Package ‘COSNet’

January 19, 2026
Type Package

Title Cost Sensitive Network for node label prediction on graphs with
highly unbalanced labelings

Version 1.44.0
Date 2015-11-06

Author Marco Frasca and Giorgio Valentini -- Universita' degli Studi di
Milano

Maintainer Marco Frasca<frasca@di.unimi.it>

Description Package that implements the COSNet classification
algorithm. The algorithm predicts node labels in partially
labeled graphs where few positives are available for the class being predicted.

License GPL (>=2)

URL https://github.com/m1frasca/COSNet_GitHub

LazyLoad yes

Suggests bionetdata, PerfMeas, RUnit, BiocGenerics

biocViews GraphAndNetwork, Classification,Network, NeuralNetwork
git_url https://git.bioconductor.org/packages/COSNet

git_branch RELEASE_3_22

git_last_commit d4c8857

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents
COSNet-package e 2
COSNeEL e e 3
cosnet.cross.validation 5
find.division.not.strat e e e e e e e e 6
find.division.strat e e e e e e 7
generate_labels L L 8
GEeNErate_POINtS L. e e e e e e e e e e e e e e e 8
OPLIMIZED . « « o v v v v e e i e e e e e e 9
optimize_pos_above L e 11
reg_data oL e e e 12
runSubnet L e 13

https://github.com/m1frasca/COSNet_GitHub

2 COSNet-package

Index 16

COSNet-package R package for binary classification and node ranking on partially la-
beled graphs with unbalanced labels.

Description

Algorithm based on cost-sensitive neural network for predicting node labels in a semi-supervised
setting.

Details

Package: COSNet

Type: Package
Version: 1.5.1
Date: 2015-11-06

License: GPL (>=2)
LazyLoad: yes

This package implements the COSNet algorithm (Frasca et al. 2013). COSNet is a semi-supervised
cost-sensitive neural network for predicting node labels in partially labeled graphs. The algorithm
is able in inferring a labeling for unlabeled nodes in the graph starting from the graph topology and
the known labels.

Author(s)

Marco Frasca, and Giorgio Valentini
DI, Dipartimento di Informatica
Universita’ degli Studi di Milano
<{frasca,valentini}@di.unimi.it>

Maintainer: Marco Frasca

References

Frasca M., Bertoni A., Re M., Valentini G.: A neural network algorithm for semi-supervised node
label learning from unbalanced data. Neural Networks, Volume 43, July, 2013 Pages 84-98.

Bertoni A., Frasca M., Valentini G.: COSNet: a Cost Sensitive Neural Network for Semi-supervised
Learning in Graphs. ECML PKDD’11 Proceedings of the 2011 European conference on Machine
learning and knowledge discovery in databases - Volume Part 1. Pages 219-234

COSNet 3

COSNet Cost Sensitive Network for node label prediction on graphs with highly
unbalanced labelings

Description

This function realizes the COSNet algorithm (Frasca et al. 2013). COSNet is a semi-supervised
algorithm based on parametric Hopfield networks for predicting labels for unlabeled nodes in graphs
which are only partially labeled.

Usage

COSNet (W, labeling, cost = 0)

Arguments

W square symmetric named matrix, whose components are in the interval [0,1].
The i,j-th component is a similarity index between node i and node j. The com-
ponents of the diagonal of W are zero. Rows and columns should be named
identically.

labeling vector of node labels: 1 for positive examples, -1 for negative examples, 0 for
unlabeled nodes.

cost real value corresponding to beta parameter in the equation eta = beta*|tan((alpha
- pi/4)*2)l, where eta is the coefficient of the regularization term in the energy
function (Frasca et al. 2013). If cost = O (default) the unregularized version
is executed. "cost" is a real value that reduces or increases the influence of
regularization on the network dynamics. The higher the value of cost, the more
the influence of the regularization term. It is suggested using small values for
this parameter (e.g. cost = 0.0001)

Details

COSNet contructs a Hopfield network whose connection matrix is W, and it applies a cost-sensitive
strategy to determine the network parameters starting from W and labels "labeling". COSNet distin-
guishes between labeled (1, -1 components in "labeling") and unlabeled (zero components in "label-
ing") nodes, and it is made up by three steps: 1) Generating a random labeling (1, -1) for unlabeled
nodes. 2) Learning the parameters "alpha and "c" such that the line "cos(alpha)*y - sin(alpha)*x
- q*cos(alpha) = 0 " linearly separates a suitable set of labeled points (in which each point corre-
sponds to a labeled node) and optimizes (in terms of alpha and q) the F-score criterion. The output

of this phase is the intercept "q" of the optimum line and the corresponding angle "alpha". Then
each neuron has threshold ¢ = - g*cos(alpha). 3) Extending "c" and "alpha" to the subnetwork
composed of only unlabeled nodes, and simulating it until an equilibrium state is reached. The
dynamics of this network is regularized by adding a term to the energy function that is minimized
when the proportion of positive in the network state is roughly the proportion of positives in the
labeled part of the network. The parameter "cost" corresponds to the parameter beta in the equation
eta = beta*ltan((alpha - pi/4)*2)| (see Frasca et al. 2013). When the equilibrium state is reached,

positive nodes will be predicted as positive for the current task.

4 COSNet

Value

COSNet returns a list with six elements:

alpha the optimum angle

c the optimum threshold

Fscore the optimum F-score computed in Step 2

pred the vector of predictions for unlabeled nodes

scores the vector of scores for unlabeled nodes

iter number of iterations until convergence in Step 3
References

Frasca M., Bertoni A., Re M., Valentini G.: A neural network algorithm for semi-supervised node
label learning from unbalanced data. Neural Networks, Volume 43, July, 2013 Pages 84-98.

Examples

library(bionetdata);

loading Binary protein-protein interactions from the STRING
data base (von Mering et al. 2002)
data(Yeast.STRING.data)# "Yeast.STRING.data"

FunCat classes annotations (0/1) for the genes included
in Yeast.STRING.data. Annotations refer the funcat-2.1
scheme, and funcat-2.1 data 20070316 data, available from the MIPS web site.
data(Yeast.STRING.FunCat) # "Yeast.STRING.FunCat”

labels <- Yeast.STRING.FunCat;

labels[labels == @] <- -1;

excluding the dummy "00" root

labels <- labels[, -which(colnames(labels) == "00")1];

n <- nrow(labels);

k <= floor(n/10);

cat("k = ", k, "\n");

choosing the first class

labeling <- labels[, 11;

randomly choosing a subset of genes whose labels are hidden
hidden <- sort(sample(1:n, k));

hidden.labels <- labeling[hidden];

labeling[hidden] <- 0;

out <- COSNet(Yeast.STRING.data, labeling, 0);

prediction <- out$pred;

TP <- sum(hidden.labels == 1 & prediction == 1);

FN <- sum(hidden.labels == 1 & prediction == -1);

FP <- sum(hidden.labels == -1 & prediction == 1);

out2 <- COSNet(Yeast.STRING.data, labeling, 0.0001);
prediction <- out2$pred;

TP2 <- sum(hidden.labels == 1 & prediction == 1);

FN2 <- sum(hidden.labels == 1 & prediction == -1);

FP2 <- sum(hidden.labels == -1 & prediction == 1);

cosnet.cross.validation 5

cosnet.cross.validation
Cross validation procedure for the COSNet algorithm

Description

This function applies the function COSNet to the input data with a cross validation procedure.

Usage

cosnet.cross.validation(labels, W, nfolds, cost)

Arguments
labels named matrix of node labels. The (i-j)-th component contains the label (1 for
positive examples, -1 for negative examples) of node i for j-th functional class
to be predicted
W square symmetric named matrix. The (i,j)-th component is a similarity index
between node i and node j. The components of the diagonal of W are zero.
nfolds integer corresponding to the number of desired folds
cost real value that corresponds to the cost parameter of COSNet
Details

cosnet.cross.validation runs the function COSNet on the input data through a cross validation
procedure. For each class to be predicted (column of "labels"), both "W" and "labels" are partitioned
into "nfolds" subsets and at each iteration the labels of a fold are hidden and predicted with function
COSNet. When possible, input data are partitioned by ensuring the same proportion of positive and
negative instances in each fold.

Value

List with three elements:

labels 1/-1 named input label matrix, in which rows correspond to nodes and columns
to classes
predictions named 1/-1 prediction matrix, in which rows correspond to nodes and columns

to classes. The position i-j-th is 1 if the node i has been predicted as positive for
the class j, -1 otherwise

scores named real score matrix, in which rows correspond to nodes and columns to
classes. The position i-j-th is a real number corresponding to the internal energy
at equlibrium for node i when predicting class j. This score is a "degree" of
membership of node i to the class j

See Also

COSNet

6 find.division.not.strat

Examples

library(bionetdata);

data(Yeast.STRING.data)

data(Yeast.STRING.FunCat) # "Yeast.STRING.FunCat"”

excluding the dummy "0@" root

Yeast.STRING.FunCat <-
Yeast.STRING.FunCat[, -which(colnames(Yeast.STRING.FunCat) == "00")];

nfolds <- 5;

res <- cosnet.cross.validation(Yeast.STRING.FunCat[, 1:50], Yeast.STRING.data,
nfolds, 0.0001);

computing performances

library(PerfMeas);

perf <- F.measure.single.over.classes(res$labels, res$predictions);

cat(perf$average);

find.division.not.strat
Random partitioning of input data

Description

Function to determine a random partition of the input vector into a specifiend number of folds.

Usage

find.division.not.strat(vett, n_fold)

Arguments

vett vector to be partitioned

n_fold number of folds in which the argument vett must be partitioned
Value

List with n_fold elements, the i-th element is a vector corresponding to i-th fold.

See Also

find.division.strat

Examples
n <- 100;
vett <- runif(n, 0, 1);
n_fold <- 5;

fold_list <- find.division.not.strat(vett, n_fold);
length(fold_list);

indices of the first fold

fold_list[[1]];

find.division.strat 7

find.division.strat Compute a stratified random partition of the input data

Description

Function to determine a random partition of the labeled input vector into a fixed number of folds,
such that each fold has around the same proportion of two-class labels.

Usage

find.division.strat(labels, vett, n_fold)

Arguments
labels binary -1/1 label vector. labels[i] is the label for the element vett[i].
vett vector to be partitioned
n_fold number of folds in which the argument vett must be partitioned
Details

The input vector "vett" is randomly partitioned into "n_fold" folds ensuring each fold contains
roughly the same proportions of positives and negative labels, according to the labeling "labels"

Value

List with n_fold elements, the i-th element is a vector corresponding to i-th fold.

See Also

find.division.not.strat

Examples

n <- 100;

vett <- runif(n, 0, 1)

labels <- c(rep(1, floor(n/3)), rep(-1, ceiling(2*n/3)));
n_fold <- 5;

fold_list <- find.division.strat(labels, vett, n_fold);
length(fold_list);

number of positives in the first fold
sum(labels(fold_list[[1]]1) > 0);

8 generate_points

generate_labels Generate random labels

Description

Function to generate a vector of random labels

Usage

generate_labels(n, pos_rate)

Arguments

n number of labels to be generated

pos_rate rate of expected positive labels

Details

nn

This function generates "n" random labels in -1, 1 drawn from the binomial distribution B(n,
pos_rate)

Value

-1/1 vector of length "n" containing the generated labels

See Also

generate_points

Examples

pos_rate <- 0.3;

n <- 100;

generating n random labels with ©.3 expected rate of positive labels
random_labels <- generate_labels(n, pos_rate);

sum(random_labels > 0);

generate_points Compute the points to be separated in Step 2 of COSNet algorithm
(Frasca et al. 2013)

Description
This function associates each labeled node with a point in the plane, whose coordinates are respec-
tively the weighted sum of its positive and negative neighborhoods

Usage

generate_points(W, unlabeled, labeling)

optimizep 9

Arguments
W square symmetric named matrix, whose components are in the [0,1] interval.
The 1,j-th component is the weight between node i and node j. The components
of the diagonal of W are zero.
unlabeled vector of the indices of the unlabeled nodes
labeling vector of node labels : 1 for positive nodes, -1 for negative nodes, 0 for unlabeled
nodes
Details

For each labeld node k, a point (pos_vect[k], neg_vect[k]) is computed, where pos_vect[k] is the
whighted sum of the positive neighbors of node k and neg_vect[k] is the weighted sum of negative
neighbors of node k.

Value
List of two element:

pos_vect is the vector of the abscissae; pos_vect[k] contains the whighted sum of the
positive neighbors of node k

neg_vect is the vector of the ordinates; neg_vect[k] contains the whighted sum of the
negative neighbors of node k

References

Frasca M., Bertoni A., Re M., Valentini G.: A neural network algorithm for semi-supervised node
label learning from unbalanced data. Neural Networks, Volume 43, July, 2013 Pages 84-98.

Examples

randomly generating labels

labels <- generate_labels(100, 0.3);

unlabeled <- sample(1:100, 10);

labels[unlabeled] <- 0;

randomly generating connection matrix

W <- matrix(sample(1:10000, 100%100)/1000, nrow = 100);
diag(W) <- 0;

points <- generate_points(W, unlabeled, labels);
points$pos_vect[1:5];

points$neg_vect[1:5];

optimizep Optimizing algorithm parameters

Description
Function to learn the parameters "alpha", determining neurons activation values, and the neuron
threshold "c".

Usage

optimizep(pos_vect, neg_vect, training_labels)

10 optimizep

Arguments
pos_vect vector of abscissae of the points to be separated
neg_vect vector of ordinates of the points to be separated

training_labels
1/-1 vector of point labels

Details

This function computes the optimal angle "alpha" and the optimal threshold "c". For each labeled
neuron k, a point (pos_vect[k], neg_vect[k]) is considered. Points are labeled according to the labels
contained in the vector "training_labels". Then the straight line, among those with positive slope,
which separates these points by maximizing the F-score is learned. The line is represented by the
angle alpha formed with the "x" axis, and its intercept "q" with "y" axis. When separating points
by a straight line, there are two possibility: 1) Considering as positive the half-plane above the
line; 2) Considering as positive the half-plane below the line. The procedure investigates both these
possibilities, and also returns which choice between 1) and 2) corresponds to the best F-score.

Value

list "res" with 4 components:

res$alpha value of the optimum angle alpha
res$c value of the optimum threshold ¢
res$Fscore value of the optimum F-score

res$pos_half the position of the positive half-plane : > 0 in case 1), < 0 in case 2)

See Also

optimize_pos_above

Examples

library(bionetdata);

data(Yeast.STRING.data);

data(Yeast.STRING.FunCat);

n <- nrow(Yeast.STRING.data);

removing dummy node 00

Yeast.STRING.FunCat <- Yeast.STRING.FunCat[,
-which(colnames(Yeast.STRING.FunCat)=="00")1;

selecting the class with index 1

class <- 1;

labels <- as.vector(Yeast.STRING.data[, class]);

names(labels) <- rownames(Yeast.STRING.FunCat);

labels <- as.vector(Yeast.STRING.FunCat[, class]);

names(labels) <- rownames(Yeast.STRING.FunCat);

partitioning the data

folds <- find.division.strat(labels, 1:n, 3);

labels[labels <= 0] <- -1;

test.set <- folds[[1]1];

training.set <- setdiff(1:n, test.set);

labels[test.set] <- 0;

generating the points to be separated

points <- generate_points(Yeast.STRING.data, test.set, labels);

optimize_pos_above 11

opt_parameters <- optimizep(points$pos_vect[training.set],
points$neg_vect[training.set], labels[training.set]);
str(opt_parameters);

optimize_pos_above Alternative algortihm for optimizing parameters

Description
Alternative algorithm to compute the two parameters: "alpha’, determining neurons activation val-
ues, and the neuron thresholds ’c’.

Usage

optimize_pos_above(pos_vect, neg_vect, training_labels, res)

Arguments
pos_vect vector of abscissae of the points to be separated
neg_vect vector of ordinates of the points to be separated

training_labels
1/-1 vector of the point labels

res list containing the optimum angle (field alpha), neuron threshold (field c), maxi-
mum F-score (field Fscore) and positive halfplane (field pos_half) computed by
the procedure corresponding to the choice 1) of function optimizep.

Details

Function to optimize the the parameters ’alpha’ and ’c’ when the function optimizep determines
that the maximum F-score corresponds to the half-plane above the separation line. The algorithm
works in three steps: 1) Selecting all the points which lie on the Y-axis. The aim is to choose a
positive point which will be the center of the line bundle we consider in the next step. We sort the
selected points by ordinate and for each positive point we compute the F-score of the almost vertical
line (but with negative slope) crossing this point considering solely the selected points. Then we
choose the point k which corresponds to the highest F-score. 2) The algorithm computes the slopes
of the lines crossing the point k and each point not lying on the Y-axis. Then it searches the line,
among those with negative slope, which maximizes the F-score criterion by sorting the computed
lines according to their slopes in an increasing order. Consequently, the angle alpha relative to the
optimum line is in the interval]pi/2, pi[. 3) Compute the intercepts of the straight lines whose
slope is tan(alpha) and crossing each available point. The optimum line is identified by scanning
the computed lines according to their intercept in an increasing order. Let q be the intercept of the
optimum line y = tan(alpha)z + g, then we set ¢ = -cos(alpha)q. If there are no positive point with
abscissa 0, the function returns the optimal parameters contained in input argument ‘res’ computed
by the procedure corresponding to the choice 1) of function optimizep.

Value

list res with 3 components

res$alpha value of the optimum angle alpha
res$c value of the optimum threshold c
res$Fscore value of the optimum F-score

res$pos_half position of the positive half-plane (-1 below, 1 above the optimum straith line)

12 reg_data

See Also

optimizep

Examples

library(bionetdata);

data(Yeast.STRING.data);

data(Yeast.STRING.FunCat);

n <- nrow(Yeast.STRING.data);

removing dummy node 00

Yeast.STRING.FunCat <- Yeast.STRING.FunCat[,

-which(colnames(Yeast.STRING.FunCat) == "00")1];

selecting the class with index 1

class <- 1;

labels <- as.vector(Yeast.STRING.data[, class]);

names(labels) <- rownames(Yeast.STRING.FunCat);

labels <- as.vector(Yeast.STRING.FunCat[, class]);

names(labels) <- rownames(Yeast.STRING.FunCat);

partitioning the data

folds <- find.division.strat(labels, 1:n, 3);

labels[labels <= 0] <- -1;

test.set <- folds[[1]1];

training.set <- setdiff(1:n, test.set);

labels[test.set] <- 0;

points <- generate_points(Yeast.STRING.data, test.set, labels);

setting values for the parameter

res <- list(alpha=pi/2, c=0, Fscore=0, pos_half=-1);

opt_parameters <- optimize_pos_above(points$pos_vect[training.set],
points$neg_vect[training.set], labels[training.set], res);

str(opt_parameters);

reg_data Function to compute the regularized version of COSNet (Frasca et al.
2013)

Description
This function modifies the weights and the thresholds of the network to realized the COSNet regu-
larization.

Usage

reg_data(W, theta, eta, M, m, pos_num)

Arguments
W square symmetric named matrix of the network weights. The components of W
are in the [0,1] interval. The i,j-th component is the weight between neuron i
and neuron j. The components of the diagonal of W are 0
theta vector of the neuron activation thresholds
eta real value corresponding to the eta regularization coefficient in the energy func-

tion (Frasca et al. 2013). If eta = 0 no regularization is applied. The higher the
value of eta, the more the influence of the regularization term

runSubnet 13

M positive neuron activation value

m negative neuron activation value

pos_num number of expected positive neurons in the equilibrium state of the network
Value

list of two element:

W the regularized connection matrix
theta regularized threshold vector
References

Frasca M., Bertoni A., Re M., Valentini G.: A neural network algorithm for semi-supervised node
label learning from unbalanced data. Neural Networks, Volume 43, July, 2013 Pages 84-98.

Examples

library(bionetdata);

data(Yeast.STRING.data);

n <- nrow(Yeast.STRING.data);

dim(Yeast.STRING.data);

range(Yeast.STRING.data);

setting values for parameter alpha, for the rate of positive examples,

for neuron thresholds and for eta parameter

alpha <- 1;

pos.rate <- 0.01;

thresholds <- runif(n);

range(thresholds);

eta <- 0.001;

a <- reg_data(Yeast.STRING.data, thresholds, eta, sin(alpha),
-cos(alpha), ceiling(pos.ratexn));

new connection matrix

dim(as$W);

range(a$W);

new thresholds

range(a$theta);

runSubnet Realizing the network dynamics.

Description

Function to simulate the dynamics of the network composed of unlabeled nodes.

Usage

runSubnet(W, labeling, alpha_value, c_value, cost)

14

Arguments

W

labeling

alpha_value

c_value

cost

Details

runSubnet

square symmetric named matrix, whose componemts are in the interval [0,1].
The i,j-th component is a similarity index between node i and node j. The com-
ponents of the diagonal of W are zero. Rows and colummns should be named
identically.

vector of node labels: 1 for positive examples, -1 for negative examples, 0 for
unlabeled nodes

real value in [0, pi/2[, determining the neuron activation values: sin(alpha) and
-cos(alpha).

real value used as activation threshold for each neuron

real value corresponding to beta parameter in the equation eta = beta*|tan((alpha
- pi/4)*2)l, where eta is the coefficient of the regularization term in the energy
function (Frasca et al. 2013). If cost = 0 (default) the unregularized version is
executed. The higher the value of cost, the more the influence of the regular-
ization term. It is suggested using small values for this parameter (e.g. cost =
0.00001)

Function to simulate the subnetwork composed of the unlabeled genes, in which each neuron has
sin(alpha_value), -cos(alpha_value) as activation value, and in which each neuron has a threshold
"c_value" minus the contribution from the labeled neighbors.

Value

list with three components:

state
scores

iter

References

Named vector of prediction (at equilibrium) for unlabeled nodes
Named vector of scores (at equilibrium) for unlabeled nodes

Number of iterations of the network until convergence

Frasca M., Bertoni A., Re M., Valentini G.: A neural network algorithm for semi-supervised node
label learning from unbalanced data. Neural Networks, Volume 43, July, 2013 Pages 84-98.

Examples

library(bionetdata);
data(Yeast.STRING.data);
data(Yeast.STRING.FunCat);
n<-nrow(Yeast.STRING.data);

removing dummy node 00
Yeast.STRING.FunCat <- Yeast.STRING.FunCat[,

class <- 1;

-which(colnames(Yeast.STRING.FunCat) == "00")1];

labels <- as.vector(Yeast.STRING.datal[, class]);
names(labels) <- rownames(Yeast.STRING.FunCat);
labels <- as.vector(Yeast.STRING.FunCat[, class]);
names(labels) <- rownames(Yeast.STRING.FunCat);
folds <- find.division.strat(labels, 1:n, 3);
labels[labels <= @] <- -1;

runSubnet

test.set <- folds[[1]];

training.set <- setdiff(1:n, test.set);

labels[test.set] <- 0;

res <- runSubnet(Yeast.STRING.data, labels, alpha=1, c=0, cost=0.0001);

str(res);

15

Index

* package
COSNet-package, 2

COSNet, 3,5
COSNet-package, 2
cosnet.cross.validation, 5

find.division.not.strat, 6,7
find.division.strat, 6,7

generate_labels, 8
generate_points, 8

optimize_pos_above, 10, 11
optimizep, 9, 12

reg_data, 12
runSubnet, 13

16

	COSNet-package
	COSNet
	cosnet.cross.validation
	find.division.not.strat
	find.division.strat
	generate_labels
	generate_points
	optimizep
	optimize_pos_above
	reg_data
	runSubnet
	Index

