrow points towards

unicode whether unicode arrows should be used. Does not work inside plots within
knitted PDF documents.

6 as_pipeline_list

Value

a string containing an unicode arrow surrounded by two spaces

Examples

arrow_sep("left") # left arrrow
arrow_sep("right") # right arrrow

as_pipeline_list convert benchmark_tbl to list

Description

convert a benchmark_tbl to a list where the name of the elements represent the pipeline steps sepa-
rated by "..". This can be useful for using the apply family of functions.

Usage

as_pipeline_list(x)

Arguments

x the benchmark_tbl object to convert

Value

list containing the results with names set to data and pipeline steps separated by ..

See Also

collapse_pipeline

Examples

list of data
datasets <- list(

set1 = rnorm(500, mean = 2, sd = 1),
set2 = rnorm(500, mean = 1, sd = 2)

)

list of functions
add_noise <- list(

none = identity,
add_bias = function(x) { x + 1 }

)

res <- apply_methods(datasets, add_noise)
as_pipeline_list(res)

cache_method 7

cache_method Create a cached function for CellBench

Description

Take a function and return a cached version. The arguments and results of a cached method is saved
to disk and if the cached function is called again with the same arguments then the results will be
retrieved from the cache rather than be recomputed.

Usage

cache_method(f, cache = getOption("CellBench.cache"))

Arguments

f the function to be cached

cache the cache information (from memoise package)

Details

(CAUTION) Because cached functions called with the same argument will always return the same
output, pseudo-random methods will not return varying results over repeated runs as one might
expect.

This function is a thin wrapper around memoise

Value

function whose results are cached and is called identically to f

See Also

set_cellbench_cache_path

Examples

sets cache path to a temporary directory
set_cellbench_cache_path(file.path(tempdir(), ".CellBenchCache"))
f <- function(x) { x + 1 }
cached_f <- cache_method(f)

8 cellbench_file

cellbench_case_study Open vignetted containing a case study using CellBench

Description

Open vignetted containing a case study using CellBench

Usage

cellbench_case_study()

Value

opens a vignette containing a case study

Examples

Not run:
cellbench_case_study()

End(Not run)

cellbench_file Get path to CellBench packaged data

Description

Search CellBench package for packaged data, leaving argument empty will list the available data.

Usage

cellbench_file(filename = NULL)

Arguments

filename the name of the file to look for

Value

string containing the path to the packaged data

Examples

cellbench_file() # shows available files
cellbench_file("10x_sce_sample.rds") # returns path to 10x sample data

check_class 9

check_class Check class of object

Description

Check an object against a vector of class names. Testing if they match any or all of the classes. For
is_all_of, the object needs to be at least every class specified, but it can have addition classes and
still pass the check.

Usage

is_one_of(x, classes)

is_any_of(x, classes)

is_all_of(x, classes)

Arguments

x the object to check

classes the vector of strings of class names

Value

boolean value for the result of the check

Examples

is_one_of(1, c("numeric", "logical")) # TRUE
is_one_of(1, c("character", "logical")) # FALSE

is_all_of(1, c("numeric", "logical")) # FALSE
is_all_of(tibble::tibble(), c("tbl", "data.frame")) # TRUE

clear_cached_datasets Clear cached datasets

Description

Delete the datasets cached by the load_*_data set of functions

Usage

clear_cached_datasets()

Value

None

10 collapse_pipeline

Examples

Not run:
clear_cached_datasets()

End(Not run)

clear_cellbench_cache Clear CellBench Cache

Description

Clears the method cache for CellBench

Usage

clear_cellbench_cache()

Value

None

Examples

Not run:
clear_cellbench_cache()

End(Not run)

collapse_pipeline Collapse benchmark_tbl into a two column summary

Description

Collapse benchmark_tbl into two columns: "pipeline" and "result". The "pipeline" column will
be the concatenated values from the data and methods columns while the "result" column remains
unchanged from the benchmark_tbl. This is useful for having a string summary of the pipeline for
annotating.

Usage

collapse_pipeline(
x,
sep = arrow_sep("right"),
drop.steps = TRUE,
data.name = TRUE

)

pipeline_collapse(
x,

data_list 11

sep = arrow_sep("right"),
drop.steps = TRUE,
data.name = TRUE

)

Arguments

x the benchmark_tbl to collapse

sep the separator to use for concatenating the pipeline steps

drop.steps if the data name and methods steps should be dropped from the output. TRUE
by default.

data.name if the dataset name should be included in the pipeline string. Useful if only a
single dataset is used.

Value

benchmark_tbl with pipeline and result columns (and all other columns if drop.steps is FALSE)

See Also

as_pipeline_list

Examples

list of data
datasets <- list(

set1 = rnorm(500, mean = 2, sd = 1),
set2 = rnorm(500, mean = 1, sd = 2)

)

list of functions
add_noise <- list(

none = identity,
add_bias = function(x) { x + 1 }

)

res <- apply_methods(datasets, add_noise)
collapse_pipeline(res)

data_list Constructor for a data list

Description

Constructor for a list of data, a thin wrapper around list() which checks that all the inputs are of the
same type and have names

Usage

data_list(...)

12 filter_zero_genes

Arguments

... objects, must all be named

Value

a list of named data

Examples

data(iris)
flist <- data_list(

data1 = iris[1:20,],
data2 = iris[21:40,]

)

filter_zero_genes Filter out zero count genes

Description

Remove all genes (rows) where the total count is 0

Usage

filter_zero_genes(x)

Arguments

x the SingleCellExperiment or matrix to filter

Value

object of same type as input with all zero count genes removed

Examples

x <- matrix(rep(0:5, times = 5), nrow = 6, ncol = 5)
filter_zero_genes(x)

fn_arg_seq 13

fn_arg_seq Create a list of functions with arguments varying over a sequence

Description

Generate a list of functions where specific arguments have been pre-applied from a sequences of
arguments, i.e. a function f(x, n) may have the ’n’ argument pre-applied with specific values to
obtain functions f1(x, n = 1) and f2(x, n = 2) stored in a list.

Usage

fn_arg_seq(func, ..., .strict = FALSE)

Arguments

func function to generate list from
... vectors of values to use as arguments
.strict TRUE if argument names are checked, giving an error if specified argument

does not appear in function signature. Note that functions with multiple methods
generally have only f(x, ...) as their signature, so the check would fail even if
the arguments are passed on.

Details

If multiple argument vectors are provided then the combinations of arguments in the sequences will
be generated.

Value

list of functions with the specified arguments pre-applied. Names of the list indicate the values that
have been pre-applied.

Examples

f <- function(x) {
cat("x:", x)

}

f_list <- fn_arg_seq(f, x = c(1, 2))
f_list
f_list[[1]]() # x: 1
f_list[[2]]() # x: 2

g <- function(x, y) {
cat("x:", x, "y:", y)

}

g_list <- fn_arg_seq(g, x = c(1, 2), y = c(3, 4))
g_list
g_list[[1]]() # x: 1 y: 3
g_list[[2]]() # x: 1 y: 4
g_list[[3]]() # x: 2 y: 3
g_list[[4]]() # x: 2 y: 4

14 is.task_error

fn_list Constructor for a function list

Description

Constructor for a list of functions, a thin wrapper around list() which checks that all the inputs are
functions and have names

Usage

fn_list(...)

Arguments

... objects, must all be named

Value

a list of named functions

Examples

flist <- fn_list(
mean = mean,
median = median

)

is.task_error Check for task errors

Description

This is a helper function for checking the result column of a benchmark_tbl for task_error objects.
This is useful for filtering out rows where the result is a task error.

Usage

is.task_error(x)

Arguments

x the object to be tested

Value

vector of logicals denoting if elements of the list are task_error objects

keep_high_count_cells 15

keep_high_count_cells Filter down to the highest count cells

Description

Filter a SingleCellExperiment or matrix down to the cells (columns) with the highest counts

Usage

keep_high_count_cells(x, n)

Arguments

x the SingleCellExperiment or matrix

n the number of highest count cells to keep

Value

object of same type as input containing the highest count cells

Examples

data(sample_sce_data)
keep_high_count_cells(sample_sce_data, 10)

keep_high_count_genes Filter down to the highest count genes

Description

Filter a SingleCellExperiment or matrix down to the genes (rows) with the highest counts

Usage

keep_high_count_genes(x, n)

Arguments

x the SingleCellExperiment or matrix

n the number of highest count genes to keep

Value

object of same type as input containing the highest count genes

Examples

data(sample_sce_data)
keep_high_count_genes(sample_sce_data, 300)

16 load_sc_data

keep_high_var_genes Filter down to the most variable genes

Description

Filter a SingleCellExperiment or matrix down to the most variable genes (rows), variability is de-
termined by var() scaled by the total counts for the gene.

Usage

keep_high_var_genes(x, n)

Arguments

x the SingleCellExperiment or matrix

n the number of most variable genes to keep

Value

object of same type as input containing the most variable genes

Examples

data(sample_sce_data)
keep_high_var_genes(sample_sce_data, 50)

load_sc_data Load CellBench Data

Description

Load in all CellBench data described at <https://github.com/LuyiTian/CellBench_data/blob/master/README.md>.

Usage

load_sc_data()

load_cell_mix_data()

load_mrna_mix_data()

load_all_data()

Value

list of SingleCellExperiment

mhead 17

Functions

• load_sc_data(): Load single cell data

• load_cell_mix_data(): Load cell mixture data

• load_mrna_mix_data(): Load mrna mixture data

Examples

Not run:
cellbench_file <- load_all_data()

End(Not run)

mhead Get head of 2 dimensional object as a square block

Description

head prints all columns which may flood the console, mhead takes a square block which can look
nicer and still provide a good inspection of the contents

Usage

mhead(x, n = 6)

Arguments

x the object with 2 dimensions

n the size of the n-by-n block to extract

Value

an n-by-n sized subset of x

Examples

x <- matrix(runif(100), nrow = 10, ncol = 10)

mhead(x)
mhead(x, n = 3)

18 print.task_error

print.fn_arg_seq Print method for fn_arg_seq output

Description

Print method for fn_arg_seq output

Usage

S3 method for class 'fn_arg_seq'
print(x, ...)

Arguments

x fn_arg_seq object

... addition arguments for print

Value

None

Examples

fn_seq <- fn_arg_seq(kmeans, centers = 1:3)
fn_seq

print.task_error Print method for task_error object

Description

task_error are objects that result from failed methods

Usage

S3 method for class 'task_error'
print(x, ...)

Arguments

x a task_error object

... not used

Value

None

sample_cells 19

sample_cells Sample cells from a SingleCellExperiment

Description

Sample n cells from a SingleCellExperiment object with no replacement.

Usage

sample_cells(x, n)

Arguments

x the SingleCellExperiment object
n the number of cells to sample

Value

SingleCellExperiment object

Examples

sample_sce_data <- readRDS(cellbench_file("celseq_sce_sample.rds"))
dim(sample_sce_data)
x <- sample_cells(sample_sce_data, 10)
dim(x)

sample_genes Sample genes from a SingleCellExperiment

Description

Sample n genes from a SingleCellExperiment object with no replacement

Usage

sample_genes(x, n)

Arguments

x the SingleCellExperiment object
n the number of genes to sample

Value

SingleCellExperiment object

Examples

sample_sce_data <- readRDS(cellbench_file("10x_sce_sample.rds"))
dim(sample_sce_data)
x <- sample_genes(sample_sce_data, 50)
dim(x)

20 set_cellbench_bpparam

sample_sce_data This is data for testing functions in CellBench.

Description

A dataset containing 200 genes and 50 cells randomly sampled from the CelSeq mRNA mixture
dataset, each sample is a mixture of mRNA material from 3 different human adenocarcinoma cell
lines. Useful for quick prototyping of method wrappers.

Usage

data(sample_sce_data)

Format

A SingleCellExperiment object with sample annotations in colData(sample_sce_data). The an-
notation contains various QC metrics as well as the cell line mixture proportions

H2228_prop proportion of mRNA from H2228 cell line

H1975_prop proportion of mRNA from H1975 cell line

HCC827_prop proportion of mRNA from HCC827 cell line

See Also

load_mrna_mix_data

set_cellbench_bpparam Set BiocParallel parameter used CellBench

Description

This is a more advanced interface for changing CellBench’s parallelism settings. Internally Cell-
Bench uses BiocParallel for parallelism, consult the documentation of BiocParallel to see what
settings are available.

Usage

set_cellbench_bpparam(param)

Arguments

param the BiocParallel parameter object

Value

None

See Also

set_cellbench_threads for more basic interface

set_cellbench_cache_path 21

Examples

set_cellbench_threads(1) # CellBench runs on a single thread

set_cellbench_cache_path

Set CellBench cache path

Description

Set CellBench cache path

Usage

set_cellbench_cache_path(path = "./.CellBenchCache")

Arguments

path the path to where method caches should be stored

Value

None

See Also

cache_method for constructing cached methods.

Examples

Not run:
hidden folder in local path
set_cellbench_cache_path(".CellBenchCache"))

End(Not run)
store in temp directory valid for this session
set_cellbench_cache_path(file.path(tempdir(), ".CellBenchCache"))

set_cellbench_threads Set number of threads used by CellBench

Description

Sets global parameter for CellBench to use multiple threads for applying methods. If any methods
applied are multi-threaded then it’s recommended to set CellBench threads to 1. It only recom-
mended to use CellBench with multiple threads if methods applied can be set to run on single
threads.

22 split_step

Usage

set_cellbench_threads(nthreads = 1)

Arguments

nthreads the number of threads used by CellBench

Value

None

See Also

set_cellbench_bpparam for more advanced interface

Examples

set_cellbench_threads(1) # CellBench runs on a single thread

split_step Split combined pipeline step

Description

Some methods perform multiple steps of a pipeline. This function assists with splitting the com-
bined pipeline step into multiple steps with duplicated method names.

Usage

split_step(x, step, into)

Arguments

x a results data.frame from ‘apply_methods()‘.

step the name of the column to split.

into the name of the columns to split into.

Value

a results data.frame where the ‘step‘ column has been split into the ‘into‘ columns with duplicated
values.

strip_timing 23

Examples

datasets <- list(
set1 = rnorm(500, mean = 2, sd = 1),
set2 = rnorm(500, mean = 1, sd = 2)

)

list of functions
add_noise <- list(

none = identity,
add_bias = function(x) { x + 1 }

)

res <- apply_methods(datasets, add_noise)

res %>%
split_step("add_noise", c("split1", "split2"))

strip_timing Strip timing information

Description

Takes the result of a time_methods() call and remove timing information from the ‘timed_result‘
column, replacing it with a ‘result‘ column and converting it to a benchmark_tbl.

Usage

strip_timing(x)

S3 method for class 'benchmark_timing_tbl'
strip_timing(x)

Arguments

x the benchmark_timing_tbl object

Value

benchmark_tbl

See Also

unpack_timing

Examples

Not run:
datasets <- list(

data1 = 1:1e8,
)

transforms <- list(
log = log,

24 summary.benchmark_tbl

sqrt = sqrt
)

datasets %>%
time_methods(transforms) %>%
strip_timing()

End(Not run)

summary.benchmark_tbl Summary of benchmark_tbl

Description

Summary of benchmark_tbl

Usage

S3 method for class 'benchmark_tbl'
summary(object, ...)

Arguments

object the benchmark_tbl to be summarised

... additional arguments affecting the summary produced.

Value

None

Examples

list of data
datasets <- list(

set1 = rnorm(500, mean = 2, sd = 1),
set2 = rnorm(500, mean = 1, sd = 2)

)

list of functions
add_noise <- list(

none = identity,
add_bias = function(x) { x + 1 }

)

res <- apply_methods(datasets, add_noise)
summary(res)

time_methods 25

time_methods Time methods

Description

time_methods() take either lists of datasets or benchmark_timing_tbl objects and applies a list of
functions. The output is a benchmark_timing_tbl where each method has been applied to each
dataset or preceding result. Unlike apply_methods(), time_methods() is always single threaded as
to produce fair and more consistent timings.

Usage

time_methods(x, fn_list, name = NULL, suppress.messages = TRUE)

S3 method for class 'list'
time_methods(x, fn_list, name = NULL, suppress.messages = TRUE)

S3 method for class 'benchmark_timing_tbl'
time_methods(x, fn_list, name = NULL, suppress.messages = TRUE)

Arguments

x the list of data or benchmark timing tibble to apply methods to

fn_list the list of methods to be applied

name (optional) the name of the column for methods applied
suppress.messages

TRUE if messages from running methods should be suppressed

Value

benchmark_timing_tbl object containing results from methods applied, the first column is the name
of the dataset as factors, middle columns contain method names as factors and the final column is a
list of lists containing the results of applying the methods and timings from calling system.time().

See Also

apply_methods

Examples

datasets <- list(
set1 = 1:1e7

)

transform <- list(
sqrt = sqrt,
log = log

)

time_methods(datasets, transform) %>%
unpack_timing() # extract timings out of list

26 unpack_timing

unpack_timing Unpack timing information

Description

Takes the result of a time_methods() call and remove the ‘timed_result‘ column, replacing it with
three columns of durations representing the ‘system‘, ‘user‘ and ‘elapsed‘ times from a system.time()
call.

Usage

unpack_timing(x)

S3 method for class 'benchmark_timing_tbl'
unpack_timing(x)

Arguments

x the benchmark_timing_tbl object

Value

a tibble containing pipeline steps and timing information

See Also

strip_timing

Examples

Not run:
datasets <- list(

data1 = c(1, 2, 3)
)

transforms <- list(
log = function(x) { Sys.sleep(0.1); log(x) },
sqrt = function(x) { Sys.sleep(0.1); sqrt(x) }

)

datasets %>%
time_methods(transforms) %>%
unpack_timing()

End(Not run)

Index

∗ datasets
sample_sce_data, 20

∗ internal
all_unique, 3
check_class, 9
print.fn_arg_seq, 18
print.task_error, 18
strip_timing, 23
summary.benchmark_tbl, 24
unpack_timing, 26

all_unique, 3
any_task_errors, 4
apply_methods, 3, 4, 25
apply_metrics (apply_methods), 4
arrow_sep, 5
as_pipeline_list, 6, 11

begin_benchmark (apply_methods), 4

cache_method, 7, 21
CellBench (CellBench-package), 3
CellBench-package, 3
cellbench_case_study, 8
cellbench_file, 8
check_class, 9
clear_cached_datasets, 9
clear_cellbench_cache, 10
collapse_pipeline, 6, 10

data_list, 11

filter_zero_genes, 12
fn_arg_seq, 13
fn_list, 14

is.task_error, 14
is_all_of (check_class), 9
is_any_of (check_class), 9
is_one_of (check_class), 9

keep_high_count_cells, 15
keep_high_count_genes, 15
keep_high_var_genes, 16

load_all_data, 3
load_all_data (load_sc_data), 16
load_cell_mix_data (load_sc_data), 16
load_mrna_mix_data, 20
load_mrna_mix_data (load_sc_data), 16
load_sc_data, 16

memoise, 7
mhead, 17

pipeline_collapse (collapse_pipeline),
10

print.fn_arg_seq, 18
print.task_error, 18

sample_cells, 19
sample_genes, 19
sample_sce_data, 20
set_cellbench_bpparam, 20, 22
set_cellbench_cache_path, 7, 21
set_cellbench_threads, 20, 21
split_step, 22
strip_timing, 23, 26
summary.benchmark_tbl, 24

time_methods, 5, 25

unpack_timing, 23, 26

27

	CellBench-package
	all_unique
	any_task_errors
	apply_methods
	arrow_sep
	as_pipeline_list
	cache_method
	cellbench_case_study
	cellbench_file
	check_class
	clear_cached_datasets
	clear_cellbench_cache
	collapse_pipeline
	data_list
	filter_zero_genes
	fn_arg_seq
	fn_list
	is.task_error
	keep_high_count_cells
	keep_high_count_genes
	keep_high_var_genes
	load_sc_data
	mhead
	print.fn_arg_seq
	print.task_error
	sample_cells
	sample_genes
	sample_sce_data
	set_cellbench_bpparam
	set_cellbench_cache_path
	set_cellbench_threads
	split_step
	strip_timing
	summary.benchmark_tbl
	time_methods
	unpack_timing
	Index

