Package ‘COMPASS’

January 19, 2026

Type Package
Title Combinatorial Polyfunctionality Analysis of Single Cells

Version 1.48.0
Date 2014-07-11
Author Lynn Lin, Kevin Ushey, Greg Finak, Ravio Kolde (pheatmap)

Description COMPASS is a statistical framework that enables unbiased analysis
of antigen-specific T-cell subsets. COMPASS uses a Bayesian hierarchical
framework to model all observed cell-subsets and select the most likely
to be antigen-specific while regularizing the small cell counts that often
arise in multi-parameter space. The model provides a posterior probability
of specificity for each cell subset and each sample, which can be used to
profile a subject's immune response to external stimuli such as infection
or vaccination.

License Artistic-2.0

BugReports https://github.com/RGLab/COMPASS/issues
VignetteBuilder knitr

Depends R (>=3.0.3)

LinkingTo Rcpp (>=0.11.0)

Maintainer Greg Finak <gfinak@fhcrc.org>

Imports methods, Repp, data.table, RColorBrewer, scales, grid, plyr,
knitr, abind, clue, grDevices, utils, pdist, magrittr,
reshape?2, dplyr, tidyr, rlang, BiocStyle, rmarkdown, foreach,
coda

Suggests flowWorkspace (>= 3.33.1), flowCore, ncdfFlow, shiny,
testthat, devtools, flowWorkspaceData, ggplot2, progress

LazyLoad yes

LazyData yes

biocViews ImmunoOncology, FlowCytometry
Encoding UTF-8

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/COMPASS
git_branch RELEASE_3_22

git_last commit 70d9f7d

https://github.com/RGLab/COMPASS/issues

2 Contents

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents
COMPASS-package e 3
CABZOTIES © . v v v v v o e 3
CellCounts e e 3
Combinations e e e e e e e e e e 5
COMPASS . . e 5
COMPASSContainer v v v it e e e e e e e e 8
COMPASSContainer-data i e e 10
COMPASSContainerFromGatingSet 10
COMPASSDeSCIIption v v v et e e e e e e e e e e 11
COMPASSfitToCountsTable 12
COMPASSMCMCDIagnosis v v v v v v et e e e e e e e e e 12
COMPASSResUlt-aCCessOrs v v v v vttt e e e e 13
COMPASSResult-data e e 13
FunctionalityScore L 14
getCoUNLS L e e e e 15
GetThresholdedIntensities e 15
markers e e 17
melt_ . . . e s 17
merge. COMPASSContainer e 18
metadata L e e 19
pheatmap L e e e 19
plot. COMPASSResult 24
PlOt2 . o 25
plotCOMPASSResultStack 26
PolyfunctionalityScore 27
Posterior e e e 28
print. COMPASSContainer i e e e 29
print. COMPASSResult 29
Response e 30
SCOTES . v v v e e e e e e e e e e e e e e 30
SEleCt_COMPASS_POPS .« . v v v e e e e e e e e e e e e e e e e e e 31
shinyCOMPASS e 32
shinyCOMPASSDepso e 33
SimpleCOMPASS 33
subset. COMPASSContainer oo vt e e 35
summary.COMPASSContainer Lo 35
summary.COMPASSResult 36
TotalCellCounts o o i e 36
translate_marker_names 37
transpose_list 37
UniqueCombinations i e 38

Index 39

COMPASS-package 3

COMPASS-package COMPASS (Combinatorial Polyfunctionality Analysis of Single-Cells)

Description

This package implements a model for the analysis of polyfunctionality in single-cell cytometry
experiments. The model effectively identifies combinations of markers that are differentially ex-
pressed between samples of cells subjected to different stimulations.

See Also

* COMPASSContainer, for information on getting your cytometry data into a suitable format for
use with COMPASS,

* COMPASS, for the main model fitting routine.

categories Categories

Description

Returns the categories matrix in a COMPASSResult object.

Usage

categories(x, counts)

Arguments
X A COMPASSResult object.
counts Boolean; if TRUE we return the counts (degree of functionality) as well.
CellCounts Compute Number of Cells Positive for Certain Cytokine Combinations
Description

Compute the number of cells expressing a particular combination of markers for each sample.

Usage

CellCounts(data, combinations)

Arguments
data Either a COMPASSContainer, or a list of matrices. Each matrix i is of dimension
N_i cells (rows) by K common markers (columns).

combinations A list of ’combinations’, used to denote the subsets of interest. See the examples
for usage.

4 CellCounts

See Also

Combinations

Examples

set.seed(123)

generate 10 simulated matrices of flow data

K <- 6 ## number of markers

data <- replicate(10, simplify=FALSE, {
m <- matrix(rnorm(1E4 * K, 2000, 1000), ncol=K)
mm < 2500] <- @
colnames(m) <- c("IL2", "IL4", "IL6", "Mip1B"”, "IFNg”, "TNFa")
return(m)

»

names(data) <- sample(letters, 10)

head(datal[11])

generate counts over all available combinations of markers in data
str(CellCounts(data)) ## 64 columns, as all 276 combinations expressed

generate marginal counts
combos <- list(1, 2, 3, 4, 5, 6) ## marginal cell counts
cc <- CellCounts(data, combos)

a base R way of doing the same thing
f <- function(data) {
do.call(rbind, lapply(data, function(x) apply(x, 2, function(x) sum(x > 0))))

3
cc2 <- f(data)

check that they're identical
stopifnot(identical(unname(cc), unname(cc2)))

We can also generate cell counts by expressing various combinations
of markers (names) in the data.

count cells expressing IL2 or IL4
CellCounts(data, "IL2|IL4")

count cells expressing IL2, IL4 or IL6
CellCounts(data, "IL2|IL4|IL6")

counts for each of IL2, IL4, IL6 (marginally)
CellCounts(data, c("IL2", "IL4", "IL6"))

counts for cells that are IL2 positive and IL4 negative
CellCounts(data, "IL2 & !IL4")

expressing the same intent with indices
CellCounts(data, list(c(1, -2)))

all possible combinations
str(CellCounts(data, Combinations(6)))

can also call on COMPASSContainers
data(COMPASS)

Combinations 5

CellCounts(CC, "M1&M2")

Combinations Generate Combinations

Description
Given an intenger n, generate all binary combinations of n elements, transformed to indices. This
is primarily for use with the CellCounts function, but may be useful for users in some scenarios.
Usage

Combinations(n)

Arguments

n An integer.

Examples

Combinations(3)

COMPASS Fit the COMPASS Model

Description

This function fits the COMPASS model.

Usage

COMPASS(
data,
treatment,
control,
subset = NULL,
category_filter = function(x) colSums(x > 5) > 2,
filter_lowest_frequency = 0,
filter_specific_markers = NULL,
model = "discrete”,
iterations = 40000,
replications = 8,
keep_original_data = FALSE,
verbose = TRUE,
dropDegreeOne = FALSE,
init_with_fisher = FALSE,
run_model_or_return_data = "run_model”,

Arguments

data

treatment

control

subset

category_filter

COMPASS

An object of class COMPASSContainer.

An R expression, evaluated within the metadata, that returns TRUE for those sam-
ples that should belong to the treatment group. For example, if the samples that
received a positive stimulation were named "92TH@23 Env" within a variable
in meta called Stim, you could write Stim == "92TH@23 Env". The expression
should have the name of the stimulation vector on the left hand side.

An R expression, evaluated within the metadata, that returns TRUE for those
samples that should belong to the control group. See above for details.

An expression used to subset the data. We keep only the samples for which the
expression evaluates to TRUE in the metadata.

A filter for the categories that are generated. This is a function that will be
applied to the treatment counts matrix generated from the intensities. Only cat-
egories meeting the category_filter criteria will be kept.

filter_lowest_frequency

A number specifying how many of the least expressed markers should be re-
moved.

filter_specific_markers

model

iterations

replications

Similar to filter_lowest_frequency, but lets you explicitly exclude markers.

A string denoting which model to fit; currently, only the discrete model ("discrete")
is available.

The number of iterations (per ’replication’) to perform.

The number of ’replications’ to perform. In order to conserve memory, we only
keep the model estimates from the last replication.

keep_original_data

verbose

dropDegreeOne

Keep the original COMPASSContainer as part of the COMPASS output? If memory
or disk space is an issue, you may set this to FALSE.

Boolean; if TRUE we output progress information.

Boolean; if TRUE we drop degree one categories and merge them with the nega-
tive subset.

init_with_fisher

Boolean;initialize from fisher’s exact test. Any subset and subject with lower 95
Otherwise initialize very subject and subset as a responder except those where
ps <= pu.

run_model_or_return_data

Value

character defaults to "run_model"” otherwise setitto "return_data” in order
to not fit the model just return the data set needed for modeling. Useful for
extracting the boolean counts.

Other arguments; currently unused.

A COMPASSResult is a list with the following components:

fit

A list of various fitted parameters resulting from the COMPASS model fitting pro-
cedure.

COMPASS

data

orig

The data used as input to the COMPASS fitting procedure — in particular, the counts
matrices generated for the selected categories, n_s and n_u, can be extracted
from here.

If keep_original_data was set to TRUE in the COMPASS fit, then this will be the
COMPASSContainer passed in. This is primarily kept for easier running of the
Shiny app.

The fit component is a list with the following components:

alpha_s

A_alphas

alpha_u

A_alphau

gamma

mean_gamma

A_gamma

categories
model
posterior

call

The hyperparameter shared across all subjects under the stimulated condition. It
is updated through the COMPASS model fitting process.

The acceptance rate of alpha_s, as computed through the MCMC sampling
process in COMPASS.

The hyperparameter shared across all subjects under the unstimulated condition.
It is updated through the COMPASS model fitting process.

The acceptance rate of alpha_u, as computed through the MCMC sampling
process in COMPASS.

An array of dimensions I x K x T, where I denotes the number of individuals, K
denotes the number of categories / subsets, and T denotes the number of itera-
tions. Each cell in a matrix for a given iteration is either zero or one, reflecting
whether individual i is responding to the stimulation for subset k.

A matrix of mean response rates. Each cell denotes the mean response of indi-
vidual i and subset k.

The acceptance rate for the gamma. Each element corresponds to the number of
times an individual’s gamma vector was updated.

The category matrix, showing which categories entered the model.
The type of model called.
Posterior measures from the sample fit.

The matched call used to generate the model fit.

The data component is a list with the following components:

n_s
n_u
counts_s
counts_u
categories

meta

sample_id

individual_id

The counts matrix for stimulated samples.

The counts matrix for unstimulated samples.

Total cell counts for stimulated samples.

Total cell counts for unstimulated samples.

The categories matrix used to define which categories will enter the model.

The metadata. Note that only individual-level metadata will be kept; sample-
specific metadata is dropped.

The name of the vector in the metadata used to identify the samples.

The name of the vector in the metadata used to identify the individuals.

The orig component (included if keep_original_data is TRUE) is the COMPASSContainer object
used in the model fit.

8 COMPASSContainer

Category Filter

The category filter is used to exclude categories (combinations of markers expressed for a particular
cell) that are expressed very rarely. It is applied to the treatment counts matrix, which is a N
samples by K categories matrix. Those categories which are mostly unexpressed can be excluded
here. For example, the default criteria,

category_filter=function(x) colSums(x >5) >2

indicates that we should only retain categories for which at least three samples had at least six cells
expressing that particular combination of markers.

See Also

* COMPASSContainer, for constructing the data object required by COMPASS

Examples

data(COMPASS) ## loads the COMPASSContainer 'CC'
fit <- COMPASS(CC,

category_filter=NULL,

treatment=trt == "Treatment”,

control=trt == "Control”,

verbose=FALSE,

iterations=100 ## set higher for a real analysis

COMPASSContainer Generate the Data Object used by COMPASS

Description

This function generates the data container suitable for use with COMPASS.

Usage
COMPASSContainer(
data,
counts,
meta,
individual_id,
sample_id,
countFilterThreshold = @
)
Arguments
data A list of matrices. Each matrix M_i is made up of N_i cells by K markers; for
example, it could be the intensity information from an intracellular cytokine
experiment. Each element of the list should be named; this name denotes which
sample the cell intensities were measured from.
counts A named integer vector of the cell counts(of the parent population) for each

sample in data.

COMPASSContainer 9

meta A data. frame of metadata, describing the individuals in the experiment. Each
row in meta should correspond to a row in data. There should be one row for
each sample; i.e., one row for each element of data.

individual_id The name of the vector in meta that denotes the individuals from which samples
were drawn. In this sense an individual equates to a single subject, or person.

sample_id The name of the vector in meta that denotes the samples. The sample_id iden-
tifies a combination of a subject with visit (if any), cell subset measured (e.g.
CD4), and stimulation. This vector should contain all of the names in the data
input.

countFilterThreshold
Numeric; if the number of parent cells is less than this threshold, we remove that
file. Default is 0, which means filter is disabled.

Details

The names attributes for the data and counts objects passed should match.

Value

A COMPASSContainer returns a list made up of the same components as input the model, but checks
and sanitizes the supplied data to ensure that it conforms to the expectations outlied above.

Examples

set.seed(123)
n <- 10 ## number of samples
k <- 3 ## number of markers

generate some sample data
sid_vec <- paste@(”sid_", 1:n) ## sample ids; unique names used to denote samples

-

iid_vec <- rep_len(paste@(”iid_", 1:(n/2)), n) ## individual ids

generate n matrices of 'cell intensities'
data <- replicate(n, {
nrow <- round(runif(1) * 1E2 + 1000)
ncol <- k
vals <- rexp(nrow * ncol, runif(1, 1E-5, 1E-3))
vals[vals < 2000] <- @
output <- matrix(vals, nrow, ncol)
output <- output[apply(output, 1, sum) > @,]
colnames(output) <- paste@("M", 1:k)
return(output)
»

names(data) <- sid_vec

make a sample metadata data.frame
meta <- data.frame(
sid=sid_vec,
iid=iid_vec,
trt=rep(c("Control”, "Treatment”), each=5)

)

generate an example total counts
recall that cells not expressing any marker are not included
in the 'data' matrices

10 COMPASSContainerFromGatingSet

counts <- sapply(data, nrow) + round(rnorm(n, 1E3, 1E2))
counts <- setNames(as.integer(counts), names(counts))

insert everything into a COMPASSContainer
CC <- COMPASSContainer(data, counts, meta, "iid", "sid")

COMPASSContainer-data Simulated COMPASSContainer

Description

This dataset contains simulated data for an intracellular cytokine staining experiment. In this data
set, we have paired samples from five individuals, with each pair of samples being subjected to
either a *Control’ condition of a *Treatment’ condition.

Details

Please see COMPASSContainer for more information on the components of this object.
The dataset is exported as CC, which is a short alias for COMPASSContainer.

COMPASSContainerFromGatingSet
Create a COMPASS Container from a GatingSet

Description

This code expects a GatingSet or GatingSetList. It expects a regular expression for the node
name (i.e. ’/4\+$” would match ’/4+ in a node name with the plus sign at the end of the string.
Alternatively, you can supply a partial path. The user must supply the ’individual_id’, which has
the default value suitable for the data we commonly see. ’sample_id’ is the 'rownames’ of ’pData’
of ’GatingSet’. Sometimes the child node names don’t match the marker names exactly. This
function will try to make some guesses about how to match these up. The filter. fun parameter is
a function that does some regular expression string substitution to try and clean up the node names
by removing various symobls that are often added to gates, {+/-}. The user can provide their own
function to do string cleanup. Counts are extracted as well as metadata and single cell data, and
these are fed into the COMPASSContainer constructor.

Usage

COMPASSContainerFromGatingSet(
gs = NULL,
node = NULL,
filter.fun = NULL,
individual_id = "PTID",
mp = NULL,
matchmethod = c("Levenshtein”, "regex"),
markers = NA,
swap = FALSE,
countFilterThreshold = 5000

COMPASSDescription

Arguments

gs

node

filter.fun

individual_id

11

a GatingSet or GatingSetlList

a regular expression to match a single node in the gating tree. If more than
one node is matched, an error is thrown.

a function that does string substitution to clean up node names, i.e. turns
a ’CD4+’ into a ’CD4’ to try and match against the parameters slot of the
flowFrames in gs

a character identifying the subject id column in the gs metadata

mp a list mapping node names to markers. This function tries to guess, but may
fail. The user can override the guesswork.

matchmethod a character either 'regex’ or ’Levenshtein’ for matching nodes to markers.

markers a character vector of marker names to include.

swap a logical default FALSE. Set to TRUE if the marker and channel names are
swapped.

countFilterThreshold
numeric threshold. if the number of parent cells is less than this threshold, we
remove that file. Default is 5000.

Details

There is likely not sufficient error checking.

See Also

COMPASSContainer

Examples

Not run:

gs is a GatingSet from flowWorkspace
COMPASSContainerFromGatingSet(gs, "4+")

End(Not run)

COMPASSDescription Get and Set the Description for the Shiny Application

Description

This is used for setting an informative description used in the Shiny application.

Usage

COMPASSDescription(x)

COMPASSDescription(x) <- value

12 COMPASSMCMCDiagnosis

Arguments

X A COMPASS fit.

value A set of paragraphs describing the experiment, as a character vector.
Details

Information about the COMPASS results will be auto-generated.

COMPASSfitToCountsTable
Extract a table of counts from a COMPASSResult object

Description

Returns a table of counts and parent counts for each cell subset in a COMPASS fit.

Usage
COMPASSfitToCountsTable(
X ’
idcol = NULL,
parent = NULL,
drop = NULL,
stimName = NULL
)
Arguments
X COMPASSResult
idcol unquote variable name in the metadata for the subject id.
parent character name of the parent population for this model fit. e.g. "CD4"
drop numeric vector indicating the columns in the metadata to drop from the output.
Usually sample-specific columns rather than subject specific columns.
stimName the name of the stimulation

COMPASSMCMCDiagnosis Diagnostic of a set of COMPASS Models.

Description

Diagnostic of a set of COMPASS Models.

Usage
COMPASSMCMCDiagnosis(x)

COMPASSResult-accessors 13

Arguments

X a list of compass model fits of the same data with the same number of iterations,
different seeds. Run some mcmc diagnostics on a series of COMPASS model
fits. Assuming the input is a list of model fits for the same data with the same
number of iterations and different seeds. Run Gelman’s Rhat diagnostics on the
alpha_s and alpha_u hyperparameter chains, treating each model as an indepen-
dent chain. Rhat should be near 1 but rarely are in practice. Very large values
may be a concern. The method returns an average model, by averaging the
mean_gamma matrices (equally weighted since each input has the same num-
ber of iterations). This mean model should be better then any of the individual
models. It can be plotted via "plot(result$mean_model)".

COMPASSResult-accessors
COMPASSResult Accessors

Description

These functions can be used for accessing data within a COMPASSResult.

Usage

Gamma (x)

MeanGamma (x)

Arguments

X A COMPASSResult object.

COMPASSResult-data Simulated COMPASS fit

Description

This dataset represents the result of fitting the COMPASS model on the accompanying dataset CC, as
exported by data(COMPASS). Please see the vignette (vignette(”COMPASS")) for more details on
how to interact with a COMPASS fit.

Details

The model is fit as follows, using the COMPASSContainer CC.

CR <- COMPASS(CC,

treatment=trt == "Treatment”,
control=trt == "Control”,
iterations=1000

)

The dataset is exported as CR, which is a short alias for COMPASSResult.
Please see COMPASS for more information on the output from a COMPASS model fit.

14 FunctionalityScore

FunctionalityScore Compute the Functionality Score for each subject fit in a COMPASS
model

Description

Computes the functionality score for each observation from the gamma matrix of a COMPASS
model fit. The scores are normalized according to the total number of possible subsets that could
be observed (2*M - 1).

Usage

FunctionalityScore(x, n, markers = NULL)

S3 method for class 'COMPASSResult'
FunctionalityScore(x, n, markers = NULL)

Default S3 method:
FunctionalityScore(x, n, markers = NULL)

Arguments
X An object of class COMPASSResult, as returned by COMPASS. Alternatively, a
matrix of functionality scores, used under the assumption that the 'null’ category
has been dropped.
n The number of markers included in an experiment. It is inferred from the data
when x is a COMPASSResult.
markers The set of markers for which to compute a Functionality score. By default uses
all markers. Must match names returned by markers().
Value

A numeric vector of functionality scores.

Note
The null category is implicitly dropped when computing the functionality score for a COMPASS

result; this is not true for the regular matrix method.

Examples

FunctionalityScore(CR)

getCounts 15

getCounts Get a data.table of counts of polyfunctional subsets

Description

Get a data.table of counts of polyfunctional subsets

Usage

getCounts(object)

Arguments

object An object of class COMPASSResult

Examples

getCounts(CR)

GetThresholdedIntensities
Extract Thresholded Intensities from a GatingSet

Description
This function extracts thresholded intensities for children of a node node, as specified through the
map argument.

Usage

GetThresholdedIntensities(gs, node, map)

Arguments
gs A GatingSet or GatingSetList.
node The name, or path, of a single node in a GatingSet / GatingSetList.
map A list, mapping node names to markers.

Details

map should be an R 1ist, mapping node names (as specified in the gating hierarchy of the gating
set) to channel names (as specified in either the desc or name columns of the parameters of the
associated flowFrames in the GatingSet).

Value
A list with two components:

data A list of thresholded intensity measures.

counts A named vector of total cell counts at the node node.

16 GetThresholdedIntensities

Examples

if (require(”flowWorkspace")&require(”"flowCore")&require(”"tidyr")) {

Generate an example GatingSet that could be used with COMPASS
We then pull out the 'data' and 'counts' components that could
be used within a COMPASSContainer

n <- 10 ## number of samples
k <- 4 ## number of markers

sid_vec <- paste@("sid_", 1:n) ## sample ids; unique names used to denote samples
iid_vec <- rep_len(paste@("iid_", 1:(n/10)), n) ## individual ids
marker_names <- c("TNFa", "IL2", "IL4", "IL6")

Generate n sets of 'flow' data -- a list of matrices, each row
is a cell, each column is fluorescence intensities on a particular
channel / marker
data <- replicate(n, {
nrow <- round(runif(1) * 1E4 + 1000)
ncol <- k
vals <- rexp(nrow * ncol, runif(1, 1E-5, 1E-3))
output <- matrix(vals, nrow, ncol)
colnames(output) <- marker_names
return(output)

D

names(data) <- sid_vec

Put it into a GatingSet
fs <- flowSet(lapply(data, flowFrame))
gs <- GatingSet(fs)

Add some dummy metadata
meta <- pData(gs)
meta$PTID <- 1:10
pData(gs) <- meta

gate <- rectangleGate(list(TNFa=c(-Inf,Inf)))
gs_pop_add(gs, gate, parent="root"”, name="dummy")

Add dummy gate

Make some gates, and apply them

invisible(lapply(marker_names, function(marker) {
.gate <- setNames(list(c(rexp(1, runif(1, 1E-5, 1E-3)), Inf)), marker)
gate <- rectangleGate(.gate=.gate)
gs_pop_add(gs, gate, parent="dummy”, name=paste@(marker, "+"))

19))
recompute(gs)

Map node names to channel names

map=list(
"TNFa+"="TNFa",
"IL2+"="IL2",
"IL4+"="1L4"

"IL6+"="IL6"

markers 17

)

Pull out the data as a COMPASS-friendly dataset
node <- "dummy”
map <- map
system. time(
output <- GetThresholdedIntensities(gs, "dummy”, map)
)

system. time(
output <- COMPASSContainerFromGatingSet(gs, "dummy”, individual_id="PTID")

)

str(output)

markers Markers

Description

Returns the markers associated with an experiment.

Usage

markers(object)

Arguments

object An R object.

melt_ Make a "Wide’ data set ’Long’

Description

Inspired by reshape?2: : :melt, we melt data. frames and matrixs. This function is built for speed.

Usage
melt_(data, ...)

S3 method for class 'data.frame'

melt_(
data,
id.vars,
measure.vars,
variable.name = "variable”,

L

value.name = "value”

18 merge. COMPASSContainer

)
S3 method for class 'matrix'
melt_(data, ...)
Arguments
data The data. frame to melt.

Arguments passed to other methods.

id.vars Vector of id variables. Can be integer (variable position) or string (variable
name). If blank, we use all variables not in measure.vars.

measure.vars Vector of measured variables. Can be integer (variable position) or string (vari-
able name). If blank, we use all variables not in id.vars.

variable.name Name of variable used to store measured variable names.

value.name Name of variable used to store values.

Details

If items to be stacked are not of the same internal type, they will be promoted in the order logical
> integer > numeric > character.

merge.COMPASSContainer
Merge Two COMPASSContainers

Description

This function merges two COMPASSContainers.

Usage
S3 method for class 'COMPASSContainer'
merge(X, y, ...)
Arguments
X A COMPASSContainer.
y A COMPASSContainer.

other arguments passed to "COMPASSContainer’ call.

Examples

Chop the example COMPASSContainer into two, then merge it back together
CC1 <- subset(CC, trt == "Control”)

CC2 <- subset(CC, trt == "Treatment”)

merged <- merge(CC1, CC2)

res <- identical(CC, merge(CC1, CC2)) ## should return TRUE in this case
stopifnot(isTRUE(res))

metadata 19

metadata Metadata

Description

Functions for getting and setting the metadata associated with an object.
Usage
metadata(x)

S3 method for class 'COMPASSContainer'
metadata(x)

S3 method for class 'COMPASSResult'
metadata(x)

metadata(x) <- value

S3 replacement method for class 'COMPASSContainer'
metadata(x) <- value

Arguments
X An R object.
value An R object appropriate for storing metadata in object x; typically a data. frame.
pheatmap A function to draw clustered heatmaps.
Description

A function to draw clustered heatmaps where one has better control over some graphical parameters
such as cell size, etc.

Usage

pheatmap(
mat,
color = colorRampPalette(rev(brewer.pal(n = 7, name = "RdY1Bu")))(100),
kmeans_k = NA,
breaks = NA,
border_color = "grey60",
cellwidth = NA,
cellheight = NA,
scale = "none",
cluster_rows = TRUE,
cluster_cols = TRUE,
clustering_distance_rows = "euclidean",

20

pheatmap

clustering_distance_cols = "euclidean",
clustering_method = "complete”,

treeheight_row

ifelse(cluster_rows, 50, @),

treeheight_col = ifelse(cluster_cols, 50, @),

legend = TRUE
legend_breaks
legend_labels
annotation =

’

NA,
= NA,

NA,
annotation_colors

NA,

annotation_legend = TRUE,

drop_levels =
show_rownames
show_colnames
main = NA,

fontsize = 10
fontsize_row

TRUE,
= TRUE,
= TRUE,

’

= fontsize,

fontsize_col = fontsize,
display_numbers = FALSE,

number_format

= "%.2F",

fontsize_number = 0.8 * fontsize,

filename = NA
width = NA,
height = NA,

’

row_annotation = NA,
row_annotation_legend = TRUE,
row_annotation_colors = NA,
cytokine_annotation = NA,
headerplot = NA,

polar = FALSE

’

order_by_max_functionality = TRUE,

Arguments

mat
color

kmeans_k

breaks

border_color
cellwidth

cellheight

scale

numeric matrix of the values to be plotted.
vector of colors used in heatmap.

the number of kmeans clusters to make, if we want to agggregate the rows before
drawing heatmap. If NA then the rows are not aggregated.

a sequence of numbers that covers the range of values in mat and is one element
longer than color vector. Used for mapping values to colors. Useful, if needed
to map certain values to certain colors, to certain values. If value is NA then the
breaks are calculated automatically.

color of cell borders on heatmap, use NA if no border should be drawn.

individual cell width in points. If left as NA, then the values depend on the size
of plotting window.

individual cell height in points. If left as NA, then the values depend on the size
of plotting window.

character indicating if the values should be centered and scaled in either the row
direction or the column direction, or none. Corresponding values are "row”,
"column” and "none”

pheatmap 21

cluster_rows boolean values determining if rows should be clustered,

cluster_cols boolean values determining if columns should be clustered.
clustering_distance_rows

distance measure used in clustering rows. Possible values are "correlation”
for Pearson correlation and all the distances supported by dist, such as "euclidean”,
etc. If the value is none of the above it is assumed that a distance matrix is pro-
vided.

clustering_distance_cols

distance measure used in clustering columns. Possible values the same as for
clustering_distance_rows.

clustering_method
clustering method used. Accepts the same values as hclust.

treeheight_row the height of a tree for rows, if these are clustered. Default value 50 points.
treeheight_col the height of a tree for columns, if these are clustered. Default value 50 points.
legend logical to determine if legend should be drawn or not.

legend_breaks vector of breakpoints for the legend.

legend_labels vector of labels for the 1legend_breaks.

annotation data frame that specifies the annotations shown on top of the columns. Each row
defines the features for a specific column. The columns in the data and rows in
the annotation are matched using corresponding row and column names. Note
that color schemes takes into account if variable is continuous or discrete.
annotation_colors

list for specifying annotation track colors manually. It is possible to define the
colors for only some of the features. Check examples for details.

annotation_legend
boolean value showing if the legend for annotation tracks should be drawn.

drop_levels logical to determine if unused levels are also shown in the legend
show_rownames boolean specifying if column names are be shown.
show_colnames boolean specifying if column names are be shown.

main the title of the plot

fontsize base fontsize for the plot

fontsize_row fontsize for rownames (Default: fontsize)

fontsize_col fontsize for colnames (Default: fontsize)
display_numbers
logical determining if the numeric values are also printed to the cells.
number_format format strings (C printf style) of the numbers shown in cells. For example
"%.2f" shows 2 decimal places and "%.71e" shows exponential notation (see
more in gettextf).
fontsize_number
fontsize of the numbers displayed in cells

filename file path where to save the picture. Filetype is decided by the extension in the
path. Currently following formats are supported: png, pdf, tiff, bmp, jpeg. Even
if the plot does not fit into the plotting window, the file size is calculated so that
the plot would fit there, unless specified otherwise.

width manual option for determining the output file width in inches.

height manual option for determining the output file height in inches.

22 pheatmap
row_annotation data frame that specifies the annotations shown on the rows. Each row defines
the features for a specific row. The rows in the data and rows in the annotation
are matched using corresponding row names.The category labels are given by
the data frame column names.
row_annotation_legend
same interpretation as the column parameters.
row_annotation_colors
same interpretation as the column parameters
cytokine_annotation
A data. frame of factors, with either levels @ = unexpressed, 1 = expressed, or
optionally with a third level -1 = ’left out’. of the categories for each column.
They will be colored by their degree of functionality and ordered by degree of
functionality and by amount of expression if column clustering is not done.
headerplot is a list with two components, order and data. Order tells how to reorder the
columns of the matrix.
polar Boolean; if TRUE we draw a polar legend. Primarily for internal use. Data is
some summary statistic over the columns which will be plotted in the header
where the column cluster tree usually appears. Cytokine ordering is ignored
when the headerplot argument is passed.
order_by_max_functionality
Boolean; re-order the cytokine labels by maximum functionality?
graphical parameters for the text used in plot. Parameters passed to grid. text,
see gpar.
Details
The function also allows to aggregate the rows using kmeans clustering. This is advisable if number
of rows is so big that R cannot handle their hierarchical clustering anymore, roughly more than 1000.
Instead of showing all the rows separately one can cluster the rows in advance and show only the
cluster centers. The number of clusters can be tuned with parameter kmeans_k.
Value
Invisibly a list of components
* tree_row the clustering of rows as hclust object
* tree_col the clustering of columns as hclust object
* kmeans the kmeans clustering of rows if parameter kmeans_k was specified
Author(s)
Original version by Raivo Kolde <rkolde@gmail.com>, with modifications by Greg Finak <gfi-
nak @thcrc.org> and Kevin Ushey <kushey @thcrc.org>.
Examples

Generate some data

test = matrix(rnorm(200), 20, 10)

test[1:10, seq(l, 10, 2)] = test[1:10, seq(l, 10, 2)] + 3
test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
colnames(test) = paste("Test”, 1:10, sep = "")

pheatmap 23

rownames(test) = paste("Gene"”, 1:20, sep = "")

Draw heatmaps

pheatmap(test)
pheatmap(test, kmeans_k = 2)
pheatmap(test, scale = "row"”, clustering_distance_rows = "correlation”)

pheatmap(test, color = colorRampPalette(c("navy"”, "white"”, "firebrick3"))(50))
pheatmap(test, cluster_row = FALSE)

pheatmap(test, legend = FALSE)

pheatmap(test, display_numbers = TRUE)

pheatmap(test, display_numbers = TRUE, number_format = "%.1e")

pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0",
"le-4", "1e-3", "1e-2", "le-1", "1"))

pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap")
#pheatmap(test, cellwidth = 15, cellheight = 12, fontsize = 8, filename = "test.pdf")

Generate column annotations
annotation = data.frame(Varl = factor(1:10 %% 2 == 0,

labels = c("Class1”, "Class2")), Var2 = 1:10)
annotation$Varl = factor(annotation$Varl, levels = c("Class1”, "Class2", "Class3"))
rownames(annotation) = paste("Test”, 1:10, sep = "")

pheatmap(test, annotation = annotation)
pheatmap(test, annotation = annotation, annotation_legend FALSE)
pheatmap(test, annotation = annotation, annotation_legend = FALSE, drop_levels = FALSE)

Specify colors

Var1l = c("navy”, "darkgreen")
names(Var1l) = c("Class1”, "Class2")
Var2 = c("lightgreen”, "navy")

ann_colors = list(Varl = Varl, Var2 = Var2)

#Specify row annotations
row_ann <- data.frame(foo=gl(2,nrow(test)/2), Bar =relevel(gl(2,nrow(test)/2),"2"))
rownames (row_ann)<-rownames(test)
pheatmap(test, annotation = annotation, annotation_legend = FALSE,
drop_levels = FALSE,row_annotation = row_ann)

#Using cytokine annotations

M<-matrix(rnorm(8x20),ncol=8)

row_annotation<-data.frame(A=gl(4,nrow(M)/4),B=gl(4,nrow(M)/4))

eg<-expand.grid(factor(c(0,1)),factor(c(0,1)),factor(c(0,1)))

colnames(eg)<-c("IFNg","TNFa","IL2")

rownames (eg)<-apply(eg, 1, function(x)paste@(x,collapse=""))

rownames (M)<-1:nrow(M)

colnames(M)<-rownames(eg)

cytokine_annotation=eg

pheatmap (M, annotation=annotation, row_annotation=row_annotation,
annotation_legend=TRUE, row_annotation_legend=TRUE,
cluster_rows=FALSE, cytokine_annotation=cytokine_annotation,cluster_cols=FALSE)

Specifying clustering from distance matrix

drows = dist(test, method = "minkowski")

dcols = dist(t(test), method = "minkowski")

pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols)

24

plot. COMPASSResult

plot.COMPASSResult Plot a COMPASSResult

Description

This function can be used to visualize the mean probability of response; that is, the probability
that there is a difference in response between samples subjected to the ’treatment’ condition, and
samples subjected to the ’control” condition.

Usage

S3 method for class 'COMPASSResult'

plot(
X7
Y,

subset = NULL,
threshold = 9.01,

minimum_dof =
maximum_dof =

must_express

1,
Inf,

= NULL,

row_annotation,
palette = colorRampPalette(brewer.pal(10, "Purples”))(20),

show_rownames
show_colnames

= FALSE,
= FALSE,

measure = NULL,

order_by = FunctionalityScore,
order_by_max_functionality = TRUE,
markers = NULL,

Arguments

subset

threshold

minimum_dof
maximum_dof

must_express

row_annotation

palette

An object of class COMPASSResult.

This argument gets passed to row_annotation, if row_annotation is missing.
It can be used to group rows (individuals) by different conditions as defined in
the metadata.

An R expression, evaluated within the metadata, used to determine which indi-
viduals should be kept.

A numeric threshold for filtering under-expressed categories. Any categories
with mean score < threshold are removed.

The minimum degree of functionality for the categories to be plotted.
The maximum degree of functionality for the categories to be plotted.

A character vector of markers that should be included in each subset plotted. For
example, must_express=c("TNFa & IFNg") says we include only subsets that
are positive for both TNFa or IFNg, while must_express=c(”"TNFa", "IFNg")
says we should keep subsets which are positive for either TNFa or IFNg.

A vector of names, pulled from the metadata, to be used for row annotation.

The colour palette to be used.

plot2

show_rownames
show_colnames

measure

order_by

25

Boolean; if TRUE we display row names (ie, the individual ids).

Boolean; if TRUE we display column names (ie, the column name associated
with a cytokine; typically not needed)

Optional. By default, we produce a heatmap of the mean gammas produced in a
model fit. We can override this by supplying a matrix of suitable dimension as
well; these can be generated with the Posterior= functions — see Posterior
for examples.

Order rows within a group. This should be a function; e.g. FunctionalityScore,
mean, median, and so on. Set this to NULL to preserve the original ordering of
the data.

order_by_max_functionality

markers

Value

Order columns by functionality within each degree subset. to TRUE.
specifies a subset of markers to plot. default is NULL, which means all markers.
Optional arguments passed to pheatmap.

The plot as a grid object (grob). It can be redrawn with e.g. grid: :grid.draw().

Examples

visualize the mean probability of reponse

plot(CR)

visualize the proportion of cells belonging to a category
plot(CR, measure=PosteriorPs(CR))

plot2

Plot a pair of COMPASSResults

Description

This function can be used to visualize the mean probability of response — that is, the probability
that there is a difference in response between samples subjected to the ’treatment’ condition, and
samples subjected to the ’control” condition.

Usage

plot2(
X’
Y,
subset,

threshold = 0.

minimum_dof
maximum_dof =
must_express

o1,
1,
Inf,

= NULL,

row_annotation = NULL,

palette = NA,
show_rownames
show_colnames

= FALSE,
= FALSE,

26

Arguments

X

Yy
subset

threshold

minimum_dof
maximum_dof
must_express

row_annotation
palette
show_rownames
show_colnames

Value

plotCOMPASSResultStack

An object of class COMPASSResult.
An object of class COMPASSResult.

An R expression, evaluated within the metadata, used to determine which indi-
viduals should be kept.

A numeric threshold for filtering under-expressed categories. Any categories
with mean score < threshold are removed.

The minimum degree of functionality for the categories to be plotted.
The maximum degree of functionality for the categories to be plotted.

A character vector of markers that should be included in each subset plotted. For
example, must_express=c("TNFa & IFNg") says we include only subsets that
are positive for both TNFa or IFNg, while must_express=c(”"TNFa"”, "IFNg")
says we should keep subsets which are positive for either TNFa or IFNg.

A vector of names, pulled from the metadata, to be used for row annotation.
The colour palette to be used.
Boolean; if TRUE we display row names (ie, the individual ids).

Boolean; if TRUE we display column names (ie, the column name associated
with a cytokine; typically not needed)

Optional arguments passed to pheatmap.

The plot as a grid object (grob). It can be redrawn with e.g. grid: :grid.draw().

plotCOMPASSResultStack

Plot multiple COMPASSResults

Description

This function can be used to visualize the mean probability of response; that is, the probability
that there is a difference in response between samples subjected to the ’treatment’ condition, and
samples subjected to the "control’ condition. This version is used for plotting multiple COMPASS-
Result objects. The COMPASS runs must all use the same markers. The code is heavily based
on the plot. COMPASSResult and plot2 functions. Not all options from plot. COMPASSResult are

supported yet.

Usage

plotCOMPASSResultStack(

X,

threshold =
minimum_dof
maximum_dof =

0

a1,
1,
Inf,

row_annotation,

variable,

palette = colorRampPalette(brewer.pal(9, "Purples”))(20),

show_rownames

= FALSE,

PolyfunctionalityScore 27

Arguments
X A named list of objects of class COMPASSResult. The names are values of type
variable
threshold A numeric threshold for filtering under-expressed categories. Any categories
with mean score < threshold are removed.
minimum_dof The minimum degree of functionality for the categories to be plotted.
maximum_dof The maximum degree of functionality for the categories to be plotted.

row_annotation A vector of names, pulled from the metadata, to be used for row annotation.
variable What to call the variable that is different across the objects in x.

palette The colour palette to be used.

show_rownames Boolean; if TRUE we display row names (ie, the individual ids).

Optional arguments passed to pheatmap.

Value

The plot as a grid object (grob). It can be redrawn with e.g. grid: :grid.draw().

Examples

Not run:
allCompassResults is a list of 4 COMPASSResults
names(allCompassResults) <- c("Antigen 85A", "CFP-10", "CMV", "ESAT-6")
plotCOMPASSResultStack(allCompassResults,
row_annotation = c("Antigen”, "PATIENT ID", "Time"),
variable = "Antigen”, show_rownames = FALSE,
main = "Heatmap of Mean Probability of Response to Antigens, CD8+",
fontsize = 14, fontsize_row = 13, fontsize_col = 11)

End(Not run)

PolyfunctionalityScore
Compute the Polyfunctionality Score for each subject fit in a COM-
PASS model

Description

Computes the Polyfunctionality score for each observation from the gamma matrix of a COMPASS
model fit. The scores are normalized to one.

Usage
PolyfunctionalityScore(x, degree, n, markers = NULL)

S3 method for class 'COMPASSResult'
PolyfunctionalityScore(x, degree, n, markers = NULL)

Default S3 method:

PolyfunctionalityScore(x, degree, n, markers = NULL)

28 Posterior

Arguments
X An object of class COMPASSResult, as returned by COMPASS. Alternatively, a
matrix of functionality scores.
degree A vector of weights. If missing, this is the ’degree of functionality’, that is, the
number of markers expressed in a particular category.
n The total number of markers. This is inferred when x is a COMPASSResult, and
is unused in that case.
markers A character specifying the markers for which to compute the score. Must
match names in markers().
Value

A numeric vector of polyfunctionality scores.

Examples

PolyfunctionalityScore(CR)

Posterior Retrieve Posterior Measures from a COMPASS fit

Description

These functions can be used to retrieve different posterior measures from a COMPASS fit object.
Usage

Posterior(x)

PosteriorDiff(x)

PosteriorLogDiff(x)

PosteriorPs(x)

PosteriorPu(x)

Arguments

X An object of class COMPASSResult.

Details

The posterior items retrieved are described as follows::

PosteriorPs: The posterior estimate of the proportion of cells in the stimulated sample.
PosteriorPu: The posterior estimate of the proportio of cells in the unstimulated sample.
PosteriorDiff: The difference in posterior proportions, as described above.

PosteriorLogDiff: The difference in the log posterior proportions, as described above.

print. COMPASSContainer 29

Examples

Posterior(CR)
PosteriorPs(CR)
PosteriorPu(CR)
PosteriorDiff (CR)
PosteriorLogDiff(CR)

print.COMPASSContainer
Print a COMPASSContainer Object

Description

This function prints a COMPASSContainer object, giving basic information about the object and the
data it encapsulates.

Usage
S3 method for class 'COMPASSContainer'
print(x, ...)

Arguments

X An object of class COMPASSContainer.

Optional arguments passed to cat.

Examples

print(CC)

print.COMPASSResult Print a COMPASSResult Object

Description

This function prints basic information about the model fit by a COMPASS call.

Usage
S3 method for class 'COMPASSResult'
print(x, ...)
Arguments
X An object of class COMPASSResult.
Optional arguments; currently unused.
Examples

print(CR)

30 scores

Response Compute a response probability from COMPASS mcmc samples.

Description

Compute a response probability based on the selected markers, evaluating the probability that a
subject exhibits a response of size degree or greater. i.e., the probability of at least degree markers
exhibiting an antigen specific response.

Usage

Response(x, markers, degree, max.prob, at_least_n)

S3 method for class 'COMPASSResult'
Response(x, markers = NULL, degree = 1, max.prob = FALSE, at_least_n = NULL)

Arguments
X a COMPASSResult object.
markers a vector of marker names.
degree the numeric degree of functionality to test.
max . prob logical Use the max probability rather than the average across subsets. De-
faults to FALSE.
at_least_n logical response of degree x or greater with at_least_n subsets responding.
Details
The response is computed from the sampled Gamma matrix, subsetting on the selected markers,
and
Value

A vector of response probabilities for each subject.

Examples

Response(CR, markers = c(”"M1","M2","M3"), degree = 2)

scores Fetch the table of scores and metadata from a COMPASSResult Object

Description
This function extracts the functionality and polyfunctionality scores from a COMPASS result merged
with the sample metadata table, accounting for any dropped samples due to filtering.

Usage

scores(x, markers = NULL)

select_compass_pops 31

Arguments
X A COMPASSResult object.
markers A character vector of markers for which to compute the scores. Defaults to all
markers. Must match the names returned by markers().
Examples
scores(CR)

select_compass_pops Flag COMPASS boolean populations

Description

Returns a boolean vector indexing cell populations in cellpops that match the pattern for boolean
combinations of markers.

Usage

select_compass_pops(cellpops, markers)

Arguments
cellpops vector of character names of cell populations.
markers vector of character names of markers in the order they appear in the population
names.
Details

If markers A, B, C, D make up the population names in cellpops and they the names match the
pattern e.g. "A+B-C+D+,Count" (typical of exports from some gating tools), then markers should
be a vector of markers in the same order they appear in cellpops.

Value

A boolean vector indexing cellpops with TRUE for populations matchin the pattern.

See Also

translate_marker_names

Examples

#Generate some population names

markers = LETTERS[1:4]

pos = c("+","-")

popnames = apply(expand.grid(pos,pos,pos,pos),1,
function(x)paste(paste(paste(markers,x,sep=""),
collapse=""),",Count”,sep=""))

popnames = sample(c(popnames,paste(paste(markers,sample(c("+","-"),
length(markers),replace=TRUE),sep=""),",Count”,sep="")))

popnames[select_compass_pops(popnames,LETTERS[1:4])]

32

shinyCOMPASS

shinyCOMPASS Start a Shiny Application for Visualizing COMPASS Results

Description

This function takes a COMPASSResult object, and generates a local Shiny application for visualizing
the results.

Usage

shinyCOMPASS(
X,
dir = NULL,
meta.vars,
facet1l = "None",
facet2 = "None",
facet3 = "None",
main = "Heatmap of Ag-Specificity Posterior Probabilities”,

stimulation = NULL,
launch = TRUE,

Arguments
X An object of class COMPASSResult.
dir A location to write out the . rds files that will be loaded and used by the Shiny
application.
meta.vars A character vector of column names that should be used for potential facetting

in the Shiny app. By default, we take all metadata variables; you may want to
limit this if you know certain variables are not of interest.

facet1, facet2, facet3

Default values for facets in the Shiny app. Each should be the name of a single
vector in the metadata.

main A title to give to the heatmap and subset histogram plots.

stimulation The name of the stimulation applied. If this is NULL, the stimulations used are

inferred from the data (ie, the COMPASS call used).

launch Boolean; if TRUE we launch the Shiny application. Otherwise, the user can

launch it manually by navigating to the directory dir and running shiny: : runApp().

Optional arguments passed to shiny: : runApp.

See Also

shinyCOMPASSDeps, for identifying packages that you need in order to run the Shiny application.

shinyCOMPASSDeps 33

Examples

if (interactive()) {
oldOpt <- getOption("example.ask")
options(example.ask=FALSE)
on.exit(options(example.ask=01dOpt))

shinyCOMPASS (CR)
options(example.ask=TRUE)
3
shinyCOMPASSDeps List Shiny Dependencies
Description

This function can be used to identify the packages still needed in order to launch the Shiny app.

Usage

shinyCOMPASSDeps (verbose = TRUE)

Arguments

verbose Boolean; if TRUE we print installation instructions to the screen.

Examples

shinyCOMPASSDeps ()

SimpleCOMPASS Fit the discrete COMPASS Model

Description

This function fits the COMPASS model from a user-provided set of stimulated / unstimulated matrices.
See the NOTE for important details.

Usage

SimpleCOMPASS(
n_s,
n_u,
meta,
individual_id,
iterations = 10000,
replications = 8,
verbose = TRUE,
seed = 100

34

Arguments
n_s

n_u

meta

individual_id

iterations

replications

verbose

seed

Value

SimpleCOMPASS

The cell counts for stimulated cells.
The cell counts for unstimulated cells.

A data. frame of metadata, describing the individuals in the experiment. Each
row in meta should correspond to a row in data. There should be one row for
each subject; i.e., one row for each element of n_s and n_u.

The name of the vector in meta that denotes the individuals from which samples
were drawn.

The number of iterations (per ’replication’) to perform.

The number of ’replications’ to perform. In order to conserve memory, we only
keep the model estimates from the last replication.

Boolean; if TRUE we output progress information.

A seed for the random number generator. Defaults to 100.

A list with class COMPASSResult with two components, the fit containing parameter estimates
and parameter acceptance rates, and data containing the generated data used as input for the model.

Note

n_s and n_u counts matrices should contain ALL 2"M possible combinations of markers, even if
they are O for some combinations. The code expects the marker combinations to be named in the
following way: "M1&M2&!M3" means the combination represents cells expressing marker "M1" and
"M2" and not "M3". For 3 markers, there should be 8 such combinations, such that n_s and n_u

have 8 columns.

Examples

set.seed(123)

n <- 10 ## number of subjects
k <- 3 ## number of markers

generate some sample data
iid_vec <- paste@("iid_", 1:n) # Subject id

-

data <- replicate(2*n, {
nrow <- round(runif(1) x 1E4 + 1000)

ncol <- k

vals <- rexp(nrow * ncol, runif(1, 1E-5, 1E-3))
vals[vals < 2000] <- @

output <- matrix(vals, nrow, ncol)

output <- output[apply(output, 1, sum) > 0,]
colnames(output) <- paste@("M”, 1:k)

return(output)

b

meta <- cbind(iid=iid_vec, data.frame(trt=rep(c(”"Control”, "Treatment”), each=n/2)))

generate counts for n_s, n_u
n_s <- CellCounts(data[1:n], Combinations(k))
n_u <- CellCounts(data[(n+1):(2*n)], Combinations(k))

rownames(n_s) =

unique(meta$iid)

subset. COMPASSContainer 35

rownames(n_u) = rownames(n_s)

A smaller number of iterations is used here for running speed;
prefer using more iterations for a real fit

scr = SimpleCOMPASS(n_s, n_u, meta, "iid"”, iterations=1000)

subset.COMPASSContainer
Subset a COMPASSContainer

Description

Use this function to subset a COMPASSContainer.

Usage
S3 method for class 'COMPASSContainer'
subset(x, subset, ...)
Arguments
X A COMPASSContainer.
subset A logical expression, evaluated within the metadata, indicating which entries to
keep.

other arguments passed to "COMPASSContainer’ call.

Examples

subset(CC, iid == "iid_1")

summary .COMPASSContainer
Summarize a COMPASSContainer Object

Description

This function prints summary information about a COMPASSContainer object — the number of sam-
ples, basic information about the metadata, and so on.

Usage
S3 method for class 'COMPASSContainer'
summary (object, ...)

Arguments
object An object of class COMPASSContainer.

Optional arguments; currently ignored.

Examples

summary (CC)

36 TotalCellCounts

summary .COMPASSResult Summarize a COMPASSResult Object

Description

This function prints basic information about the model fit by a COMPASS call.

Usage
S3 method for class 'COMPASSResult'
summary (object, ...)

Arguments
object An object of class COMPASSResult.

Optional arguments; currently unused.

Examples

print(CR)

TotalCellCounts Compute Total Cell Counts

Description

This function is used to compute total cell counts, per individual, from a COMPASSContainer.

Usage

TotalCellCounts(data, subset, aggregate = TRUE)

Arguments
data A COMPASSContainer.
subset An expression, evaluated within the metadata, defining the subset of data over
which the counts are computed. If left unspecified, the counts are computed
over all samples.
aggregate Boolean; if TRUE we sum over the individual, to get total counts across samples
for each individual.
Examples
TotalCellCounts(CC, trt == "Treatment")
TotalCellCounts(CC, trt == "Control”)

TotalCellCounts(CC)

translate_marker_names 37

translate_marker_names
Translate marker names to format use by COMPASS

Description

Translate boolean population names from format exported by common software tools to a format
used by COMPASS.

Usage

translate_marker_names(cellpops)

Arguments

cellpops character vector of cell population names.

Value

character vector of cell population names used by COMPASS

See Also

select_compass_pops

Examples

#Generate marker names
markers = LETTERS[1:4]
pos = c("+","=")
popnames = apply(expand.grid(pos,pos,pos,pos),1,
function(x) paste(paste(paste(markers,x,sep=""),
collapse=""),",Count”, sep=""))
popnames = sample(c(popnames,
paste(paste(markers,sample(c("+","-"),
length(markers),replace=TRUE),sep=""),
",Count”,sep="")))
popnames = popnames[select_compass_pops(popnames, LETTERS[1:4])]
#Translate
translate_marker_names(popnames)

transpose_list Transpose a List

Description

Transpose a matrix-like list.

Usage

transpose_list(x)

38 UniqueCombinations

Arguments

X An R list.

Examples

1 <- 1list(1:3, 4:6, 7:9)
stopifnot(identical(
transpose_list(transpose_list(l)), 1

)

UniqueCombinations Generate Unique Combinations

Description

Generate all possible unique combinations of x. Primarily used as a helper function for Cel1Counts,
but may be occasionally useful to the end user.

Usage
UniqueCombinations(x, as.matrix)

S3 method for class 'COMPASSContainer'
UniqueCombinations(x, as.matrix = FALSE)

Default S3 method:
UniqueCombinations(x, as.matrix = FALSE)

Arguments
X Either a COMPASSContainer, or a list of matrices.
as.matrix Boolean; if TRUE we return results as a matrix; otherwise, we return the results
as a list.
Examples

UniqueCombinations(CC)

Index

categories, 3
CC, 13
CC (COMPASSContainer-data), 10
CellCounts, 3,5
Combinations, 4, 5
COMPASS, 3, 5, 13, 14, 28, 29, 36
COMPASS-package, 3
COMPASSContainer, 3,7, 8,8, 10, 11
COMPASSContainer-data, 10
COMPASSContainerFromGatingSet, 10
COMPASSDescription, 11
COMPASSDescription<-
(COMPASSDescription), 11
COMPASSfitToCountsTable, 12
COMPASSMCMCDiagnosis, 12
COMPASSResult-accessors, 13
COMPASSResult-data, 13
CR (COMPASSResult-data), 13

dist, 21
FunctionalityScore, 14

Gamma (COMPASSResult-accessors), 13
getCounts, 15

gettextf, 2/
GetThresholdedIntensities, 15

gpar, 22

grid. text, 22

hclust, 21, 22

markers, 17

MeanGamma (COMPASSResult-accessors), 13

melt_, 17

merge .COMPASSContainer, 18
metadata, 19

metadata<- (metadata), 19

pheatmap, 19

plot (plot.COMPASSResult), 24
plot.COMPASSResult, 24
plot2, 25
plotCOMPASSResultStack, 26
PolyfunctionalityScore, 27

Posterior, 25, 28
PosteriorDiff (Posterior), 28

PosteriorLogDiff (Posterior), 28

PosteriorPs (Posterior), 28
PosteriorPu (Posterior), 28
print.COMPASSContainer, 29
print.COMPASSResult, 29

Response, 30

scores, 30
select_compass_pops, 31
shinyCOMPASS, 32
shinyCOMPASSDeps, 32, 33
SimpleCOMPASS, 33
subset.COMPASSContainer, 35
summary .COMPASSContainer, 35
summary .COMPASSResult, 36

TotalCellCounts, 36
translate_marker_names, 37
transpose_list, 37

UniqueCombinations, 38

	COMPASS-package
	categories
	CellCounts
	Combinations
	COMPASS
	COMPASSContainer
	COMPASSContainer-data
	COMPASSContainerFromGatingSet
	COMPASSDescription
	COMPASSfitToCountsTable
	COMPASSMCMCDiagnosis
	COMPASSResult-accessors
	COMPASSResult-data
	FunctionalityScore
	getCounts
	GetThresholdedIntensities
	markers
	melt_
	merge.COMPASSContainer
	metadata
	pheatmap
	plot.COMPASSResult
	plot2
	plotCOMPASSResultStack
	PolyfunctionalityScore
	Posterior
	print.COMPASSContainer
	print.COMPASSResult
	Response
	scores
	select_compass_pops
	shinyCOMPASS
	shinyCOMPASSDeps
	SimpleCOMPASS
	subset.COMPASSContainer
	summary.COMPASSContainer
	summary.COMPASSResult
	TotalCellCounts
	translate_marker_names
	transpose_list
	UniqueCombinations
	Index

