
Package ‘Category’
January 19, 2026

Title Category Analysis

Version 2.76.0

Description A collection of tools for performing category (gene set
enrichment) analysis.

License Artistic-2.0

Depends methods, stats4, BiocGenerics, AnnotationDbi, Biobase, Matrix

Imports utils, stats, graph, RBGL, GSEABase, genefilter, annotate, DBI

Suggests EBarrays, ALL, Rgraphviz, RColorBrewer, xtable (>= 1.4-6),
hgu95av2.db, KEGGREST, karyoploteR, geneplotter, limma,
lattice, RUnit, org.Sc.sgd.db, GOstats, GO.db

LazyLoad Yes

Collate AllClasses.R AllGenerics.R categoryToEntrezBuilder-methods.R
categoryName-methods.R hyperg-methods.R hyperGTest-methods.R
linearMTest-methods.R DatPkg-accessors.R ChrBandTree.R
tree_visitor.R cb_test.R initialize-methods.R
HyperGParams-accessors.R LinearMParams-accessors.R
HyperGResult-accessors.R LinearMResult-accessors.R
ChrMapHyperGResult-accessors.R ChrMapLinearMResult-accessors.R
show-methods.R universeBuilder-methods.R utils.R MAPcode.R
catcode.R cateGOryMatrix.R gseaperm.R summary-methods.R mouse.R

biocViews Annotation, GO, Pathways, GeneSetEnrichment

git_url https://git.bioconductor.org/packages/Category

git_branch RELEASE_3_22

git_last_commit df2c742

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Author Robert Gentleman [aut],
Seth Falcon [ctb],
Deepayan Sarkar [ctb],
Robert Castelo [ctb],
Bioconductor Package Maintainer [cre]

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

1

2 Contents

Contents

applyByCategory . 3
cateGOry . 4
Category-defunct . 5
categoryToEntrezBuilder . 5
cb_contingency . 6
cb_parse_band_Hs . 7
cb_parse_band_Mm . 8
cb_test . 9
ChrBandTree-class . 10
ChrMapHyperGParams-class . 11
ChrMapHyperGResult-class . 13
ChrMapLinearMParams-class . 14
ChrMapLinearMResult-class . 15
DatPkg-class . 16
effectSize . 17
exampleLevels . 18
findAMstats . 18
getPathNames . 19
GOHyperGParams-class . 20
GSEAGOHyperGParams . 21
gseattperm . 22
hyperg . 24
HyperGParams-class . 25
HyperGResult-accessors . 26
HyperGResult-class . 29
HyperGResultBase-class . 30
hyperGTest . 31
KEGGHyperGParams-class . 32
LinearMParams-class . 33
LinearMResult-class . 34
LinearMResultBase-class . 36
linearMTest . 37
local_test_factory . 38
makeChrBandGraph . 39
makeEBcontr . 40
makeValidParams . 41
MAPAmat . 41
NewChrBandTree . 42
OBOHyperGParams-class . 43
probes2MAP . 44
probes2Path . 45
tree_visitor . 46
ttperm . 47
universeBuilder . 48

Index 49

applyByCategory 3

applyByCategory Apply a function to a vector of statistics, by category

Description

For each category, apply the function FUN to the set of values of stats belonging to that category.

Usage

applyByCategory(stats, Amat, FUN = mean, ...)

Arguments

stats Numeric vector with test statistics of interest.

Amat A logical or numeric matrix: the adjacency matrix of the bipartite genes - cat-
egory graph. Its rows correspond to the categories, columns to the genes, and
TRUE or a numeric value different from 0 indicates membership. The columns
are assumed to be aligned with the elements of stats.

FUN A function to apply to the subsets stats by categories.

... Extra parameters passed to FUN.

Details

For GO categories, the function cateGOry might be useful for the construction of Amat.

Value

The return value is a list or vector of length equal to the number of categories. Each element
corresponds to the values obtained by applying FUN to the subset of values in stats according to
the category defined for that row.

Author(s)

R. Gentleman, contributions from W. Huber

See Also

apply

Examples

set.seed(0xabcd)
st = rnorm(20)
names(st) = paste("gene", 1:20)

a = matrix(sample(c(FALSE, TRUE), 60, replace=TRUE), nrow=3,
dimnames = list(paste("category", LETTERS[1:3]), names(st)))

applyByCategory(st, a, median)

4 cateGOry

cateGOry Construct a category membership matrix from a list of gene identifiers
and their annotated GO categories.

Description

The function constructs a category membership matrix, such as used by applyByCategory, from
a list of gene identifiers and their annotated GO categories. For each of the GO categories stated
in categ, all less specific terms (ancestors) are also included, thus one need only obtain the most
specific set of GO term mappings, which can be obtained from Bioconductor annotation packages
or via biomaRt. The ancestor relationships are obtained from the GO.db package.

Usage

cateGOry(x, categ, sparse=FALSE)

Arguments

x Character vector with (arbitrary) gene identifiers. They will be used for the
column names of the resulting matrix.

categ A character vector of the same length as x with GO annotations for the genes in
x. If a gene has multiple GO annotations, it is expected to occur multiple times
in x, once for each different annotation.

sparse Logical. If TRUE, the resulting matrix is constructed using Matrix, otherwise,
R’s base matrix is used.

Details

The function requires the GO package.

For subsequent analyses, it is often useful to remove categories that have only a small number of
members. Use the normal matrix subsetting syntax for this, see example.

If a GO category in categ is not found in the GO annotation package, a warning will be generated,
and no ancestors for that GO category are added (but that category itself will be part of the returned
adjacency matrix).

Value

The adjacency matrix of the bipartite category membership graph, rows are categories and columns
genes.

Author(s)

Wolfgang Huber

See Also

applyByCategory

Category-defunct 5

Examples

g = cateGOry(c("CG2671", "CG2671", "CG2950"),
c("GO:0090079", "GO:0001738", "GO:0003676"), sparse=TRUE)

g

rowSums(g) ## number of genes in each category

Filter out categories with less than minMem and more than maxMem members.
This is toy data, in real applications, a choice of minMem higher
than 2 will be more appropriate.
filter = function(x, minMemb = 2, maxMemb = 35) ((x>=minMemb) & (x<=maxMemb))
g[filter(rowSums(g)),,drop=FALSE]

Category-defunct Defunct Functions in Package Category

Description

The functions or variables listed here are no longer part of the Category package.

Usage

condGeneIdUniverse()
isConditional()
geneGoHyperGeoTest()
geneKeggHyperGeoTest()
cb_parse_band_hsa()
chrBandInciMat()

See Also

Defunct

categoryToEntrezBuilder

Return a list mapping category ids to Entrez Gene ids

Description

Return a list mapping category ids to the Entrez Gene ids annotated at the category id. Only those
category ids that have at least one annotation in the set of Entrez Gene ids specified by the geneIds
slot of p are included.

Usage

categoryToEntrezBuilder(p)

Arguments

p A subclass of HyperGParams-class

6 cb_contingency

Details

End users should not call this directly. This method gets called from hyperGTest. To add support
for a new category, a new method for this generic must be defined. Its signature should match a
subclass of HyperGParams-class appropriate for the new category.

Value

A list mapping category ids to Entrez Gene identifiers.

Author(s)

S. Falcon

See Also

hyperGTest HyperGParams-class

cb_contingency Create and Test Contingency Tables of Chromosome Band Annotations

Description

For each chromosome band identifier in chrVect, cb_contingency builds and performs a test on
a 2 x k contingency table for the genes from selids found in the child bands of the given chrVect
element.

cb_sigBands extracts the chromosome band identifiers that were in a contingency table that tested
significant given the specified p-value cutoff.

cb_children returns the child bands of a given band in the chromosome band graph. The argument
must have length equal to one.

Usage

cb_contingency(selids, chrVect, chrGraph, testFun = chisq.test,
min.expected = 5L, min.k = 1L)

cb_sigBands(b, p.value = 0.01)

cb_children(n, chrGraph)

Arguments

selids A vector of the selected gene identifiers (usual Entrez IDs).

chrVect A character vector of chromosome band identifiers

chrGraph A graph object as returned by makeChrBandGraph. The nodes should be chro-
mosome band IDs and the edges should represent the tree structure of the bands.
Furthermore, the graph is expected to have a "geneIds" node attribute provid-
ing a vector of gene IDs annotated at each band.

testFun The function to use for testing the 2 x k contingency tables. The default is
chisq.test. It will be called with a single argument, a 2 x k matrix representing
the contingency table.

cb_parse_band_Hs 7

min.expected A numeric value specifying the minimum expected count for columns to be
included in the contingency table. The expected count is (rowSum * colSum)
/ n. Chromosome bands with a select cell count less than min.expected are
dropped from the table before testing occurs. If NULL, then no bands will be
dropped.

min.k An integer giving the minimum number of chromosome bands that must be
present in a contingency table in order to proceed with testing.

b A list as returned by cb_contingency

p.value A p-value cutoff to use in selecting significant contingency tables.

n A length one character vector specifying a chromosome band annotation. Bands
not found in chrGraph will return character(0) when passed to cb_children.

Details

cb_sigBands assumes that the p-value associated with a result of testFun can by accessed as
testFun(t)$p.value. We should improve this to be a method call which can then be specialized
based on the class of the object returned by testFun.

Value

cb_contingency returns a list with an element for each test performed. This will most often be
shorter than length(chrVect) due to skipped tests based on min.found and min.k. Each element
of the returned list is itself a list with components:

table A 2 x k contingency table

result The output of testFun applied to the table.

cb_sigBands returns a character vector of chromosome band identifiers that are in one of the con-
tingency tables that had a p-value less than the cutoff specified by p.value.

Author(s)

Seth Falcon

cb_parse_band_Hs Parse Homo Sapiens Chromosome Band Annotations

Description

This function parses chromosome band annotations as found in the <chip>MAP map of Biocon-
ductor annotation data packages. The return value is a vector of parent bands up to the relevant
chromosome.

Usage

cb_parse_band_Hs(x)

Arguments

x A chromosome band annotation given as a string.

8 cb_parse_band_Mm

Details

The former function cb_parse_band_hsa is now deprecated.

Value

A character vector giving the path to the relevant chromosome.

Author(s)

Seth Falcon

Examples

cb_parse_band_Hs("12q32.12")

cb_parse_band_Mm Parse Mus Musculus Chromosome Band Annotations

Description

This function parses chromosome band annotations as found in the <chip>MAP map of Biocon-
ductor annotation data packages. The return value is a vector of parent bands up to the relevant
chromosome.

Usage

cb_parse_band_Mm(x)

Arguments

x A chromosome band annotation given as a string.

Value

A character vector giving the path to the relevant chromosome.

Author(s)

Seth Falcon \& Nolwenn Le Meur

Examples

cb_parse_band_Mm("10 B3")

cb_test 9

cb_test Chromosome Band Tree-Based Hypothesis Testing

Description

cb_test is a flexible tool for discovering interesting chromosome bands relative to a selected gene
list. The function supports local and global tests which can be carried out in a top down or bottom
up fashion on the tree of chromosome bands.

Usage

cb_test(selids, chrtree, level, dir = c("up", "down"),
type = c("local", "global"), next.pval = 0.05,
cond.pval = 0.05, conditional = FALSE)

Arguments

selids A vector of gene IDs. The IDs should match those used to annotatate the
ChrBandTree given by chrtree. In most cases, these will be Entrez Gene IDs.

chrtree A ChrBandTree object representing the chromosome bands and the mapping to
gene identifiers. The genes in the ChrBandTree are limited to the universe of
gene IDs specified at object creation time.

level An integer giving the level of the chromosome band tree at which testing should
begin. The level is conceptualized as the set of nodes with a given path length
to the root (organism) node of the chromosome band tree. So level 1 is the
chromosome and level 2 is the chromosome arms. You can get a better sense by
calling exampleLevels(chrtree)

dir A string giving the direction in which the chromosome band tree will be tra-
versed when carrying out the tests. A bottom up traversal, from leaves to root,
is specified by "up". A top down, from root to leaves, traversal is specified by
"down".

type A string giving the type of test to perform. The current choices are "local" and
"global". A local test carries out a chisq.test on each 2 x K contingency table
induced by each set of siblings at a given level in the tree. A global test uses the
Hypergeometric distribution to compute a p-value for the 2 x 2 tables induced
by each band treated independently.

next.pval The p-value cutoff used to determine whether the parents or children of a node
should be tested. After testing a given level of the tree, the decision of whether
or not to continue testing the children (or parents) of the already tested nodes is
made by comparing the p-value result for a given node with this cutoff; relatives
of nodes with values strictly greater than the cutoff are skipped.

cond.pval The p-value cutoff used to determine whether a node is significant during a
conditional test. See conditional.

conditional A logical value. Can only be used when dir="up" and type="global". In this
case, a TRUE value causes a conditional Hypergeometric calculation to be per-
formed. The genes annotated at significant children of a given band are removed
before testing.

10 ChrBandTree-class

Value

A list with an element for each level of the tree that was tested. Note that the first element will
correspond to the level given by level and that subsequent elements will be the next or previous
depending on dir.

Each level element is itself a list consisting of a result list for each node or set of nodes tested. These
inner-most lists will have, at least, the following components:

nodes A character vector of the nodes involved in the test.

p.value The p-value for the test

observed The contingency table

method A brief description of the test method

Author(s)

Seth Falcon

ChrBandTree-class Class "ChrBandTree"

Description

This class represents chromosome band annotation data for a given experiment. The class is re-
sponsible for storing the mapping of band to set of gene IDs located within that band as well as for
representing the tree structured relationship among the bands.

Objects from the Class

Objects should be created using NewChrBandTree or ChrBandTreeFromGraph.

Slots

toParentGraph: Object of class "graph" representing the tree of chromosome bands. Edges in
this directed graph go from child to parent.

toChildGraph: Object of class "graph". This is the same as toParentGraph, but with the edge
directons reversed. This is not an ideal implementation due to the duplication of data, but it
provides quick access to parents or children of a given node.

root: Object of class "character" giving the name of the root node. The convention is to use
"ORGANISM:<organism>".

level2nodes: Object of class "list" providing a mapping of levels in the tree to the set of nodes
at that level. Levels X is defined as the set of nodes with a path length of X from the root node.

Methods

allGeneIds Return a vector of gene IDs representing the gene universe for this ChrBandTree

childrenOf Return a list with an element for each the character vector n. Each element is a char-
acter vector of node names of the children of the named element.

geneIds Return a vector of gene IDs for a single band.

lgeneIds Return a list of vectors of gene IDs when given more than one band. The "l" prefix is for
list.

ChrMapHyperGParams-class 11

parentOf Return the parents of the specified bands. See childrenOf for a description of the
structure of the return value.

treeLevels Return an integer vector identifying the levels of the tree.

level2nodes(g, level) Return the nodes in the tree that are at the level specified by level. The
level argument can be either numeric or character, but should match a level returned by
treeLevels.

Note

Not all known chromosome bands will be represented in a given instance. The set of bands that
will be present is determined by the available annotation data and the specified gene universe. The
annotation source maps genes to their most specific band. Such bands and all bands on the path to
the root will be represented in the resulting tree.

Currently there is only support for human and mouse data.

Author(s)

S. Falcon

Examples

library("hgu95av2.db")
set.seed(0xfeee)
univ = NULL ## use all Entrez Gene IDs on the chip (not recommended)
ct = NewChrBandTree("hgu95av2.db", univ)

length(allGeneIds(ct))

exampleLevels(ct)

geneIds(ct, "10p11")
lgeneIds(ct, "10p11")
lgeneIds(ct, c("10p11", "Yq11.22"))

pp = parentOf(ct, c("10p11", "Yq11.22"))
childrenOf(ct, unlist(pp))

treeLevels(ct)

level2nodes(ct, 0)
level2nodes(ct, 0L)
level2nodes(ct, "0")

level2nodes(ct, 1)

ChrMapHyperGParams-class

Class "ChrMapHyperGParams"

12 ChrMapHyperGParams-class

Description

This class encapsulates parameters needed for Hypergeometric testing of over or under representa-
tion of chromosome bands among a selected gene list using hyperGTest.

Objects from the Class

Objects can be created by calls of the form new("ChrMapHyperGParams", ...).

Slots

chrGraph: Object of class "graph". The nodes are the chromosome bands and the edges describe
the tree structure of the bands. Each node has a "geneIds" node attributes (see nodeData)
which contains a vector of gene IDs annotated at the given band.

conditional: Object of class "logical", indicating whether the test performed should be a con-
ditional test.

geneIds: Object of class "ANY": A vector of gene identifiers. Numeric and character vectors are
probably the only things that make sense. These are the gene ids for the selected gene set.

universeGeneIds: Object of class "ANY": A vector of gene ids in the same format as geneIds
defining a subset of the gene ids on the chip that will be used as the universe for the hyper-
geometric calculation. If this is NULL or has length zero, then all gene ids on the chip will be
used.

annotation: A string giving the name of the annotation data package for the chip used to generate
the data.

categorySubsetIds: Object of class "ANY": If the test method supports it, can be used to specify
a subset of category ids to include in the test instead of all possible category ids.

categoryName: A string describing the category. Usually set automatically by subclasses. For
example "GO".

pvalueCutoff: The p-value to use as a cutoff for significance for testing methods that require it.
This value will also be passed on to the result instance and used for display and counting of
significant results. The default is 0.01.

testDirection: A string indicating whether the test should be for overrepresentation ("over") or
underrepresentation ("under").

datPkg: Object of class "DatPkg" used to assist with dispatch based on type of annotation data
available.

Extends

Class "HyperGParams", directly.

Methods

No methods defined with class "ChrMapHyperGParams" in the signature.

Author(s)

Seth Falcon

Examples

showClass("ChrMapHyperGParams")

ChrMapHyperGResult-class 13

ChrMapHyperGResult-class

Class "ChrMapHyperGResult"

Description

This class represents the results of a Hypergeometric test for over-representation of genes in a
selected gene list in the chromosome band annotation. The hyperGTest function returns an instance
of ChrMapHyperGResult when given a parameter object of class ChrMapHyperGParams. For details
on accessing the results, see HyperGResult-accessors.

Objects from the Class

Objects can be created by calls of the form new("ChrMapHyperGResult", ...).

Slots

pvalue.order: Object of class "integer" that gives the order of the p-values.

conditional: Object of class "logical" is a flag indicating whether or not this result is from a
conditional analysis.

chrGraph: Object of class "graph". The nodes are the chromosome bands with edges representing
the tree structure of the bands. Each node has a "geneIds" attribute that gives the gene IDs
annotated at that band.

annotation: A string giving the name of the chip annotation data package used.

geneIds: Object of class "ANY": the input vector of gene identifiers intersected with the universe
of gene identifiers used in the computation. The class of this slot is specified as "ANY" because
gene IDs may be integer or character vectors depending on the annotation package.

testName: A string identifying the testing method used.

pvalueCutoff: Numeric value used a a p-value cutoff. Used by the show method to count number
of significant terms.

testDirection: Object of class "character" indicating whether the test was for over-representation
("over") or under-representation ("under").

Extends

Class "HyperGResultBase", directly.

Methods

See HyperGResult-accessors.

Author(s)

Seth Falcon

Examples

showClass("ChrMapHyperGResult")
For details on accessing the results:
help("HyperGResult-accessors")

14 ChrMapLinearMParams-class

ChrMapLinearMParams-class

Class "ChrMapLinearMParams"

Description

This class encapsulates parameters needed for testing systematic variations in some gene-level
statistic by chromosome bands using linearMTest.

Objects from the Class

Objects can be created by calls of the form new("ChrMapLinearMParams", ...).

Slots

graph: Object of class "graph". The nodes are the chromosome bands and the edges describe the
tree structure of the bands. Each node has a "geneIds" node attributes (see nodeData) which
contains a vector of gene IDs annotated at the given band.

conditional: Object of class "logical", indicating whether the test performed should be a con-
ditional test.

gsc: The GeneSetCollection object grouping the gene ids into sets.

geneStats: Named vector of class "numeric", giving the gene-level statistics to be used in the
tests.

universeGeneIds: Object of class "ANY": A vector of gene ids defining a subset of the gene ids
on the chip that will be used as the universe for the hypergeometric calculation. If this is NULL
or has length zero, then all gene ids on the chip will be used.

annotation: A string giving the name of the annotation data package for the chip used to generate
the data.

datPkg: Object of class "DatPkg" used to assist with dispatch based on type of annotation data
available.

categorySubsetIds: Object of class "ANY": If the test method supports it, can be used to specify
a subset of category ids to include in the test instead of all possible category ids.

categoryName: A string describing the category. Usually set automatically by subclasses. For
example "GO".

pvalueCutoff: The p-value to use as a cutoff for significance for testing methods that require it.
This value will also be passed on to the result instance and used for display and counting of
significant results. The default is 0.01.

minSize: An integer giving a minimum size for a gene set for it to be tested. The default is 5.

testDirection: A string indicating whether the test should test for systematic increase ("up") or
decrease ("down") in the geneStats values within a gene set relative to the remaining genes.

Extends

Class "LinearMParams", directly.

Author(s)

Deepayan Sarkar

ChrMapLinearMResult-class 15

See Also

linearMTest

Examples

showClass("ChrMapLinearMParams")

ChrMapLinearMResult-class

Class "ChrMapLinearMResult"

Description

This class represents the results of a linear model-based test for systematic changes in a per-
gene statistic by chromosome band annotation. The linearMTest function returns an instance
of ChrMapLinearMResult when given a parameter object of class ChrMapLinearMParams. Most
slots can be queried using accessors.

Objects from the Class

Objects can be created by calls of the form new("ChrMapLinearMResult", ...), but is more com-
monly created by callinf linearMTest

Slots

pvalues: Object of class "numeric", with the p-values for each term.

pvalue.order: Object of class "integer", the order vector (increasing) for the p-values.

effectSize: Object of class "numeric", with the effect size for each term.

annotation: Object of class "character" ~~

geneIds: Object of class "ANY" ~~

testName: Object of class "character" ~~

pvalueCutoff: Object of class "numeric" ~~

minSize: Object of class "integer" ~~

testDirection: Object of class "character" ~~

conditional: Object of class "logical" ~~

graph: Object of class "graph" ~~

gsc: Object of class "GeneSetCollection" ~~

Extends

Class "LinearMResult", directly.

Class "LinearMResultBase", by class "LinearMResult", distance 2.

Methods

None

16 DatPkg-class

Author(s)

Deepayan Sarkar, Michael Lawrence

See Also

linearMTest, ChrMapLinearMParams, LinearMResult, LinearMResultBase,

Examples

showClass("ChrMapLinearMResult")

DatPkg-class Class "DatPkg"

Description

DatPkg is a VIRTUAL class for representing annotation data packages.

AffyDatPkg is a subclass of DatPkg used to represent standard annotation data packages that follow
the format of Affymetrix expression array annotation.

YeastDatPkg is a subclass of DatPkg used to represent the annotation data packages for yeast. The
yeast chip packages are based on sgd and are internally different from the AffyDatPkg conforming
packages.

ArabidopsisDatPkg is a subclass of DatPkg used to represent the annotation packages for Ara-
bidopsis. These packages are internally slightly different from the AffyDatPkg conforming pack-
ages.

Org.XX.egDatPkg is a subclass of DatPkg used to represent the org.*.eg.db organism-level Entez
Gene based annotation data packages.

OBOCollectionDatPkg is a subclass of DatPkg used to represent the OBO based annotation data
packages.

GeneSetCollectionDatPkg is a subclass of DatPkg used to represent annotations in the form of
GeneSetCollection objects which are not based on any annotation packages but are instead de-
rived from custom (user supplied) annotations.

These methods have been extended to accommodate uninstalled annotation objects, primarily those
available from the AnnotationHub package. See below for an example.

Objects from the Class

A virtual Class: No objects may be created from it.

Given the name of an annotation data package, DatPkgFactory can be used to create an appropriate
DatPkg subclass.

Slots

name A string giving the name of the annotation data package.

db The underlying AnnotationDbi database object.

installed Boolean. Distinguishes between conventional installed annotation packages, and those
from AnnotationHub.

effectSize 17

Methods

See showMethods(classes="DatPkg"). The set of methods, ID2EntreizID map between the
standard IDs for an organism, or Chip and EntrezIDs, typically to give a way to get the GO terms.
Different organisms, such as S. cerevisae and A. thaliana have their own internal IDs, so we need
specialized methods for them.

Author(s)

Seth Falcon

Examples

DatPkgFactory("hgu95av2")
Not run:
DatPkgFactory("org.Sc.sgd")
DatPkgFactory("org.Hs.eg.db")
DatPkgFactory("ag")
library(AnnotationHub)
hub <- AnnotationHub()
get an OrgDb for Atlantic salmon
query(hub, c("salmo salar","orgdb"))
salmodb <- hub[["AH58003"]]
DatPkgFactory(salmodb)

End(Not run)

effectSize Extract estimated effect sizes

Description

This function extracts estimated effect sizes from the results of a linear model-based gene-set /
category enrichment test.

Usage

effectSize(r)

Arguments

r The results of the test

Value

A numeric vector.

Author(s)

Deepayan Sarkar

See Also

linkS4class{LinearMResult}

18 findAMstats

exampleLevels Display a sample node from each level of a ChrBandTree object

Description

The "levels" of a chromosome band tree represented by a ChrBandTree object are the sets of nodes
with a given path length to the root node. This function displays the available levels along with an
example node from each level.

Usage

exampleLevels(g)

Arguments

g A ChrBandTree object

Value

A list with an element for each level. The names of the list are the levels. Each element is an
example of a node from the given level.

Author(s)

S. Falcon

findAMstats Compute per category summary statistics

Description

For a given incidence matrix, Amat, compute some per category statistics.

Usage

findAMstats(Amat, tstats)

Arguments

Amat An incidence matrix, with categories as the rows and probes as the columns.

tstats A vector of per probe test statistics (should be the same length as ncol(Amat).

Details

Simple summary statistics are computed, such as the row sums and the vector of per category sums
of the test statistics, tstats.

getPathNames 19

Value

A list with components,

eDE per category sums of the test statistics

lens row sums of Amat

Author(s)

R. Gentleman

See Also

applyByCategory

Examples

ts = rnorm(100)
Am = matrix(sample(c(0,1), 1000, replace=TRUE), ncol=100)
findAMstats(Am, ts)

getPathNames A function to print pathway names given their numeric ID.

Description

Given a KEGG pathway ID this function returns the character name of the pathway.

Usage

getPathNames(iPW, organism = "hsa")

Arguments

iPW A vector of KEGG pathway IDs.

organism A single character vector of the organism identifier, e.g., "hsa"

Details

This function simply does a look up in KEGGPATHID2NAME and returns a list of the pathway names.

Possible extensions would be to extend it to work with the cMAP library as well.

Value

A list of pathway names.

Author(s)

R. Gentleman

See Also

KEGGPATHID2NAME

20 GOHyperGParams-class

Examples

nms = "00031"
getPathNames(nms)

GOHyperGParams-class Class "GOHyperGParams"

Description

A parameter class for representing all parameters needed for running the hyperGTest method with
one of the GO ontologies (BP, CC, MF) as the category.

Objects from the Class

Objects can be created by calls of the form new("GOHyperGParams", ...).

Slots

ontology: A string specifying the GO ontology to use. Must be one of "BP", "CC", or "MF".

conditional: A logical indicating whether the calculation should condition on the GO structure.

geneIds: Object of class "ANY": A vector of gene identifiers. Numeric and character vectors are
probably the only things that make sense. These are the gene ids for the selected gene set.

universeGeneIds: Object of class "ANY": A vector of gene ids in the same format as geneIds
defining a subset of the gene ids on the chip that will be used as the universe for the hyper-
geometric calculation. If this is NULL or has length zero, then all gene ids on the chip will be
used.

annotation: A string giving the name of the annotation data package for the chip used to generate
the data.

categorySubsetIds: Object of class "ANY": If the test method supports it, can be used to specify
a subset of category ids to include in the test instead of all possible category ids.

categoryName: A string describing the category. Usually set automatically by subclasses. For
example "GO".

datPkg: Holds a DatPkg object which is of a particular type that in turn varies with the kind of
annotation package this is.

pvalueCutoff: A numeric values between zero and one used as a p-value cutoff for p-values gen-
erated by the Hypergeometric test. When the test being performed is non-conditional, this is
only used as a default value for printing and summarizing the results. For a conditional anal-
ysis, the cutoff is used during the computation to determine perform the conditioning: child
terms with a p-value less than pvalueCutoff are conditioned out of the test for their parent
term.

orCutoff: A numeric value used as an odds-ratio cutoff for odds ratios generated by the condi-
tional Hypergeometric test. For such a test, it works like the pvalueCutoff but applied on the
odds ratio. It has no effect when conditional=FALSE.

minSizeCutoff: A numeric value used as a cutoff for minimum size of the gene sets being tested
with the conditional Hypergeometric test. For such a test, it works like the pvalueCutoff but
applied on the odds ratio. It has no effect when conditional=FALSE.

GSEAGOHyperGParams 21

maxSizeCutoff: A numeric value used as a cutoff for maximum size of the gene sets being tested
with the conditional Hypergeometric test. For such a test, it works like the pvalueCutoff but
applied on the odds ratio. It has no effect when conditional=FALSE.

testDirection: A string which can be either "over" or "under". This determines whether the test
performed detects over or under represented GO terms.

Extends

Class "HyperGParams", directly.

Methods

hyperGTest(p) Perform hypergeometric tests to assess overrepresentation of category ids in the
gene set. See the documentation for the generic function for details. This method must be
called with a proper subclass of HyperGParams.

ontology(p), ontology(p) <- value Accessors for the GO ontology. When setting, value should
be one of "BP", "CC", or "MF".

conditional(p), conditional(p) <- value Accessors for the conditional flag. When setting,
value must be TRUE or FALSE.

Author(s)

S. Falcon

See Also

HyperGResult-class GOHyperGParams-class hyperGTest

GSEAGOHyperGParams Helper function for constructing a GOHyperGParams objects or
KEGGHyperGParams objects from a GeneSetCollection

Description

Helps to create A parameter class for representing all parameters needed for running the hyperGTest
method. If it is a GOHyperGParams object, being made, then with one of the GO ontologies (BP,
CC, MF) as the category. This function will construct the parameter object from a GeneSetCollec-
tion object and if necessary will also try to check to make sure that the object is based on a GO2ALL
mapping.

Usage

GSEAGOHyperGParams(name, geneSetCollection, geneIds, universeGeneIds,
ontology, pvalueCutoff, conditional, testDirection, ...)

GSEAKEGGHyperGParams(name, geneSetCollection, geneIds, universeGeneIds,
pvalueCutoff, testDirection, ...)

22 gseattperm

Arguments

name String specifying name of the GeneSetCollection.
geneSetCollection

A GeneSetCollection Object. If a GOHyperGParams object is sought, then this
GeneSetCollection should be based on a GO2ALLFrame object and so the id-
Type of that GeneSetCollection should be GOAllFrameIdentifier. If a KEG-
GHyperGParams object is sought then a GeneSetCollection based on a KEG-
GFrame object should be used and the idType will be a KEGGFrameIdentifier.

geneIds Object of class "ANY": A vector of gene identifiers. Numeric and character
vectors are probably the only things that make sense. These are the gene ids for
the selected gene set.

universeGeneIds

Object of class "ANY": A vector of gene ids in the same format as geneIds
defining a subset of the gene ids on the chip that will be used as the universe for
the hypergeometric calculation. If this is NULL or has length zero, then all gene
ids on the chip will be used.

ontology A string specifying the GO ontology to use. Must be one of "BP", "CC", or
"MF". (used with GO only)

pvalueCutoff A numeric values between zero and one used as a p-value cutoff for p-values
generated by the Hypergeometric test. When the test being performed is non-
conditional, this is only used as a default value for printing and summarizing
the results. For a conditional analysis, the cutoff is used during the computation
to determine perform the conditioning: child terms with a p-value less than
pvalueCutoff are conditioned out of the test for their parent term.

conditional A logical indicating whether the calculation should condition on the GO struc-
ture. (GO only)

testDirection A string which can be either "over" or "under". This determines whether the test
performed detects over or under represented GO terms.

... optional arguments to configure the GOHyperGParams object.

Author(s)

M. Carlson

See Also

HyperGResult-class GOHyperGParams-class hyperGTest

gseattperm Permutation p-values for GSEA

Description

This function performs GSEA computations and returns p-values for each gene set based on re-
peated permutation of the phenotype labels.

Usage

gseattperm(eset, fac, mat, nperm)

gseattperm 23

Arguments

eset An ExpressionSet object

fac A factor identifying the phenotypes in eset. Usually, this will be one of the
columns in the phenotype data associated with eset.

mat A 0/1 incidence matrix with each row representing a gene set and each column
representing a gene. A 1 indicates membership of a gene in a gene set.

nperm Number of permutations to test to build the reference distribution.

Details

The t-statistic is used (via rowttests) to test for a difference in means between the phenotypes
determined by fac within each gene set (given as a row of mat).

A reference distribution for these statistics is established by permuting fac and repeating the test B
times.

Value

A matrix with the same number of rows as mat and two columns, "Lower" and "Upper". The
"Lower" ("Upper") column gives the probability of seeing a t-statistic smaller (larger) than the
observed.

Author(s)

Seth Falcon

Examples

This example uses a random sample of probesets and a randomly
generated category matrix. The results, therefore, are not
meaningful, but the code demonstrates how to use gseattperm without
requiring any expensive computations.

Obtain an ExpressionSet with two types of samples (mol.biol)
haveALL <- require("ALL")
if (haveALL) {
data(ALL)
set.seed(0xabcd)
rndIdx <- sample(1:nrow(ALL), 500)
Bcell <- grep("^B", as.character(ALL$BT))
typeNames <- c("NEG", "BCR/ABL")
bcrAblOrNegIdx <- which(as.character(ALL$mol.biol) %in% typeNames)
s <- ALL[rndIdx, intersect(Bcell, bcrAblOrNegIdx)]
s$mol.biol <- factor(s$mol.biol)

Generate a random category matrix
nCats <- 100
set.seed(0xdcba)
rndCatMat <- matrix(sample(c(0L, 1L), replace=TRUE),

nrow=nCats, ncol=nrow(s),
dimnames=list(

paste("c", 1:nCats, sep=""),
featureNames(s)))

Demonstrate use of gseattperm

24 hyperg

N <- 10
pvals <- gseattperm(s, s$mol.biol, rndCatMat, N)
pvals[1:5,]
}

hyperg Hypergeometric (gene set enrichment) tests on character vectors.

Description

This function performs a hypergeometric test for over- or under-representation of significant ‘genes’
amongst those assayed in a universe of genes. It provides an interface based on character vectors of
identifying member of gene sets and the gene universe.

Usage

hyperg(assayed, significant, universe,
representation = c("over", "under"), ...)

Arguments

assayed A vector of assayed genes (or other identifiers). assayed may be a character
vector (defining a single gene set) or list of character vectors (defining a collec-
tion of gene sets).

significant A vector of assayed genes that were differentially expressed. If assayed is a
character vector, then significant must also be a character vector; likewise
when assayed is a list.

universe A character vector defining the universe of genes.

representation Either “over” or “under”, to indicate testing for over- or under-representation,
respectively, of differentially expressed genes.

... Additional arguments, unused.

Value

When invoked with a character vector of assayed genes, a named numeric vector providing the
input values, P-value, odds ratio, and expected number of significantly expressed genes.

When invoked with a list of character vectors of assayed genes, a data frame with columns of input
values, P-value, odds ratio, and expected number of significantly expressed genes.

Author(s)

Martin Morgan mtmorgan@fhcrc.org with contributions from Paul Shannon.

See Also

hyperGTest for convenience functions using Bioconductor annotation resources such as GO.db.

mtmorgan@fhcrc.org

HyperGParams-class 25

Examples

set.seed(123)

artifical sets -- affy probes grouped by protein family
library(hgu95av2.db)
map <- select(hgu95av2.db, keys(hgu95av2.db), "PFAM")
sets <- Filter(function(x) length(x) >= 10, split(map$PROBEID, map$PFAM))

universe <- unlist(sets, use.names=FALSE)
siggenes <- sample(universe, length(universe) / 20) ## simulate
sigsets <- Map(function(x, y) x[x %in% y], sets, MoreArgs=list(y=siggenes))

result <- hyperg(sets, sigsets, universe)
head(result)

HyperGParams-class Class "HyperGParams"

Description

An abstract (VIRTUAL) parameter class for representing all parameters needed by a method spe-
cializing the hyperGTest generic. You should only use subclasses of this class directly.

Objects from the Class

Objects of this class cannot be instantiated directly.

Slots

geneIds: Object of class "ANY": A vector of gene identifiers. Numeric and character vectors are
probably the only things that make sense. These are the gene ids for the selected gene set.

universeGeneIds: Object of class "ANY": A vector of gene ids in the same format as geneIds
defining a subset of the gene ids on the chip that will be used as the universe for the hyper-
geometric calculation. If this is NULL or has length zero, then all gene ids on the chip will be
used.

annotation: Object of class "ANY". Functionally, this is either a string giving the name of the
annotation data package for the chip used to generate the data, or the name of an annotation
object downloaded using AnnotationHub.

categorySubsetIds: Object of class "ANY": If the test method supports it, can be used to specify
a subset of category ids to include in the test instead of all possible category ids.

categoryName: A string describing the category. Usually set automatically by subclasses. For
example "GO".

pvalueCutoff: The p-value to use as a cutoff for significance for testing methods that require it.
This value will also be passed on to the result instance and used for display and counting of
significant results. The default is 0.01.

testDirection: A string indicating whether the test should be for overrepresentation ("over") or
underrepresentation ("under").

datPkg: Holds a DatPkg object which is of a particular type that in turn varies with the kind of
annotation package this is.

26 HyperGResult-accessors

Methods

hyperGTest signature(p = "HyperGParams"): Perform hypergeometric tests to assess overrep-
resentation of category ids in the gene set. See the documentation for the generic function for
details. This method must be called with a proper subclass of HyperGParams.

geneIds(object), geneIds(object) <- value Accessors for the gene identifiers that will be used
as the selected gene list.

codeannotation(object) Accessor for annotation. If you want to change the annotation for an
existing instance, use the replacement form.

ontology(object) Accessor for GO ontology.

organism(object) Accessor for the organism character string used as an identifier in DatPkg.

pvalueCutoff(r), pvalueCutoff(r) <- value Accessor for the p-value cutoff. When setting,
value should be a numeric value between zero and one.

testDirection Accessor for the test direction. When setting, value must be either "over" or
"under".

universeGeneIds(r) accessor for vector of gene identifiers.

Author(s)

S. Falcon

See Also

HyperGResult-class GOHyperGParams-class KEGGHyperGParams-class hyperGTest

HyperGResult-accessors

Accessors for HyperGResult Objects

Description

This manual page documents generic functions for extracting data from the result object returned
from a call to hyperGTest. The result object will be a subclass of HyperGResultBase. Methods
apply to all result object classes unless otherwise noted.

Usage

pvalues(r)
oddsRatios(r)
expectedCounts(r)

geneCounts(r)
universeCounts(r)
universeMappedCount(r)
geneMappedCount(r)

geneIds(object, ...)
geneIdUniverse(r, cond = TRUE)
geneIdsByCategory(r, catids = NULL)
sigCategories(r, p)

HyperGResult-accessors 27

R CMD check doesn't like these
annotation(r)
description(r)

testName(r)
pvalueCutoff(r)
testDirection(r)

chrGraph(r)

Arguments

r, object An instance of a subclass of HyperGResultBase.

catids A character vector of category identifiers.

p Numeric p-value used as a cutoff for selecting a subset of the result.

cond A logical value indicating whether to return conditional results for a conditional
test. The default is TRUE. For non-conditional results, this argument is ignored.

... Additional arguments that may be used by specializing methods.

Accessor Methods (Generic Functions)

organism returns a "character" vector describing the organism for which the results were calcu-
lated.

geneCounts returns an "integer" vector: for each category term tested, the number of genes from
the gene set that are annotated at the term.

pvalues returns a "numeric" vector: the ordered p-values for each category term tested.

universeCounts returns an "integer" vector: for each category term tested, the number of genes
from the gene universe that are annotated at the term.

universeMappedCount returns an "integer" vector of length one giving the size of the gene
universe set.

expectedCounts returns a "numeric" vector giving the expected number of genes in the selected
gene list to be found at each tested category term. These values may surprise you if you forget
that your gene list and gene universe might have had to undergo further filtering to ensure that
each gene has been labeled by at least one GO term.

oddsRatios returns a "numeric" vector giving the odds ratio for each category term tested.

annotation returns the name of the annotation data package used.

geneIds returns the input vector of gene identifiers intersected with the universe of gene identifiers
used in the computation.

geneIdUniverse returns a list named by the tested categories. Each element of the list is a vector
of gene identifiers (from the gene universe) annotated at the corresponding category term.

geneIdsByCategory returns a list similar to geneIdUniverse, but each vector of gene IDs is in-
tersected with the list of selected gene IDs from geneIds. The result is the selected gene IDs
annotated at each category.

sigCategories returns a character vector of category identifiers with a significant p-value. If argu-
ment p is missing, then the cutoff obtained from pvalueCutoff(r) will be used.

28 HyperGResult-accessors

geneMappedCount returns the size of the selected gene set used in the computation. This is
simply length(geneIds(obj)).

pvalueCutoff accessor for the pvalueCutoff slot.

testDirection accessor for the testDirection slot. Contains a string indicating whether the test
was for "over" or "under" representation of the categories.

description returns a character string description of the test result.

testName returns a string describing the testing method used.

summary returns a data.frame summarizing the test result. Optional arguments pvalue and
categorySize allow specification of maximum p-value and minimum categorySize, respec-
tively. The data frame contains the GOID, Pvalue, OddsRatio, ExpCount, Count, and Size.
ExpCount is the expected count and the Count is how many instances of that term were actu-
ally oberved in your gene list while the Size is the number that could have been found in your
gene list if every instance had turned up. Values like the ExpCount and the Size are going
to be affected by what is included in the gene universe as well as by whether or not it was a
conditional test.

htmlReport writes an HTML version of the table produced by the summary method. The first
argument should be a HyperGResult instance (or subclass). The path of a file to write the
report to can be specified using the file argument. The default is file="" which will cause
the report to be printed to the screen. If you wish to create a single report comprising multiple
results you can set append=TRUE. The default is FALSE (overwrite pre-existing report file).
You can specify a string to use as an identifier for each table by providing a value for the
label argument. The number of digits displayed in numerical columns can be controlled
using digits (defaults to 3). The summary method is called on the HyperGResult instance
to generate a data frame that is transformed to HTML. You can pass additional arguments to
the summary method which is used to generate the data frame that is transformed to HTML by
specifying a named list using summary.args.

Author(s)

Seth Falcon

See Also

hyperGTest HyperGResult-class HyperGParams-class GOHyperGParams-class KEGGHyperGParams-class

Examples

Note that more in-depth examples can be found in the GOstats
vignette (Hypergeometric tests using GOstats).
library("hgu95av2.db")
library("annotate")

Retrieve 300 probeids that have PFAM ids
probids <- keys(hgu95av2.db,keytype="PROBEID",column="PFAM")[1:300]

get unique Entrez Gene IDs
geneids <- select(hgu95av2.db, probids, 'ENTREZID', 'PROBEID')
geneids <- unique(geneids[['ENTREZID']])

Now do the same for the universe
univ <- keys(hgu95av2.db,keytype="PROBEID",column="PFAM")
univ <- select(hgu95av2.db, univ, 'ENTREZID', 'PROBEID')
univ <- unique(univ[['ENTREZID']])

HyperGResult-class 29

p <- new("PFAMHyperGParams", geneIds=geneids, universeGeneIds=univ,
annotation="hgu95av2")

this takes a while...
if(interactive()){
hypt <- hyperGTest(p)
summary(hypt)
htmlReport(hypt, file="temp.html", summary.args=list("htmlLinks"=TRUE))
}

HyperGResult-class Class "HyperGResult"

Description

This class represents the results of a test for over-representation of categories among genes in a
selected gene set based upon the Hypergeometric distribution. The hyperGTest generic func-
tion returns an instance of the HyperGResult class. For details on accessing the results, see
HyperGResult-accessors.

Objects from the Class

Objects can be created by calls of the form new("HyperGResult", ...).

Slots

pvalues: "numeric" vector: the ordered p-values for each category term tested.

catToGeneId: Object of class "list". The names of the list are category IDs. Each element is a
vector of gene IDs annotated at the given category ID and in the specified gene universe.

annotation: A string giving the name of the chip annotation data package used.

geneIds: Object of class "ANY": the input vector of gene identifiers intersected with the universe
of gene identifiers used in the computation. The class of this slot is specified as "ANY" because
gene IDs may be integer or character vectors depending on the annotation package.

testName: A string identifying the testing method used.

pvalueCutoff: Numeric value used a a p-value cutoff. Used by the show method to count number
of significant terms.

testDirection: A string indicating whether the test should be for overrepresentation ("over") or
underrepresentation ("under").

oddsRatios a "numeric" vector giving the odds ratio for each category term tested.

expectedCounts a "numeric" vector giving the expected number of genes in the selected gene list
to be found at each tested category term.

Extends

Class "HyperGResultBase", directly.

Methods

See HyperGResult-accessors.

30 HyperGResultBase-class

Author(s)

Seth Falcon

See Also

HyperGResultBase-class GOHyperGResult-class HyperGResult-accessors

HyperGResultBase-class

Class "HyperGResultBase"

Description

This VIRTUAL class represents common elements of the return values of generic functions like
hyperGTest. All subclasses are intended to implement the accessor functions documented at
HyperGResult-accessors.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

annotation: Object of class "character" giving the name of the annotation data package used.

geneIds: Object of class "ANY" (usually a character vector, but sometimes an integer vector). The
input vector of gene identifiers intersected with the universe of gene identifiers used in the
computation.

testName: Object of class "character" identifying the testing method used.

pvalueCutoff: Numeric value used by the testing method as a p-value cutoff. Not all testing
methods use this. Also used by the show method to count number of significant terms.

testDirection: A string indicating whether the test performed was for overrepresentation ("over")
or underrepresentation("under").

Methods

See HyperGResult-accessors.

Author(s)

Seth Falcon

See Also

HyperGResult-class GOHyperGResult-class HyperGResult-accessors

hyperGTest 31

hyperGTest Hypergeometric Test for association of categories and genes

Description

Given a subclass of HyperGParams, compute Hypergeomtric p-values for over or under-representation
of each term in the specified category among the specified gene set.

Usage

hyperGTest(p)

Arguments

p An instance of a subclass of HyperGParams. This parameter object determines
the category of interest (e.g., GO or KEGG) as well as the gene set.

Details

The gene identifiers in the geneIds slot of p define the selected set of genes. The universe of gene
ids is determined by the chip annotation found in the annotation slot of p. Both the selected
genes and the universe are reduced by removing identifiers that do not have any annotations in the
specified category.

For each term in the specified category that has at least one annotation in the selected gene set, we
determine how many of its annotations are in the universe set and how many are in the selected
set. With these counts we perform a Hypergeometric test using phyper. This is equivalent to using
Fisher’s exact test.

It is important that the correct chip annotation data package be identified as it determines the uni-
verse of gene identifiers and is often used to determine the mapping between the category term and
the gene identifiers.

For S. cerevisiae if the annotation slot of p is set to ’"org.Sc.sgd"’ then comparisons and statistics
are computed using common names and are with respect to all genes annotated in the S. cerevisiae
genome not with respect to any microarray chip. This will *not* be the right thing to do if you are
working with a yeast microarray.

Value

A HyperGResult instance.

Implementation Notes

In most cases, the provided method with signature matching any subclass of HyperGParams is all
that will be needed. This method follows a template pattern. To add support for a new FOO category
type, a developer would need to create a FooHyperGParams subclass and then define two methods
specialized to the new subclass that get called from inside hyperGTest: universeBuilder and
categoryToEntrezBuilder.

Author(s)

S. Falcon

32 KEGGHyperGParams-class

See Also

HyperGResult-class HyperGParams-class GOHyperGParams-class KEGGHyperGParams-class

KEGGHyperGParams-class

Class "KEGGHyperGParams" and "PFAMHyperGParams"

Description

Parameter classes for representing all parameters needed for running the hyperGTest method with
KEGG or PFAM as the category.

Objects from the Class

Objects can be created by calls of the form new("KEGGHyperGParams", ...) or new("PFAMHyperGParams",
...).

Slots

geneIds: Object of class "ANY": A vector of gene identifiers. Numeric and character vectors are
probably the only things that make sense. These are the gene ids for the selected gene set.

universeGeneIds: Object of class "ANY": A vector of gene ids in the same format as geneIds
defining a subset of the gene ids on the chip that will be used as the universe for the hyper-
geometric calculation. If this is NULL or has length zero, then all gene ids on the chip will be
used.

annotation: A string giving the name of the annotation data package for the chip used to generate
the data.

cateogrySubsetIds: Object of class "ANY": If the test method supports it, can be used to specify
a subset of category ids to include in the test instead of all possible category ids.

categoryName: A string describing the category. This will be automatically set to "KEGG" or
"PFAM" via the class’s prototype.

pvalueCutoff: The p-value to use as a cutoff for significance for testing methods that require it.
This value will also be passed on to the result instance and used for display and counting of
significant results. The default is 0.01.

testDirection: A string indicating whether the test should be for overrepresentation ("over") or
underrepresentation ("under").

Extends

Class "HyperGParams", directly.

Methods

hyperGTest signature(p = "HyperGParams"): Perform hypergeometric tests to assess overrep-
resentation of category ids in the gene set. See the documentation for the generic function for
details. This method must be called with a proper subclass of HyperGParams.

Author(s)

S. Falcon

LinearMParams-class 33

See Also

HyperGResult-class GOHyperGParams-class hyperGTest

LinearMParams-class Class "LinearMParams"

Description

A parameter class for representing all parameters needed by a method specializing the linearMTest
generic.

Objects from the Class

Objects can be created by calls of the form new("LinearMParams", ...).

Slots

geneStats: Named vector of class "numeric", giving the gene-level statistics to be used in the
tests. The names should correspond to the gene identifiers in gsc.

universeGeneIds: Object of class "ANY": A vector of gene ids defining a subset of the gene ids on
the chip that will be used as the universe for the hypergeometric calculation. If this is NULL or
has length zero, then all gene ids on the chip will be used. Currently this parameter is ignored
by the base linearMTest method.

annotation: A string giving the name of the annotation data package for the chip used to generate
the data.

datPkg: Object of class "DatPkg" used to assist with dispatch based on type of annotation data
available. Currently this parameter is ignored by the base linearMTest method.

categorySubsetIds: Object of class "ANY": If the test method supports it, can be used to specify
a subset of category ids to include in the test instead of all possible category ids. Currently
this parameter is ignored by the base linearMTest method.

categoryName: A string describing the category. Usually set automatically by subclasses. For
example "ChrMap".

pvalueCutoff: The p-value to use as a cutoff for significance for testing methods that require it.
This value will also be passed on to the result instance and used for display and counting of
significant results. The default is 0.01.

minSize: An integer giving a minimum size for a gene set for it to be tested. The default is 5.

testDirection: A string indicating whether the test should test for systematic increase ("up") or
decrease ("down") in the geneStats values within a gene set relative to the remaining genes.

graph: The graph object indicating the hierarchical relationship among terms of the ontology or
other grouping.

conditional: A logical indicating whether conditional tests should be performed. This tests
whether a term is still significant even when including its sub-terms in the model.

gsc: The GeneSetCollection object grouping the gene ids into sets.

34 LinearMResult-class

Methods

These are accessor methods for the various parameter slots:

annotation<- signature(object = "LinearMParams", value = "character"): ...

annotation signature(object = "LinearMParams"): ...

categoryName signature(r = "LinearMParams"): ...

conditional signature(r = "LinearMParams"): ...

geneIds<- signature(object = "LinearMParams"): ...

geneIds signature(object = "LinearMParams"): ...

pvalueCutoff<- signature(r = "LinearMParams"): ...

pvalueCutoff signature(r = "LinearMParams"): ...

show signature(object = "LinearMParams"): ...

testDirection<- signature(r = "LinearMParams"): ...

testDirection signature(r = "LinearMParams"): ...

conditional<- signature(r = "LinearMParams"): ...

conditional signature(r = "LinearMParams"): ...

universeGeneIds signature(r = "LinearMParams"): ...

Author(s)

Deepayan Sarkar, Michael Lawrence

See Also

See linearMTest for examples. ChrMapLinearMParams is a specialization of this class for chro-
mosome maps.

LinearMResult-class Class "LinearMResult"

Description

This class represents the results of a test for systematic change in some gene-level statistic by gene
sets. The linearMTest generic function returns an instance of the LinearMResult class.

Objects from the Class

Objects can be created by calls of the form new("LinearMResult", ...), but is more commonly
created using a call to linearMTest.

LinearMResult-class 35

Slots

pvalues: Object of class "numeric", with the p-values for each term.

pvalue.order: Object of class "integer", the order vector (increasing) for the p-values.

effectSize: Object of class "numeric", with the effect size for each term.

annotation: Object of class "character" ~~

geneIds: Object of class "ANY" ~~

testName: Object of class "character" ~~

pvalueCutoff: Object of class "numeric" ~~

minSize: Object of class "integer" ~~

testDirection: Object of class "character" ~~

conditional: Object of class "logical" ~~

graph: Object of class "graph" ~~

gsc: Object of class "GeneSetCollection" ~~

Extends

Class "LinearMResultBase", directly.

Methods

effectSize signature(r = "LinearMResult"): ...

pvalues signature(r = "LinearMResult"): ...

summary signature(r = "LinearMResult"): returns a data.frame with a row for each gene
set tested the following columns: ID, Pvalue, Effect size, Size (number of members),
Conditional (whether the test used the conditional test), and TestDirection (for up or
down).

Author(s)

Deepayan Sarkar, Michael Lawrence

See Also

linearMTest

Examples

showClass("LinearMResult")

36 LinearMResultBase-class

LinearMResultBase-class

Class "LinearMResultBase"

Description

This VIRTUAL class represents common elements of the return values of generic functions like
linearMTest. These elements are essentially those that are passed through from the input parame-
ters. See LinearMResult for a concrete result class with the basic outputs.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

All of these slots correspond to slots in the LinearMParams class.

annotation: Object of class "character" ~~

geneIds: Object of class "ANY" ~~

testName: Object of class "character" ~~

pvalueCutoff: Object of class "numeric" ~~

minSize: Object of class "integer" ~~

testDirection: Object of class "character" ~~

conditional: Object of class "logical" ~~

graph: Object of class "graph" ~~

gsc: Object of class "GeneSetCollection" ~~

Methods

annotation signature(object = "LinearMResultBase"): ...

conditional signature(r = "LinearMResultBase"): ...

description signature(object = "LinearMResultBase"): ...

geneIdsByCategory signature(object = "LinearMResultBase"): ...

geneIds signature(object = "LinearMResultBase"): ...

geneIdUniverse signature(r = "LinearMResultBase"): ...

geneMappedCount signature(r = "LinearMResultBase"): ...

pvalueCutoff signature(r = "LinearMResultBase"): ...

show signature(object = "LinearMResultBase"): ...

sigCategories signature(r = "LinearMResultBase"): ...

summary signature(object = "LinearMResultBase"): ...

testDirection signature(r = "LinearMResultBase"): ...

conditional signature(object = "LinearMResultBase"): ...

testName signature(r = "LinearMResultBase"): ...

universeCounts signature(r = "LinearMResultBase"): ...

universeMappedCount signature(r = "LinearMResultBase"): ...

linearMTest 37

Author(s)

Deepayan Sarkar, Michael Lawrence

See Also

LinearMResult, LinearMParams, linearMTest

linearMTest A linear model-based test to detect enrichment of unusual genes in
categories

Description

Given a subclass of LinearMParams, compute p-values for detecting systematic up or downregula-
tion of the specified gene set in the specified category.

Usage

linearMTest(p)

Arguments

p An instance of a subclass of LinearMParams. This parameter object determines
the category of interest (currently, only chromosome bands) as well as the gene
set.

Details

The per-gene statistics in the geneStats slot of p give a measure of up or down regulation of the
individual genes in the universe.

Value

A LinearMResult instance.

Author(s)

D. Sarkar

See Also

LinearMResult-class LinearMParams-class

38 local_test_factory

local_test_factory Local and Global Test Function Factories

Description

These functions return functions appropriate for use as the tfun argument to topdown_tree_visitor
or bottomup_tree_visitor. In particular, it is these functions that are associated with the "local"
and "global" options for the type argument to cb_test.

Usage

local_test_factory(selids, tableTest = chisq.test)
hg_test_factory(selids, PCUT = 0.05, COND = FALSE, OVER = TRUE)

Arguments

selids A vector of gene IDs. The IDs should match those used to annotatate the
ChrBandTree given by chrtree. In most cases, these will be Entrez Gene IDs.

tableTest A contingency table testing function. The behavior of this function must be
reasonably close to that of chisq.test.

PCUT A p-value cutoff that will be used to determine if a given test is significant or not
when using hg_test_factory with COND=TRUE.

COND A logical value indicating whether a conditional test should be performed.

OVER If TRUE, test for over representation, if FALSE, test for under representation.

Details

The returned functions have signature f(start, g, prev_ans) where start is a vector of start
nodes, g is a chromosome band tree graph, and prev_ans can contain the previous result returned
by a call to this function.

Value

A function that can be used as the tfun argument to the tree visitor functions.

Author(s)

Seth Falcon

See Also

cb_test

makeChrBandGraph 39

makeChrBandGraph Create a graph representing chromosome band annotation data

Description

This function returns a graph object representing the nested structure of chromosome bands (also
known as cytogenetic bands). The nodes of the graph are band identifiers. Each node has a geneIds
node attribute that lists the gene IDs that are annotated at the band (the gene IDs will be Entrez IDs
in most cases).

Usage

makeChrBandGraph(chip, univ = NULL)

Arguments

chip A string giving the annotation source. For example, "hgu133plus2"

univ A vector of gene IDs (these should be Entrez IDs for most annotation sources).
The annotations attached to the graph will be limited to those specified by univ.
If univ is NULL (default), then the gene IDs are those found in the annotation
data source.

Details

This function parses the data stored in the <chip>MAP map from the appropriate annotation data
package. Although cytogenetic bands are observed in all organisms, currently, only human and
mouse band nomenclatures are supported.

Value

A graph-class instance. The graph will be a tree and the root node is labeled for the organism.

Author(s)

Seth Falcon

Examples

chrGraph <- makeChrBandGraph("hgu95av2.db")
chrGraph

40 makeEBcontr

makeEBcontr A function to make the contrast vectors needed for EBarrays

Description

Using EBarrays to detect differential expression requires the construction of a set of contrasts. This
little helper function computes these contrasts for a two level factor.

Usage

makeEBcontr(f1, hival)

Arguments

f1 The factor that will define the contrasts.

hival The level of the factor to treat as the high level.

Details

Not much more to add, see EBarrays for more details. This is used in the Category package to let
users compute the posterior probability of differential expression, and hence to compute expected
numbers of differentially expressed genes, per category.

Value

An object of class “ebarraysPatterns”.

Author(s)

R. Gentleman

See Also

ebPatterns

Examples

if(require("EBarrays")) {
myfac = factor(rep(c("A", "B"), c(12, 24)))
makeEBcontr(myfac, "B")

}

makeValidParams 41

makeValidParams Non-standard Generic for Checking Validity of Parameter Objects

Description

This function is not intended for end-users, but may be useful for developers extending the Hyper-
geometric testing capabilities provideded by the Category package.

makeValidParams is intended to validate a parameter object instance (e.g. HyperGParams or sub-
class). The idea is that unlike validObject, methods for this generic attempt to fix invalid instances
when possible, and in this case issuing a warning, and only give an error if the object cannot be fixed.

Usage

makeValidParams(object)

Arguments

object A parameter object. Consult showMethods to see signatures currently supported.

Value

The value must have the same class as the object argument.

Author(s)

Seth Falcon

MAPAmat Mapping chromosome bands to genes

Description

These functions return a mapping of chromosome bands to genes. makeChrBandGSC returns a
GeneSetCollection object, with a GeneSet for each band. The other functions return a 0/1 in-
cidence matrix with a row for each chromosme band and a column for each gene. Only those
chromosome bands with at least one gene annotation will be included.

Usage

MAPAmat(chip, univ = NULL, minCount = 0)
makeChrBandInciMat(chrGraph)
makeChrBandGSC(chrGraph)

42 NewChrBandTree

Arguments

chip A string giving the annotation source. For example, "hgu133plus2"

univ A vector of gene IDs (these should be Entrez IDs for most annotation sources).
The the annotations will be limited to those in the set specified by univ. If
univ is NULL (default), then the gene IDs are those found in the annotation data
source.

chrGraph A graph object as returned by makeChrBandGraph

minCount Bands with less than minCount genes will be excluded from the returned matrix.
If minCount is 0, no bands will be removed, this is the default.

Value

For makeChrBandGSC, a GeneSetCollection object with a GeneSet for each band.

For the other functions, (0/1) incidence matrix with chromosome bands as rows and gene IDs as
columns. A 1 in m[i, j] indicates that the chromosome band rownames(m)[i] contains the geneID
colnames(m)[j].

Author(s)

Seth Falcon, Michael Lawrence

See Also

makeChrBandGraph, cateGOry, probes2MAP

Examples

have_hgu95av2.db <- suppressWarnings(require("hgu95av2.db"))
if (have_hgu95av2.db)

mam <- MAPAmat("hgu95av2.db")

NewChrBandTree Create a new ChrBandTree object

Description

NewChrBandTree and ChrBandTreeFromGraph provide constructors for the ChrBandTree class.

Usage

NewChrBandTree(chip, univ)
ChrBandTreeFromGraph(g)

Arguments

chip The name of an annotation data package

univ A vector of gene identifiers that defines the universe of genes. Usually, this will
be a vector of Entez Gene IDs. If univ is NULL, then all genes probed on the
specified chip will be in the universe. We strongly recommend using the set of
genes that remains after applying a non-specific filter as the universe.

g A graph instance as returned by makeChrBandGraph

OBOHyperGParams-class 43

Value

A new ChrBandTree instance.

Author(s)

S. Falcon

See Also

ChrBandTree-class

OBOHyperGParams-class Class "OBOHyperGParams"

Description

A parameter class for representing all parameters needed for running the hyperGTest method with
an ontology adhered to the OBO Foundry (see http://www.obofoundry.org) as the category.

Objects from the Class

Objects can be created by calls of the form OBOHyperGParams(...), where ... correspond to slots
defined below.

Slots

conditional: A logical indicating whether the calculation should condition on the ontology struc-
ture.

geneIds: Object of class "ANY": A vector of gene identifiers. Numeric and character vectors are
probably the only things that make sense. These are the gene ids for the selected gene set.

universeGeneIds: Object of class "ANY": A vector of gene ids in the same format as geneIds
defining a subset of the gene ids on the chip that will be used as the universe for the hyper-
geometric calculation. If this is NULL or has length zero, then all gene ids on the chip will be
used.

annotation: A string giving the name of the annotation data package for the chip used to generate
the data.

categorySubsetIds: Object of class "ANY": If the test method supports it, can be used to specify
a subset of category ids to include in the test instead of all possible category ids.

categoryName: A string describing the category. Usually set automatically by subclasses. For
example "GO".

datPkg: Holds a DatPkg object which is of a particular type that in turn varies with the kind of
annotation package this is.

pvalueCutoff: A numeric values between zero and one used as a p-value cutoff for p-values gen-
erated by the Hypergeometric test. When the test being performed is non-conditional, this is
only used as a default value for printing and summarizing the results. For a conditional anal-
ysis, the cutoff is used during the computation to determine perform the conditioning: child
terms with a p-value less than pvalueCutoff are conditioned out of the test for their parent
term.

http://www.obofoundry.org

44 probes2MAP

orCutoff: A numeric value used as an odds-ratio cutoff for odds ratios generated by the condi-
tional Hypergeometric test. For such a test, it works like the pvalueCutoff but applied on the
odds ratio. It has no effect when conditional=FALSE.

minSizeCutoff: A numeric value used as a cutoff for minimum size of the gene sets being tested
with the conditional Hypergeometric test. For such a test, it works like the pvalueCutoff but
applied on the odds ratio. It has no effect when conditional=FALSE.

maxSizeCutoff: A numeric value used as a cutoff for maximum size of the gene sets being tested
with the conditional Hypergeometric test. For such a test, it works like the pvalueCutoff but
applied on the odds ratio. It has no effect when conditional=FALSE.

testDirection: A string which can be either "over" or "under". This determines whether the test
performed detects over or under represented GO terms.

Extends

Class "HyperGParams", directly.

Methods

hyperGTest(p) Perform hypergeometric tests to assess overrepresentation of category ids in the
gene set. See the documentation for the generic function for details. This method must be
called with a proper subclass of HyperGParams.

conditional(p), conditional(p) <- value Accessors for the conditional flag. When setting,
value must be TRUE or FALSE.

Author(s)

R. Castelo

See Also

HyperGResult-class hyperGTest

probes2MAP Map probe IDs to MAP regions.

Description

This function maps probe identifiers to MAP positions using the appropriate Bioconductor meta-
data package.

Usage

probes2MAP(pids, data = "hgu133plus2")

Arguments

pids A vector of probe IDs for the chip in use.

data The name of the chip, as a character string.

probes2Path 45

Details

Probes are mapped to regions, no checking for duplicate Entrez gene IDs is done.

Value

A vector, the same length as pids, with the MAP locations.

Author(s)

R. Gentleman

See Also

probes2Path

Examples

set.seed(123)
library("hgu95av2.db")
v1 = sample(names(as.list(hgu95av2MAP)), 100)
pp = probes2MAP(v1, "hgu95av2.db")

probes2Path A function to map probe identifiers to pathways.

Description

Given a set of probe identifiers from a microarray this function looks up all KEGG pathways that
the probe is documented to be involved in.

Usage

probes2Path(pids, data = "hgu133plus2")

Arguments

pids A vector of probe identifiers.

data The character name of the chip.

Details

This is a simple look up in the appropriate chip PATH data environment.

Value

A list of pathway vectors. One element for each value of pid that is mapped to at least one pathway.

Author(s)

R. Gentleman

46 tree_visitor

See Also

findAMstats

Examples

library("hgu95av2.db")
x = c("1001_at", "1000_at")
probes2Path(x, "hgu95av2.db")

tree_visitor Tree Visitor Function

Description

This function visits each node in a tree-like object in an order determined by the relationOf func-
tion. The function given by tfun is called for each set of nodes and the function nfun determines
which nodes to test next optionally making use of the result of the previous test.

Usage

tree_visitor(g, start, tfun, nfun, relationOf)
topdown_tree_visitor(g, start, tfun, nfun)
bottomup_tree_visitor(g, start, tfun, nfun)

Arguments

g A tree-like object that supports the method given by relationOf.

start The set of nodes to start the computation (can be a list of siblings), but the nodes
should all belong to the same level of the tree (same path length to root node).

tfun The test function applied to each list of siblings at each level starting with start.
The signature of tfun should be (start, g, prev_ans).

nfun A function with signature (ans, g) that processes the result of tfun and returns
a character vector of node names corresponding to nodes that were involved in
an "interesting" test. This is used to determine the next set of nodes to test (see
details).

relationOf The method used to traverse the tree. For example childrenOf or parentOf.

Details

The tree_visitor function is intended to allow developers to quickly prototype different statistical
testing paradigms on trees. It may be possible to extend this to work for DAGs.

The visit begins by calling tfun with the nodes provided by start. The result of each call to tfun
is stored in an environment. The concept is visitation by tree level and so each result is stored using
a key representing the level (this isn’t quite right since the nodes in start need not be first level, but
they will be assigned key "1". After storing the result, nfun is used to obtain a vector of accepted
node labels. The idea is that the user should have a way of determining which nodes in the next
level of the tree are worth testing. The next start set is determined by start <- relationOf(g,
accepted) where accepted is unique(nfun(ans, g)).

ttperm 47

Value

A list. See the return value of cb_test to get an idea. Each element of the list represents a call to
tfun at a given level of the tree.

Author(s)

Seth Falcon

ttperm A simple function to compute a permutation t-test.

Description

The data matrix, x, with two-level factor, fac, is used to compute t-tests. The values of fac are
permuted B times and the complete set of t-tests is performed for each permutation.

Usage

ttperm(x, fac, B = 100, tsO = TRUE)

Arguments

x A data matrix. The number of columns should be the same as the length of fac.

fac A factor with two levels.

B An integer specifying the number of permutations.

tsO A logical indicating whether to compute only the t-test statistic for each permu-
ation. If FALSE then p-values are also computed - but this can be very slow.

Details

Not much more to say. Probably there is a generic function somewhere, but I could not find it.

Value

A list, the first element is named obs and contains the true, observed, values of the t-statistic. The
second element is named ans and contains a list of length B containing the different permuations.

Author(s)

R. Gentleman

See Also

rowttests

Examples

x=matrix(rnorm(100), nc=10)
y = factor(rep(c("A","B"), c(5,5)))
ttperm(x, y, 10)

48 universeBuilder

universeBuilder Return a vector of gene identifiers with category annotations

Description

Return all gene ids that are annotated at one or more terms in the category. If the universeGeneIds
slot of p has length greater than zero, then the intersection of the gene ids specified in that slot and
the normal return value is given.

Usage

universeBuilder(p)

Arguments

p A subclass of HyperGParams-class

Details

End users should not call this directly. This method gets called from hyperGTest. To add support
for a new category, a new method for this generic must be defined. Its signature should match a
subclass of HyperGParams-class appropriate for the new category.

Value

A vector of gene identifiers.

Author(s)

S. Falcon

See Also

hyperGTest HyperGParams-class

Index

∗ classes
ChrBandTree-class, 10
ChrMapHyperGParams-class, 11
ChrMapHyperGResult-class, 13
ChrMapLinearMParams-class, 14
ChrMapLinearMResult-class, 15
DatPkg-class, 16
GOHyperGParams-class, 20
GSEAGOHyperGParams, 21
HyperGParams-class, 25
HyperGResult-class, 29
HyperGResultBase-class, 30
KEGGHyperGParams-class, 32
LinearMParams-class, 33
LinearMResult-class, 34
LinearMResultBase-class, 36
OBOHyperGParams-class, 43

∗ htest
HyperGResult-accessors, 26
hyperGTest, 31
linearMTest, 37

∗ internal
local_test_factory, 38
tree_visitor, 46

∗ manip
applyByCategory, 3
cateGOry, 4
categoryToEntrezBuilder, 5
findAMstats, 18
getPathNames, 19
hyperg, 24
makeChrBandGraph, 39
makeEBcontr, 40
makeValidParams, 41
MAPAmat, 41
probes2MAP, 44
probes2Path, 45
ttperm, 47
universeBuilder, 48

AffyDatPkg-class (DatPkg-class), 16
allGeneIds (ChrBandTree-class), 10
allGeneIds,ChrBandTree-method

(ChrBandTree-class), 10

annotation (HyperGResult-accessors), 26
annotation,GOHyperGParams-method

(GOHyperGParams-class), 20
annotation,HyperGParams-method

(HyperGParams-class), 25
annotation,HyperGResultBase-method

(HyperGResult-accessors), 26
annotation,LinearMParams-method

(LinearMParams-class), 33
annotation,LinearMResultBase-method

(LinearMResultBase-class), 36
annotation,OBOHyperGParams-method

(OBOHyperGParams-class), 43
annotation<-,HyperGParams,character-method

(HyperGParams-class), 25
annotation<-,LinearMParams,character-method

(LinearMParams-class), 33
apply, 3
applyByCategory, 3, 4, 19
ArabidopsisDatPkg-class (DatPkg-class),

16

bottomup_tree_visitor (tree_visitor), 46

cateGOry, 3, 4, 42
Category-defunct, 5
categoryName (HyperGParams-class), 25
categoryName,GOHyperGParams-method

(GOHyperGParams-class), 20
categoryName,HyperGParams-method

(HyperGParams-class), 25
categoryName,LinearMParams-method

(LinearMParams-class), 33
categoryName,OBOHyperGParams-method

(OBOHyperGParams-class), 43
categoryToEntrezBuilder, 5
categoryToEntrezBuilder,GOHyperGParams-method

(categoryToEntrezBuilder), 5
categoryToEntrezBuilder,KEGGHyperGParams-method

(categoryToEntrezBuilder), 5
categoryToEntrezBuilder,OBOHyperGParams-method

(categoryToEntrezBuilder), 5
categoryToEntrezBuilder,PFAMHyperGParams-method

(categoryToEntrezBuilder), 5

49

50 INDEX

cb_children (cb_contingency), 6
cb_contingency, 6
cb_parse_band_Hs, 7
cb_parse_band_hsa (Category-defunct), 5
cb_parse_band_Mm, 8
cb_sigBands (cb_contingency), 6
cb_test, 9, 38
childrenOf (ChrBandTree-class), 10
childrenOf,ChrBandTree,character-method

(ChrBandTree-class), 10
chrBandInciMat (Category-defunct), 5
ChrBandTree-class, 10
ChrBandTreeFromGraph (NewChrBandTree),

42
chrGraph (HyperGResult-accessors), 26
chrGraph,ChrMapHyperGResult-method

(HyperGResult-accessors), 26
chrGraph,ChrMapLinearMResult-method

(ChrMapLinearMResult-class), 15
ChrMapHyperGParams-class, 11
ChrMapHyperGResult-class, 13
ChrMapLinearMParams, 16, 34
ChrMapLinearMParams-class, 14
ChrMapLinearMResult-class, 15
condGeneIdUniverse (Category-defunct), 5
conditional (HyperGParams-class), 25
conditional,ChrMapHyperGParams-method

(ChrMapHyperGParams-class), 11
conditional,ChrMapHyperGResult-method

(ChrMapHyperGResult-class), 13
conditional,GOHyperGParams-method

(GOHyperGParams-class), 20
conditional,HyperGParams-method

(HyperGParams-class), 25
conditional,HyperGResultBase-method

(HyperGResultBase-class), 30
conditional,LinearMParams-method

(LinearMParams-class), 33
conditional,LinearMResultBase-method

(LinearMResultBase-class), 36
conditional,OBOHyperGParams-method

(OBOHyperGParams-class), 43
conditional<- (HyperGParams-class), 25
conditional<-,ChrMapHyperGParams,logical-method

(ChrMapHyperGParams-class), 11
conditional<-,GOHyperGParams,logical-method

(GOHyperGParams-class), 20
conditional<-,LinearMParams,logical-method

(LinearMParams-class), 33
conditional<-,OBOHyperGParams,logical-method

(OBOHyperGParams-class), 43

DatPkg-class, 16

DatPkgFactory (DatPkg-class), 16
DatPkgFactory,character-method

(DatPkg-class), 16
DatPkgFactory,ChipDb-method

(DatPkg-class), 16
DatPkgFactory,OBOCollection,GeneSetCollection-method

(DatPkg-class), 16
DatPkgFactory,OrgDb-method

(DatPkg-class), 16
Defunct, 5
description (HyperGResult-accessors), 26
description,HyperGResultBase-method

(HyperGResult-accessors), 26
description,LinearMResultBase-method

(LinearMResultBase-class), 36

ebPatterns, 40
effectSize, 17
effectSize,LinearMResult-method

(LinearMResult-class), 34
exampleLevels, 18
expectedCounts

(HyperGResult-accessors), 26
expectedCounts,ChrMapHyperGResult-method

(HyperGResult-accessors), 26
expectedCounts,HyperGResult-method

(HyperGResult-accessors), 26

findAMstats, 18, 46

geneCounts (HyperGResult-accessors), 26
geneCounts,HyperGResultBase-method

(HyperGResult-accessors), 26
geneGoHyperGeoTest (Category-defunct), 5
geneIds (HyperGResult-accessors), 26
geneIds,ChrBandTree-method

(ChrBandTree-class), 10
geneIds,HyperGParams-method

(HyperGParams-class), 25
geneIds,HyperGResultBase-method

(HyperGResult-accessors), 26
geneIds,LinearMParams-method

(LinearMParams-class), 33
geneIds,LinearMResultBase-method

(LinearMResultBase-class), 36
geneIds<- (HyperGParams-class), 25
geneIds<-,HyperGParams,ANY-method

(HyperGParams-class), 25
geneIds<-,HyperGParams,logical-method

(HyperGParams-class), 25
geneIds<-,LinearMParams,ANY-method

(LinearMParams-class), 33

INDEX 51

geneIdsByCategory
(HyperGResult-accessors), 26

geneIdsByCategory,HyperGResultBase-method
(HyperGResult-accessors), 26

geneIdsByCategory,LinearMResultBase-method
(LinearMResultBase-class), 36

geneIdUniverse
(HyperGResult-accessors), 26

geneIdUniverse,ChrMapHyperGResult-method
(HyperGResult-accessors), 26

geneIdUniverse,HyperGResult-method
(HyperGResult-accessors), 26

geneIdUniverse,LinearMResultBase-method
(LinearMResultBase-class), 36

geneKeggHyperGeoTest
(Category-defunct), 5

geneMappedCount
(HyperGResult-accessors), 26

geneMappedCount,HyperGResultBase-method
(HyperGResult-accessors), 26

geneMappedCount,LinearMResultBase-method
(LinearMResultBase-class), 36

GeneSetCollection, 14, 33, 41
GeneSetCollectionDatPkg (DatPkg-class),

16
getPathNames, 19
GO, 4
GO2AllProbes (DatPkg-class), 16
GO2AllProbes,DatPkg-method

(DatPkg-class), 16
GO2AllProbes,GeneSetCollectionDatPkg-method

(DatPkg-class), 16
GO2AllProbes,Org.XX.egDatPkg-method

(DatPkg-class), 16
GO2AllProbes,YeastDatPkg-method

(DatPkg-class), 16
GOHyperGParams-class, 20
graph, 33
GSEAGOHyperGParams, 21
GSEAKEGGHyperGParams

(GSEAGOHyperGParams), 21
gseattperm, 22

hg_test_factory (local_test_factory), 38
htmlReport (HyperGResult-accessors), 26
htmlReport,HyperGResultBase-method

(HyperGResult-accessors), 26
htmlReport,KEGGHyperGResult-method

(HyperGResult-accessors), 26
htmlReport,PFAMHyperGResult-method

(HyperGResult-accessors), 26
hyperg, 24
hyperg,character-method (hyperg), 24

hyperg,list-method (hyperg), 24
HyperGParams, 12
HyperGParams-class, 25
HyperGResult-accessors, 13, 26, 29, 30
HyperGResult-class, 29
HyperGResultBase, 13
HyperGResultBase-class, 30
hyperGTest, 6, 12, 21, 22, 24, 26, 28, 31, 33,

44, 48
hyperGTest,ChrMapHyperGParams-method

(hyperGTest), 31
hyperGTest,HyperGParams-method

(hyperGTest), 31
hyperGTest,KEGGHyperGParams-method

(hyperGTest), 31
hyperGTest,PFAMHyperGParams-method

(hyperGTest), 31

ID2EntrezID (DatPkg-class), 16
ID2EntrezID,AffyDatPkg-method

(DatPkg-class), 16
ID2EntrezID,ArabidopsisDatPkg-method

(DatPkg-class), 16
ID2EntrezID,GeneSetCollectionDatPkg-method

(DatPkg-class), 16
ID2EntrezID,Org.XX.egDatPkg-method

(DatPkg-class), 16
ID2EntrezID,YeastDatPkg-method

(DatPkg-class), 16
ID2GO (DatPkg-class), 16
ID2GO,DatPkg-method (DatPkg-class), 16
ID2GO,GeneSetCollectionDatPkg-method

(DatPkg-class), 16
ID2KEGG (DatPkg-class), 16
ID2KEGG,DatPkg-method (DatPkg-class), 16
ID2KEGG,GeneSetCollectionDatPkg-method

(DatPkg-class), 16
initialize,HyperGParams-method

(HyperGParams-class), 25
isConditional (Category-defunct), 5
isDBDatPkg,DatPkg-method

(DatPkg-class), 16
isDBDatPkg,GeneSetCollectionDatPkg-method

(DatPkg-class), 16

KEGG2AllProbes (DatPkg-class), 16
KEGG2AllProbes,DatPkg-method

(DatPkg-class), 16
KEGG2AllProbes,GeneSetCollectionDatPkg-method

(DatPkg-class), 16
KEGGHyperGParams-class, 32
KEGGHyperGResult-class

(HyperGResult-class), 29

52 INDEX

KEGGPATHID2NAME, 19

level2nodes (ChrBandTree-class), 10
level2nodes,ChrBandTree,character-method

(ChrBandTree-class), 10
level2nodes,ChrBandTree,numeric-method

(ChrBandTree-class), 10
lgeneIds (ChrBandTree-class), 10
lgeneIds,ChrBandTree-method

(ChrBandTree-class), 10
LinearMParams, 14, 36, 37
LinearMParams-class, 33
LinearMResult, 15, 16, 36, 37
LinearMResult-class, 34
LinearMResultBase, 15, 16, 35
LinearMResultBase-class, 36
linearMTest, 14–16, 33–35, 37, 37
linearMTest,LinearMParams-method

(linearMTest), 37
local_test_factory, 38

makeChrBandGraph, 39, 42
makeChrBandGSC (MAPAmat), 41
makeChrBandInciMat (MAPAmat), 41
makeEBcontr, 40
makeValidParams, 41
makeValidParams,HyperGParams-method

(HyperGParams-class), 25
MAPAmat, 41
Matrix, 4

NewChrBandTree, 42

OBOCollectionDatPkg (DatPkg-class), 16
OBOCollectionDatPkg-class

(DatPkg-class), 16
OBOHyperGParams

(OBOHyperGParams-class), 43
OBOHyperGParams-class, 43
oddsRatios (HyperGResult-accessors), 26
oddsRatios,ChrMapHyperGResult-method

(HyperGResult-accessors), 26
oddsRatios,HyperGResult-method

(HyperGResult-accessors), 26
ontology (HyperGParams-class), 25
ontology,GOHyperGParams-method

(GOHyperGParams-class), 20
ontology,HyperGParams-method

(HyperGParams-class), 25
ontology<- (HyperGParams-class), 25
ontology<-,GOHyperGParams,character-method

(GOHyperGParams-class), 20
Org.XX.egDatPkg-class (DatPkg-class), 16

organism,DatPkg-method (DatPkg-class),
16

organism,GeneSetCollectionDatPkg-method
(DatPkg-class), 16

organism,HyperGParams-method
(HyperGParams-class), 25

organism,HyperGResult-method
(HyperGResult-accessors), 26

parentOf (ChrBandTree-class), 10
parentOf,ChrBandTree,character-method

(ChrBandTree-class), 10
PFAMHyperGParams-class

(KEGGHyperGParams-class), 32
PFAMHyperGResult-class

(HyperGResult-class), 29
probes2MAP, 42, 44
probes2Path, 45, 45
pvalueCutoff (HyperGResult-accessors),

26
pvalueCutoff,HyperGParams-method

(HyperGParams-class), 25
pvalueCutoff,HyperGResultBase-method

(HyperGResult-accessors), 26
pvalueCutoff,LinearMParams-method

(LinearMParams-class), 33
pvalueCutoff,LinearMResultBase-method

(LinearMResultBase-class), 36
pvalueCutoff<- (HyperGParams-class), 25
pvalueCutoff<-,HyperGParams-method

(HyperGParams-class), 25
pvalueCutoff<-,LinearMParams-method

(LinearMParams-class), 33
pvalues (HyperGResult-accessors), 26
pvalues,ChrMapHyperGResult-method

(HyperGResult-accessors), 26
pvalues,HyperGResult-method

(HyperGResult-accessors), 26
pvalues,LinearMResult-method

(LinearMResult-class), 34

rowttests, 47

show,ChrBandTree-method
(ChrBandTree-class), 10

show,GOHyperGParams-method
(GOHyperGParams-class), 20

show,HyperGParams-method
(HyperGParams-class), 25

show,HyperGResultBase-method
(HyperGResultBase-class), 30

show,LinearMParams-method
(LinearMParams-class), 33

INDEX 53

show,LinearMResultBase-method
(LinearMResultBase-class), 36

show,OBOHyperGParams-method
(OBOHyperGParams-class), 43

sigCategories (HyperGResult-accessors),
26

sigCategories,HyperGResultBase-method
(HyperGResult-accessors), 26

sigCategories,LinearMResultBase-method
(LinearMResultBase-class), 36

summary,HyperGResultBase-method
(HyperGResult-accessors), 26

summary,KEGGHyperGResult-method
(HyperGResult-accessors), 26

summary,LinearMResult-method
(LinearMResult-class), 34

summary,LinearMResultBase-method
(LinearMResultBase-class), 36

summary,PFAMHyperGResult-method
(HyperGResult-accessors), 26

testDirection (HyperGResult-accessors),
26

testDirection,HyperGParams-method
(HyperGParams-class), 25

testDirection,HyperGResultBase-method
(HyperGResult-accessors), 26

testDirection,LinearMParams-method
(LinearMParams-class), 33

testDirection,LinearMResultBase-method
(LinearMResultBase-class), 36

testDirection<- (HyperGParams-class), 25
testDirection<-,HyperGParams-method

(HyperGParams-class), 25
testDirection<-,LinearMParams-method

(LinearMParams-class), 33
testName (HyperGResult-accessors), 26
testName,HyperGResultBase-method

(HyperGResult-accessors), 26
testName,LinearMResultBase-method

(LinearMResultBase-class), 36
topdown_tree_visitor (tree_visitor), 46
tree_visitor, 46
treeLevels (ChrBandTree-class), 10
treeLevels,ChrBandTree-method

(ChrBandTree-class), 10
ttperm, 47

universeBuilder, 48
universeBuilder,GOHyperGParams-method

(universeBuilder), 48
universeBuilder,KEGGHyperGParams-method

(universeBuilder), 48

universeBuilder,OBOHyperGParams-method
(universeBuilder), 48

universeBuilder,PFAMHyperGParams-method
(universeBuilder), 48

universeCounts
(HyperGResult-accessors), 26

universeCounts,HyperGResultBase-method
(HyperGResult-accessors), 26

universeCounts,LinearMResultBase-method
(LinearMResultBase-class), 36

universeGeneIds (HyperGParams-class), 25
universeGeneIds,HyperGParams-method

(HyperGParams-class), 25
universeGeneIds,LinearMParams-method

(LinearMParams-class), 33
universeMappedCount

(HyperGResult-accessors), 26
universeMappedCount,HyperGResultBase-method

(HyperGResult-accessors), 26
universeMappedCount,LinearMResultBase-method

(LinearMResultBase-class), 36

YeastDatPkg-class (DatPkg-class), 16

	applyByCategory
	cateGOry
	Category-defunct
	categoryToEntrezBuilder
	cb_contingency
	cb_parse_band_Hs
	cb_parse_band_Mm
	cb_test
	ChrBandTree-class
	ChrMapHyperGParams-class
	ChrMapHyperGResult-class
	ChrMapLinearMParams-class
	ChrMapLinearMResult-class
	DatPkg-class
	effectSize
	exampleLevels
	findAMstats
	getPathNames
	GOHyperGParams-class
	GSEAGOHyperGParams
	gseattperm
	hyperg
	HyperGParams-class
	HyperGResult-accessors
	HyperGResult-class
	HyperGResultBase-class
	hyperGTest
	KEGGHyperGParams-class
	LinearMParams-class
	LinearMResult-class
	LinearMResultBase-class
	linearMTest
	local_test_factory
	makeChrBandGraph
	makeEBcontr
	makeValidParams
	MAPAmat
	NewChrBandTree
	OBOHyperGParams-class
	probes2MAP
	probes2Path
	tree_visitor
	ttperm
	universeBuilder
	Index

