Package ‘CNORode’

January 19, 2026

Type Package

Title ODE add-on to CelNOptR

Version 1.52.0

Date 2022-03-22

Author David Henriques, Thomas Cokelaer, Attila Gabor, Federica Eduati, Enio Gjerga

Description Logic based ordinary differential equation (ODE) add-on to
CelINOptR.

License GPL-2

LazyLoad yes

Depends CellNOptR, genalg
Enhances doParallel, foreach
Suggests knitr, rmarkdown
VignetteBuilder knitr

biocViews ImmunoOncology, CellBasedAssays, CellBiology, Proteomics,
Bioinformatics, TimeCourse

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/CNORode
git_branch RELEASE_3_22

git_last_commit Obfald4

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Maintainer Attila Gabor <attila.gabor@uni-heidelberg.de>

Contents

cnodata L L e e e
CnOliSt L e e e e
cnolistCNORodeExample
CNORoOde e e e
createLBodeContPars e
crossvalidateODE e
defaultParametersGA e e e e e

2 cnolistCNORodeExample
defaultParametersSSm 7
getLBodeContObjFunction L 8
getLBodeDataSim L 9
getLBodeMINLPObjFunction, 11
getLBodeModelSim L 12
getLBodeSimFunction oL 14
GELSTALES e e e e 15
incidence2Adjacencyo 15
indices L e 16
minlpLBodeSSm 16
model e 18
parEstimationLBode 18
parEstimationLBodeGA 20
parEstimationLBodeSSmo 22
pknmodel 24
plotLBodeFitness e e e e 24
plotLBodeModelSim L 26
runCNORode 28
simdata2cnolist e 29
simulate e 30

Index 32

cnodata A cnodata from CellNoptR

Description

A cnodata from CellNoptR to use with provided examples
cnolist A cnolist from CellNoptR

Description

A cnolist from CellNoptR to use with provided examples
cnolistCNORodeExample A cnolist from CellNoptR

Description

A cnolist from CellNoptR to use with provided CNORode examples.

CNORode 3

CNORode Logic based ODE extension for CelINOptR

Description

This package is used for the simulation and fitting of logic based ODE models based on the Odefy
approach.

Details
Package: CNORode
Type: Package
Version: 1.2.0
Date: 2012-03-14
License: GPL-3
LazylLoad: yes
Author(s)

David Henriques, Thomas Cokelaer Maintainer: David Henriques <dhenriques @ebi.ac.uk>

References

Dominik Wittmann, Jan Krumsiek, Julio S. Rodriguez, Douglas Lauffenburger, Steffen Klamt, and
Fabian Theis. Transforming boolean models to continuous models: methodology and application
to t-cell receptor signaling. BMC Systems Biology, 3(1):98+, September 2009.

Egea, J.A., Maria, R., Banga, J.R. (2010) An evolutionary method for complex-process optimiza-
tion. Computers & Operations Research 37(2): 315-324.

Egea, J.A., Balsa-Canto, E., Garcia, M.S.G., Banga, J.R. (2009) Dynamic optimization of nonlinear
processes with an enhanced scatter search method. Industrial & Engineering Chemistry Research
49(9): 4388-4401.

Jan Krumsiek, Sebastian Polsterl, Dominik Wittmann, and Fabian Theis. Odefy - from discrete to
continuous models. BMC Bioinformatics, 11(1):233+, 2010.

R. Serban and A. C. Hindmarsh, "CVODES: the Sensitivity-Enabled ODE Solver in SUNDIALS,"
Proceedings of IDETC/CIE 2005, Sept. 2005, Long Beach, CA. Also available as LLNL technical
report UCRL-JP-200039.

C. Terfve, T. Cokelaer, A. MacNamara, D. Henriques, E. Goncalves, MK. Morris, M. van Iersel, DA
Lauffenburger, J. Saez-Rodriguez. CelINOptR: a flexible toolkit to train protein signaling networks
to data using multiple logic formalisms. BMC Systems Biology, 2012, 6:133:

See Also

CellNOptR, parEstimationlLBode, getLBodeModelSim, parEstimationlLBode plotLBodeFitness.

4 createLBodeContPars

createlLBodeContPars Create a list with ODE parameter information needed to perform pa-
rameter estimation

Description

Creates a list with the continuous parameters to simulate the model, upper and lower bounds for the
parameter estimation, parameters names, indices of the parameters and other information.

Usage

createlLBodeContPars(model, LB_n = 1, LB_k = @.1, LB_tau = 0.01,
UB_n =5, UB_Lk = 0.9, UB_tau = 10, default_n = 3, default_k = 0.5,
default_tau = 1, LB_in = c(), UB_in = c(), opt_n = TRUE, opt_k = TRUE,
opt_tau = TRUE, random = FALSE)

Arguments

model The logic model to be simulated.

LB_n A numeric value to be used as lower bound for all parameters of type n.

LB_k A numeric value to be used as lower bound for all parameters of type k.

LB_tau A numeric value to be used as lower bound for all parameters of type tau.

UB_n A numeric value to be used as upper bound for all parameters of type n.

UB_k A numeric value to be used as upper bound for all parameters of type k.

UB_tau A numeric value to be used as upper bound for all parameters of type tau.

default_n The default parameter to be used for every parameter of type n.

default_k The default parameter to be used for every parameter of type k.

default_tau The default parameter to be used for every parameter of type tau.

LB_in An array with the the same length as ode_parameters$parValues with lower
bounds for each specific parameter.

UB_in An array with the the same length as ode_parameters$parValues with upper
bounds for each specific parameter.

opt_n Add all parameter n to the index of parameters to be fitted.

opt_k Add all parameter k to the index of parameters to be fitted.

opt_tau Add all parameter tau to the index of parameters to be fitted.

random logical value that determines that a random solution is for the parameters to be
optimized.

Value
parNames An array containing the names of the parameters.
parValues An array containing the values of the parameters, in the same order as the names.

index_opt_pars An array containing the indexes for the parameters to be fitted.

index_n An array containing the indexes of the parameters of type n.
index_k An array containing the indexes of the parameters of type k.
index_tau An array containing the indexes of the parameters of type tau.
LB An array containing the lower bound for each parameter.

uB An array containing the upper bound for each parameter.

crossvalidateODE 5

Author(s)

David Henriques, Thomas Cokelaer

Examples

library(CNORode)

data("ToyCNOlist",package="CNORode");

data("ToyModel”, package="CNORode");
data("ToyIndices”,package="CNORode");
ode_parameters=createlBodeContPars(model, opt_n=FALSE,default_n=2,
random=TRUE,LB_k=0.25,UB_k=0.8,LB_tau=0.01,UB_tau=10);

crossvalidateODE Crossvalidate ODE model

Description

k-fold crossvalidation for logic ODE model

Usage
crossvalidateODE(
CNOlist,
model,
nfolds = 10,

foldid = NULL,

type = "datapoint”,
parallel = FALSE,
ode_parameters = NULL,
paramsSSm = NULL,

method = "essm”
)
Arguments

CNOlist Cnolist which contains all the experiments

model a model prepared for the training

nfolds number of folds - default is 10. Although nfolds can be as large as the sample
size (leave-one-out CV), it is not recommended for large datasets.

foldid an optional vector of values between ‘1‘ and ‘nfold* identifying what fold each
observation is in. If supplied, ‘nfold‘ can be missing.

type define the way to do the crossvalidation. The default is ‘type="datapoint"*,
which assigns the data randomly into folds. The option ‘type="experiment""
uses whole experiments for crossvalidation (all data corresponding to a cue com-
bination). The ‘type=observable‘ uses the subset of nodes across all experiments
for crossvalidation.

parallel use for parallel execution, requires the doParallel package

ode_parameters list of fitted logic ODE parameter
paramsSSm parameters for the SSm optimizer for running the optimization in crossvalidation

method Selection of optimization method: only "ga" or "essm" arguments are accepted

6 defaultParametersGA

Details

Does a k-fold cross-validation for logic ODE CellNOpt models. In k-iterations a fraction of the
data is eliminated from the CNOlist. The model is trained on the remaining data and then the model
predicts the held-out data. Then the prediction accuracy is reported for each iteration.

See Also

parEstimationLBode

defaultParametersGA Create default options to perform parameter estimation with a genetic
algorithm.

Description

This function returns a list with several arguments for performing parameter estimation with the
genetic algorithm from the package genalg.

Usage

defaultParametersGA()

Value

mutationChance NA

popSize 200
iters 100
elitism NA
time 1
monitor TRUE
verbose 0
transfer_function

3
reltol le-04
atol 0.001
maxStepSize Inf
maxNumSteps le+05
maxErrTestsFails

50
nan_fac =1 0

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR parEstimationLBode parEstimationLBodeGA

defaultParametersSSm 7

defaultParametersSSm Create default options to perform parameter estimation with scatter
search meta-heuristic.

Description
This function returns a list with several arguments for performing parameter estimation with scatter
search meta-heuristic algorithm from the package essR.

Usage

defaultParametersSSm()

Value

maxeval Inf
maxtime 100
ndiverse NULL
dim_refset NULL
local_solver NULL
verbose 0
transfer_function

3
reltol le-04
atol 0.001
maxStepSize Inf
maxNumSteps le+05
maxErrTestsFails

50
nan_fac 1
lambda_tau 0
lambda_k 0
bootstrap 0

SSpenalty_fac O

SScontrolPenalty_fac
0

boot_seed sample(1:10000,1)

Author(s)

David Henriques, Thomas Cokelaer, Federica Eduati

See Also

CellNOptR parEstimationLBode parEstimationLBodeSSm

8 getLBodeContObjFunction

getLBodeContObjFunction
Returns the objective function to perform parameter estimation.

Description

This function configures returns the objective function that can be used to evaluate the fitness of
a logic based ODE model using a particular set of parameters. This function can be particularly
useful if you are planing to couple a nonlinear optimization solver. The returned value of the
objective function corresponds to the mean squared value normalized by the number of data points.

Usage

getlLBodeContObjFunction(cnolist, model, ode_parameters, indices=NULL, time =1,
verbose = @, transfer_function = 3, reltol = 1e-04, atol = 0.001, maxStepSize = Inf,
maxNumSteps = 1e+05, maxErrTestsFails = 50, nan_fac = 1, lambda_tau=0, lambda_k=0,
bootstrap=F, SSpenalty_fac=0, SScontrolPenalty_fac=0, boot_seed=sample(1:10000,1))

Arguments
cnolist A list containing the experimental design and data.
model The logic model to be simulated.

ode_parameters A list with the ODEs parameter information. Obtained with createlLBodeContPars.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.

time An integer with the index of the time point to start the simulation. Default is 1.

verbose A logical value that triggers a set of comments.

transfer_function
The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
3 for normalized Hill function.

reltol Relative Tolerance for numerical integration.

atol Absolute tolerance for numerical integration.

maxStepSize The maximum step size allowed to ODE solver.

maxNumSteps The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one
step.

nan_fac A penalty for each data point the model is not able to simulate. We recommend

higher than 0 and smaller that 1.

lambda_tau Tunable regularisation parameters to penalise L1-norm of parameters tau and
induce sparsity. We recommend testing values between 0 and 100 (in log scale)
to find best compromise between good fit and sparse model. Default =0, corre-
sponding to no regularisation.

lambda_k Tunable regularisation parameters to penalise L1-norm of parameters k and in-
duce sparsity. We recommend testing values between 0 and 100 (in log scale)
to find best compromise between good fit and sparse model. Default =0, corre-
sponding to no regularisation.

getLBodeDataSim 9

bootstrap If set to TRUE performs random sampling with replacement of the measure-
ments used in the optimisation (to be run multiple times to get bootstrapped
distribution of parameters). Default =FALSE, no bootstrapping.

SSpenalty_fac Penalty factor for penalising solutions which do not reach steady state. Default
=0.

SScontrolPenalty_fac
Penalty factor for penalising solutions for which the control (unperturbed) con-
dition (assumed to be first row) does not reach steady state. Default =0.

boot_seed Seed used for random sampling if bootstrap=TRUE. Default chose random seed
between 0 and 10000
Details
Check CellNOptR for details about the cnolist and the model format. For more details in the con-
figuration of the ODE solver check the CVODES manual.
Value
Returns a function to evaluate the model fitness. This function receives a vector containing both
continuous parameters and integer values representing which reactions should be kept in the model.
Author(s)

David Henriques, Thomas Cokelaer, Federica Eduati

See Also

CellNOptR createlBodeContPars

Examples

library(CNORode)
data("ToyCNOlist"”, package="CNORode");
data("ToyModel”,package="CNORode");
data("ToyIndices"”,package="CNORode");

ode_parameters=createlBodeContPars(model, random=TRUE) ;
minlp_obj_function=getLBodeContObjFunction(cnolistCNORodeExample, model, ode_parameters,indices);

x=ode_parameters$parValues;

f=minlp_obj_function(x);

getLBodeDataSim Simulate value signals a CNO list With Logic-Based ODE:s.

Description

This function receives a set of inputs, namely the cnolist and the model and returns a list with the
same size of the cnolist$valueSignals.

10 getLBodeDataSim

Usage

getlLBodeDataSim(cnolist, model, ode_parameters = NULL, indices = NULL,
timeSignals=NULL, time = 1, verbose = @, transfer_function = 3,

reltol = 1e-04, atol = 0.001, maxStepSize = Inf, maxNumSteps = 1e+05,
maxErrTestsFails = 50)

Arguments

cnolist A list containing the experimental design and data.

model A list with the ODEs parameter information. Obtained with createLBodeContPars.

ode_parameters A list with the ODEs parameter information. Obtained with makeParameterList
function.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.

timeSignals An array containing a different timeSignals. If you use this argument, it will

also modify the dimensions from valueSignals.
time An integer with the index of the time point to start the simulation. Default is 1.

verbose A logical value that triggers a set of comments.

transfer_function
The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
3 for normalized Hill function.

reltol Relative Tolerance for numerical integration.

atol Absolute tolerance for numerical integration.

maxStepSize The maximum step size allowed to ODE solver.

maxNumSteps The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one
step.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the con-
figuration of the ODE solver check the CVODES manual.

Value

Returns a list with simulated data that has the same structure as the cnolist$valueSignals. One
matrix for each time-point.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR parEstimationLBode parEstimationLBodeSSm

getLBodeMINLPObjFunction 11

Examples

library(CNORode)

data("ToyCNOlist", package="CNORode");

data(”"ToyModel"”, package="CNORode");

data("ToyIndices”,package="CNORode");
dataSimulation=getLBodeDataSim(cnolistCNORodeExample, model,indices=indices);

getLBodeMINLPObjFunction
Get the objective function to evaluate the fitness of a given model
structure and set of parameters.

Description

This function configures returns the objective function that can be used to evaluate the fitness of
a logic based ODE model using a particular set of parameters and model structure. This function
can be particular useful if you are planing to couple a mixed integer nonlinear programming op-
timization solver. The returned value of the objective function corresponds to the mean squared
value.

Usage

getLBodeMINLPObjFunction(cnolist, model, ode_parameters, indices=NULL, time =1,
verbose = @, transfer_function = 3, reltol = 1e-04, atol = 0.001, maxStepSize = Inf,
maxNumSteps = 1e+05, maxErrTestsFails = 50, nan_fac = 1)

Arguments
cnolist A list containing the experimental design and data.
model The logic model to be simulated.

ode_parameters A list with the ODEs parameter information. Obtained with createLBodeContPars.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.

time An integer with the index of the time point to start the simulation. Default is 1.

verbose A logical value that triggers a set of comments.

transfer_function
The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
3 for normalized Hill function.

reltol Relative Tolerance for numerical integration.

atol Absolute tolerance for numerical integration.

maxStepSize The maximum step size allowed to ODE solver.

maxNumSteps The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one
step.

nan_fac A penalty for each data point the model is not able to simulate. We recommend

higher than 0 and smaller that 1.

12 getLBodeModelSim

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the con-
figuration of the ODE solver check the CVODES manual.

Value

Returns a function to evaluate the model fitness. This function receives a continuous parameter
vector.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createlBodeContPars

Examples

library(CNORode)
data("ToyCNOlist"”,package="CNORode");
data("ToyModel”,package="CNORode");
data("ToyIndices”,package="CNORode");

ode_parameters=createlLBodeContPars(model, random=TRUE) ;
minlp_obj_function=getLBodeMINLPObjFunction(cnolistCNORodeExample, model,ode_parameters,indices);

n_int_vars=dim(model$interMat)[2];
x_int=round(runif(n_int_vars))
x_cont=ode_parameters$parValues;
x=c(x_cont,x_int);
f=minlp_obj_function(x);

getLBodeModelSim Simulate the logic-based ODE model

Description

This function simulates a logic-based ODE model and return a list with one matrix for each time
point. The input species in the model are filled with NA values. If the simulation of a particular set
of initial conditions fails the solver will fill the experience row with NA values.

Usage

getLBodeModelSim(cnolist, model, ode_parameters = NULL, indices = NULL, timeSignals=NULL,
time = 1,verbose = @, transfer_function = 3, reltol = 1e-04, atol = 0.001, maxStepSize = Inf,
maxNumSteps = 1e+05, maxErrTestsFails = 50)

getLBodeModelSim 13

Arguments
cnolist A list containing the experimental design and data.
model The logic model to be simulated.

ode_parameters A list with the ODEs parameter information. Obtained with createlLBodeContPars.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.

timeSignals An array containing a different timeSignals. If you use this argument, it will
also modify the dimensions from valueSignals.

time An integer with the index of the time point to start the simulation. Default is 1.

verbose A logical value that triggers a set of comments.

transfer_function
The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
3 for normalized Hill function.

reltol Relative Tolerance for numerical integration.

atol Absolute tolerance for numerical integration.

maxStepSize The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxNumSteps The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one
step.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the con-
figuration of the ODE solver check the CVODES manual.

Value

Returns a list with simulated data with similar structure to cnolist$valueSignals. Contains one
matrix for each time-point. Each matrix contains one row per experiment and one columns per
model species.

Author(s)

David Henriques, Thomas Cokelaer

See Also
CellNOptR createlBodeContPars

Examples

library(CNORode)

data('ToyCNOlist', package='CNORode');

data('ToyModel',package='CNORode');

data('ToyIndices',package='CNORode');
modelSimulation=getLBodeModelSim(cnolistCNORodeExample, model,indices=indices);

14 getLBodeSimFunction

getLBodeSimFunction Get a function to simulate a logic based ODE model.

Description

This function is internally used by CNORode to configure the simulation function with default
arguments.

Usage

getlLBodeSimFunction(cnolist1, modell, adjMatrix1, indices1, odeParametersi,
timel = 1, verbosel = 0, transfer_functionl = 3, reltoll = 1e-04, atoll = 0.001,
maxStepSizel = Inf, maxNumStepsl = 1e+@5, maxErrTestsFailsl = 50)

Arguments
cnolisti A list containing the experimental design and data.
model1 The logic model to be simulated.
adjMatrixi An adjacency matrix from the model.
indices1 Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.
odeParametersl A list with the ODEs parameter information. Obtained with createlLBodeContPars.
timel An integer with the index of the time point to start the simulation. Default is 1.
verbose1 A logical value that triggers a set of comments.

transfer_function
The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
3 for normalized Hill function.

reltoll Relative Tolerance for numerical integration.
atoll Absolute tolerance for numerical integration.
maxStepSize1l The maximum step size allowed to ODE solver.

maxNumSteps1 The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxErrTestsFails1
Specifies the maximum number of error test failures permitted in attempting one
step.
Value

A function that returns a simulated model.

Note

This function is for CNORode internal use.

Author(s)

David Henriques, Thomas Cokelaer

getStates 15

See Also
CellNOptR CNORode

getStates Find which species in the model are states.

Description

Receives an adjacency matrix (model$interMat from CellNoptR) and finds which species are states
(i.e. not inputs).

Usage
getStates(adjacency)
Arguments
adjacency An adjacency matrix from the model.
Value

A numeric vector with 0’s for positions which are states and 1’s for positions which are.

Note
For internal use of CNORode.

Author(s)

David Henriques, Thomas Cokelaer

See Also

incidence2Adjacency

incidence2Adjacency Convert an incidence matrix into an adjacency matrix.

Description
Convert the incidence matrix (model representation of CellNoptR) into an adjacency matrix. De-
notes the inputs/output relationships.

Usage

incidence2Adjacency(model)

Arguments

model Model from CellNoptR.

16 minlpLBodeSSm

Value

Directed Adjacency matrix of size n_species by n_species.

Note
For internal use of CNORode.

Author(s)

David Henriques, Thomas Cokelaer

See Also
CellNOptR

indices Indices that relate cnolist to model

Description

A list with indices that relate the cnolist with the model from CelINOptR

minlpLBodeSSm Search for the best combination of continuous parameters and logic
gates.

Description

This function uses essR to search for the best set of continuous parameters and model structure.
The objective function is the same as the one provided by getLBodeMINLPObjFunction.

Usage

minlpLBodeSSm(cnolist, model, ode_parameters = NULL, int_x@=NULL, indices = NULL, maxeval = Inf,
maxtime = 100, ndiverse = NULL, dim_refset = NULL, local_solver = NULL, time =1,

verbose = @, transfer_function = 3, reltol = 1e-04, atol = 0.001, maxStepSize = Inf,

maxNumSteps = 1e+05, maxErrTestsFails = 50, nan_fac = 1)

Arguments
cnolist A list containing the experimental design and data.
model The logic model to be simulated.

ode_parameters A list with the ODEs parameter information. Obtained with createlLBodeContPars.

int_xo Vector with initial solution for integer parameters.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.

maxeval Maximum number of evaluation in the optimization procedure.

maxtime Maximum number of evaluation spent in optimization procedure.

minlpLBodeSSm

ndiverse

dim_refset

local_solver

time

verbose

17

Duration of the optinisation procedure.

Number of diverse initial solutions.

Local solver to be used in SSm.

An integer with the index of the time point to start the simulation. Default is 1.

A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
for normalized Hill function.

reltol Relative Tolerance for numerical integration.

atol Absolute tolerance for numerical integration.

maxStepSize The maximum step size allowed to ODE solver.

maxNumSteps The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one
step.

nan_fac A penalty for each data point the model is not able to simulate. We recommend
higher than 0 and smaller that 1.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the con-
figuration of the ODE solver check the CVODES manual.

Value

LB_n

LB_k

LB_tau

UB_n

UB_k

UB_tau
default_n
default_k
default_tau
LB_in

UB_in

opt_n
opt_k
opt_tau

random

model

smm_results

A numeric value to be used as lower bound for all parameters of type n.
A numeric value to be used as lower bound for all parameters of type k.
A numeric value to be used as lower bound for all parameters of type tau.
A numeric value to be used as upper bound for all parameters of type n.
A numeric value to be used as upper bound for all parameters of type k.
A numeric value to be used as upper bound for all parameters of type tau.
The default parameter to be used for every parameter of type n.

The default parameter to be used for every parameter of type k.

The default parameter to be used for every parameter of type tau.

An array with the the same length as ode_parameters$parValues with lower
bounds for each specific parameter.

An array with the the same length as ode_parameters$parValues with upper
bounds for each specific parameter.

Add all parameter n to the index of parameters to be fitted.
Add all parameter k to the index of parameters to be fitted.
Add all parameter tau to the index of parameters to be fitted.

A logical value that determines that a random solution is for the parameters to
be optimised.

The best fitting found model structure.

A list containing the information provided by the nonlinear optimization solver.

18 parEstimation. Bode

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createlBodeContPars essR

Examples

Not run:
data("ToyCNOlist",package="CNORode");
data(”"ToyModel"”, package="CNORode");
data("ToyIndices”,package="CNORode");

ode_parameters=createlLBodeContPars(model, random=TRUE) ;

#Visualize initial solution

simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)
ode_parameters=minlpLBodeSSm(cnolistCNORodeExample, model,ode_parameters);

model=ode_parameters$model;

#Visualize fitted solution
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,indices=indices);

End(Not run)

model A model from CellNoptR

Description

A model from CellNoptR to use with provided examples

parEstimationLBode Perform parameter estimation using a genetic algorithm (package
genalg) or ssm (if package essm available).

Description

This function is an alias to the parEstimationL.Bode variants (parEstimationLBodeGA and parEstimationLBodeSSm)

Usage

parEstimationLBode(cnolist, model, method="ga", ode_parameters = NULL, indices = NULL,
paramsGA=NULL, paramsSSm=NULL)

parEstimationLBode 19

Arguments
cnolist A list containing the experimental design and data.
model The logic model to be simulated.
method Only "ga" or "essm" arguments are accepted.

ode_parameters A list with the ODEs parameter information. Obtained with createlLBodeContPars.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.

paramsGA A list of GA parameters. default is the list returned by defaultParametersGA.

paramsSSm A list of SSm parameters. default is the list returned bydefaul tParametersSSm.
Value

LB_n A numeric value to be used as lower bound for all parameters of type n.

LB_k A numeric value to be used as lower bound for all parameters of type k.

LB_tau A numeric value to be used as lower bound for all parameters of type tau.

UB_n A numeric value to be used as upper bound for all parameters of type n.

UB_k A numeric value to be used as upper bound for all parameters of type k.

UB_tau A numeric value to be used as upper bound for all parameters of type tau.

default_n The default parameter to be used for every parameter of type n.

default_k The default parameter to be used for every parameter of type k.

default_tau The default parameter to be used for every parameter of type tau.

LB_in An array with the the same length as ode_parameters$parValues with lower

bounds for each specific parameter.

UB_in An array with the the same length as ode_parameters$parValues with upper
bounds for each specific parameter.

opt_n Add all parameter n to the index of parameters to be fitted.

opt_k Add all parameter k to the index of parameters to be fitted.

opt_tau Add all parameter tau to the index of parameters to be fitted.

random A logical value that determines that a random solution is for the parameters to

be optimized.

res A list containing the information provided by the solver.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createlBodeContPars rbga

20 parEstimationL BodeGA

Examples

data("ToyCNOlist",package="CNORode");
data("ToyModel”,package="CNORode");
data("ToyIndices”,package="CNORode");

ode_parameters=createlLBodeContPars(model, random=TRUE) ;

#Visualize initial solution

simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)
paramsGA = defaultParametersGA()

paramsGA$maxStepSize = 1

paramsGA$popSize = 10

paramsGA$iter = 10

paramsGA$transfer_function = 2

ode_parameters=parEstimationLBode(cnolistCNORodeExample,model, ode_parameters=ode_parameters,
paramsGA=paramsGA)

#Visualize fitted solution

simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)

parEstimationLBodeGA Perform parameter estimation using a genetic algorithm (package
genalg).

Description
This function uses a genetic algorithm (package genalg) to perform parameter estimation. The
objective function is the same as the one provided by getLBodeContObjFunction.

Usage

parEstimationLBodeGA(cnolist, model, ode_parameters = NULL, indices = NULL, mutationChance = NA, pc
elitism = NA, time = 1, monitor = TRUE, verbose = @, transfer_function = 3, reltol = 1e-04,
atol = 0.001, maxStepSize = Inf, maxNumSteps = 1e+05, maxErrTestsFails = 50, nan_fac = 1)

Arguments
cnolist A list containing the experimental design and data.
model The logic model to be simulated.

ode_parameters A list with the ODEs parameter information. Obtained with createlLBodeContPars.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.

mutationChance the chance that a gene in the chromosome mutates. By default 1/(size+1). It af-
fects the convergence rate and the probing of search space: a low chance results
in quicker convergence, while a high chance increases the span of the search

space.
popSize the population size.

iters the number of iterations.

elitism the number of chromosomes that are kept into the next generation. By default is

about 20% of the population size

time
monitor

verbose

parEstimationL BodeGA 21

An integer with the index of the time point to start the simulation. Default is 1.
If TRUE a plot will be generated to monitor the objective function

A logical value that triggers a set of comments.

transfer_function

Value

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
3 for normalized Hill function.

reltol Relative Tolerance for numerical integration.

atol Absolute tolerance for numerical integration.

maxStepSize The maximum step size allowed to ODE solver.

maxNumSteps The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one
step.

nan_fac A penalty for each data point the model is not able to simulate. We recommend
higher than 0 and smaller that 1.

LB_n A numeric value to be used as lower bound for all parameters of type n.

LB_k A numeric value to be used as lower bound for all parameters of type k.

LB_tau A numeric value to be used as lower bound for all parameters of type tau.

UB_n A numeric value to be used as upper bound for all parameters of type n.

UB_k A numeric value to be used as upper bound for all parameters of type k.

UB_tau A numeric value to be used as upper bound for all parameters of type tau.

default_n The default parameter to be used for every parameter of type n.

default_k The default parameter to be used for every parameter of type k.

default_tau
LB_in

UB_in

opt_n
opt_k
opt_tau

random

res

Author(s)

The default parameter to be used for every parameter of type tau.

An array with the the same length as ode_parameters$parValues with lower
bounds for each specific parameter.

An array with the the same length as ode_parameters$parValues with upper
bounds for each specific parameter.

Add all parameter n to the index of parameters to be fitted.
Add all parameter k to the index of parameters to be fitted.
Add all parameter tau to the index of parameters to be fitted.

A logical value that determines that a random solution is for the parameters to
be optimized.

A list containing the information provided by the nonlinear optimization solver
(genalg).

David Henriques, Thomas Cokelaer

See Also

CellNOptR createlBodeContPars rbga

22 parEstimationL BodeSSm

Examples

data("ToyCNOlist"”,package="CNORode");
data("ToyModel"”, package="CNORode");
data("ToyIndices”,package="CNORode");

ode_parameters=createlLBodeContPars(model, random=TRUE) ;
#Visualize intial simulation
#simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)

ode_parameters=parEstimationLBodeGA(cnolistCNORodeExample,model,ode_parameters=ode_parameters,
indices=indices,maxStepSize=1,atol=1e-3,reltol=1e-5, transfer_function=2,popSize=10,iter=40);

#Visual solution after optimization
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,indices=indices,ode_parameters=ode_parameters);

parEstimationLBodeSSm Perform parameter estimation using essR.

Description

This function uses essR to perform parameter estimation. The objective function is the same as the
one provided by getLBodeContObjFunction.

Usage

parEstimationLBodeSSm(cnolist, model, ode_parameters = NULL, indices = NULL,

maxeval = Inf, maxtime = 100, ndiverse = NULL, dim_refset = NULL, local_solver = NULL,

time = 1, verbose = 0, transfer_function = 3, reltol = 1e-04, atol = 0.001,

maxStepSize = Inf, maxNumSteps = 1e+@5, maxErrTestsFails = 50, nan_fac = 1,

lambda_tau = @, lambda_k = @, bootstrap = FALSE, SSpenalty_fac = 0,
SScontrolPenalty_fac = @, boot_seed = sample(1:10000,1))

Arguments
cnolist A list containing the experimental design and data.
model The logic model to be simulated.

ode_parameters A list with the ODEs parameter information. Obtained with createlLBodeContPars.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.

maxeval Maximum number of evaluation in the optimization procedure.

maxtime Duration of the optimization procedure.

ndiverse Number of diverse initial solutions.

dim_refset Size of the reference set.

local_solver Local solver to be used in SSm.

time An integer with the index of the time point to start the simulation. Default is 1.
verbose A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
3 for normalized Hill function.

parEstimationL BodeSSm 23

reltol Relative Tolerance for numerical integration.

atol Absolute tolerance for numerical integration.

maxStepSize The maximum step size allowed to ODE solver.

maxNumSteps The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one
step.

nan_fac A penalty for each data point the model is not able to simulate. We recommend
higher than 0 and smaller that 1.

lambda_tau penalty parameter for node parameters (tau)

lambda_k penalty parameter for edge parameters (k)

bootstrap Boolean, default: FALSE. If the residuals should be bootstrapped.

SSpenalty_fac

Steady-state penalty: at the end of the simulation the model states should reach
steady state. The steady state is measured by the sum of sqares of the state
derivatives.

SScontrolPenalty_fac

boot_seed

Details

Steady-state penalty for a control experiment, the default is 0. The first condition
should represent a control condition (no stimulus or inhibition). Then the model
simulation is penalised if it deviates from the initial conditions. This is to make
sure that the predicted dynamics is not due to the initial conditions, but becuase
of the stimuli.

random seed used for the bootsrapping.

Check CellNOptR for details about the cnolist and the model format. For more details in the con-
figuration of the ODE solver check the CVODES manual.

Value

LB_n

LB_k

LB_tau

UB_n

UB_k

UB_tau
default_n
default_k
default_tau
LB_in

UB_in

opt_n
opt_k

A numeric value to be used as lower bound for all parameters of type n.
A numeric value to be used as lower bound for all parameters of type k.
A numeric value to be used as lower bound for all parameters of type tau.
A numeric value to be used as upper bound for all parameters of type n.
A numeric value to be used as upper bound for all parameters of type k.
A numeric value to be used as upper bound for all parameters of type tau.
The default parameter to be used for every parameter of type n.

The default parameter to be used for every parameter of type k.

The default parameter to be used for every parameter of type tau.

An array with the the same length as ode_parameters$parValues with lower
bounds for each specific parameter.

An array with the the same length as ode_parameters$parValues with upper
bounds for each specific parameter.

Add all parameter n to the index of parameters to be fitted.

Add all parameter k to the index of parameters to be fitted.

24 plotLBodeFitness

opt_tau Add all parameter tau to the index of parameters to be fitted.
random A logical value that determines that a random solution is for the parameters to
be optimized.
smm_results A list containing the information provided by the nonlinear optimization solver.
Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createlBodeContPars

Examples

Not run:
data("ToyCNOlist"”,package="CNORode");
data("ToyModel"”, package="CNORode");
data("ToyIndices”,package="CNORode");

ode_parameters=createlLBodeContPars(model, random=TRUE) ;

#Visualize intial simulation
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)

ode_parameters=parEstimationLBodeSSm(cnolistCNORodeExample,model, ode_parameters,
indices=indices,maxtime=20,ndiverse=50,dim_refset=6);

#Visualize fitterd solution
simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,indices=indices,ode_parameters=ode_parameters);

End(Not run)

pknmodel A pknmodel from CellNoptR

Description

A pknmodel from CellNoptR to use with provided examples

plotLBodeFitness Plot data against simulated values.

Description

Plots the simulated values with the logic-based ODE against the the data contained contained the
data contained in the cnolist. The data values are represented with a black line and the simulated
values with a blue line. Additionally this functions returns the the simulated values.

plotLBodeFitness 25

Usage

plotLBodeFitness(cnolist, model, ode_parameters = NULL, indices = NULL,
adjMatrix = NULL, time = 1, verbose = @, transfer_function = 3, reltol = 1e-04,
atol = 0.001, maxStepSize = Inf, maxNumSteps = 1e+@5, maxErrTestsFails = 50,
plot_index_signals = NULL, plot_index_experiments = NULL,
plot_index_cues = NULL, colormap="heat"”, plotParams=list(margin=0.1, width=15, height=12,
cmap_scale=1, cex=1.6, ymin=NULL)

)

Arguments
cnolist A list containing the experimental design and data.
model The logic model to be simulated.

ode_parameters A list with the ODEs parameter information. Obtained with createlLBodeContPars.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.

adjMatrix Model representation in the form of an adjacency matrix. When not provided
will be automatically computed based in the model.

time An integer with the index of the time point to start the simulation. Default is 1.

verbose A logical value that triggers a set of comments.

transfer_function
The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
3 for normalized Hill function.

reltol Relative Tolerance for numerical integration.

atol Absolute tolerance for numerical integration.

maxStepSize The maximum step size allowed to ODE solver.

maxNumSteps The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one
step.

plot_index_signals
In case you only want to plot some signals, provide an integer vector with the
indexes.

plot_index_experiments
In case you only want to plot some experiments, provide an integer vector with
the indexes.

plot_index_cues
In case you only want to plot some cues, provide an integer vector with the
indexes.

colormap Uses the same colormap as in CellNOptR by default. If set to "green", it uses
the deprecated colormap.

plotParams additional parameters to refine the ploggin. See plotOptimResultsPan function
in CelINOptR for more details.

26 plotLBodeModelSim

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the con-
figuration of the ODE solver check the CVODES manual.

Value

Returns a list with simulated data that has the same structure as the cnolist$valueSignals. One
matrix for each time-point.

Author(s)

David Henriques, Thomas Cokelaer

See Also
CellNOptR createlBodeContPars

Examples

library(CNORode)

data("ToyCNOlist",package="CNORode");

data("ToyModel”,package="CNORode");

data("ToyIndices"”,package="CNORode");
ode_parameters=createlBodeContPars(model, random=TRUE) ;
dataSimulation=plotLBodeFitness(cnolistCNORodeExample, model,indices=indices);

plotLBodeModelSim Simulate the model and plot the obtained with the different experimen-
tal conditions.

Description

Plots the simulated values of the logic based ODE model. Only dynamic states are plotted, i.e.
those that are not inputs. a blue line. Additionally this functions returns the the simulated values.

Usage

plotLBodeModelSim(cnolist, model, ode_parameters = NULL, indices = NULL,
adjMatrix = NULL, timeSignals=NULL, time = 1, verbose = 0@, transfer_function = 3,
reltol = 1e-04, atol = 0.001, maxStepSize = Inf, maxNumSteps = 1e+05,
maxErrTestsFails = 50, large = FALSE, nsplit = 4, show = TRUE)

Arguments
cnolist A list containing the experimental design and data.
model The logic model to be simulated.

ode_parameters A list with the ODEs parameter information. Obtained with createlLBodeContPars.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.
adjMatrix Model representation in the form of an adjacency matrix. When not provided

will be automatically computed based in the model.

plotLBodeModelSim

27

timeSignals An array containing a different timeSignals. If you use this argument, it will

also modify the dimensions from valueSignals.

time An integer with the index of the time point to start the simulation. Default is 1.

verbose A logical value that triggers a set of comments.

transfer_function

The type of used transfer. Use 1 for no transfer function, 2 for Hill function and

3 for normalized Hill function.

reltol Relative Tolerance for numerical integration.

atol Absolute tolerance for numerical integration.

maxStepSize The maximum step size allowed to ODE solver.

maxNumSteps The maximum number of internal steps between two points being sampled be-
fore the solver fails.

maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one
step.

large Boolean variable defining if the plot should split into several subplots.

nsplit In case the large plot options is selected define how many subplots will exist.
Default is 4.

show Boolean variable defining if we shold plot the CNOlist object.

Value

Returns a list with simulated Model values. One matrix of size number of species by number of

experimental conditions for each time-point.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR createlLBodeContPars

Examples

library(CNORode)
data("ToyCNOlist"”, package="CNORode");
data("ToyModel”, package="CNORode");
data("ToyIndices"”,package="CNORode");
modelSimulation=plotLBodeModelSim(cnolistCNORodeExample, model,indices=indices);

28 runCNORode

runCNORode runCNORode

Description

A one-line wrapper of the CNORode pipeline

Usage

runCNORode (
model,
data,
compression = TRUE,
results_folder = "CNORode_results”,
cutNONC = TRUE,
expansion = FALSE,
LB_n =1,
LB_k =
LB_tau
UB_n =
UB_k =
UB_tau
default_n = 3
default_k = 0

S -
[}
=

N o o Il o
w0

N
S

’

.5,
default_tau = 1,
opt_n = TRUE,
opt_k = TRUE,

opt_tau = TRUE,

random = TRUE,

maxeval = 1e+05,
maxtime = 60,
transfer_function = 3,
nan_fac = 1

lambda_tau = 0,
lambda_k = @
)
Arguments
model A filename of prior knowledge network (PKN) in the SIF format
data A measurement filename in the MIDAS format
compression compress the prior knowledge network (TRUE), see preprocessing

results_folder results folder for the analysis.

CUtNONC cut non-observable non-controllable node from PKN (TRUE), see preprocessing
expansion expand OR gates in the PKN (FALSE), see preprocessing

LB_n lower bound on parameter n, see createLBodeContPars

LB_k lower bound on parameter k, see createLBodeContPars

LB_tau lower bound on parameter tau, see createLBodeContPars

simdata2cnolist 29

UB_n upper bound on parameter n, see createLBodeContPars

UB_k upper bound on parameter k, see createlLBodeContPars

UB_tau upper bound on parameter tau, see createLBodeContPars

default_n default value of parameter n, see createLBodeContPars

default_k default value of parameter k, see createLBodeContPars

default_tau default value of parameter tau, see createlLBodeContPars

opt_n should parameter n be optimised, see createLBodeContPars

opt_k should parameter k be optimised, see createLBodeContPars

opt_tau should parameter tau be optimised, see createLBodeContPars

random initial parameter vector generation (TRUE: random, FALSE: half of the LB-UB)
maxeval maximum number of funciton evaluations in the optimisation, see parEstimationLBodeSSm
maxtime maximum CPU time (in seconds) spent on optimisation before calling final re-

finement, see parEstimationLBodeSSm

transfer_function
trandfer function types represented by the edges, see parEstimationLBodeSSm

nan_fac penalty for NA simulations, see parEstimationLBodeSSm

lambda_tau regularisation penalty for tau parameters, see parEstimationLBodeSSm

lambda_k regularisation penalty for k parameters for optimisation, see parEstimationLBodeSSm
Examples

Not run:

model = system.file("extdata”, "ToyModelMMB_FeedbackAnd.sif", package="CNORode")
data = system.file("extdata”, "ToyModelMMB_FeedbackAnd.csv", package="CNORode")
res = runCNORode(model,data,results_folder = "./results”)

End(Not run)

simdata2cnolist converts output of getLBodeModelSim to cnolist

Description

This function converts the simulated data returned by getLBodeModelSim into a valid CNOlist data
structure.

Usage

simdata2cnolist(sim_data, cnolist, model)

Arguments
sim_data structure returned by getLBodeModelSim
cnolist A list containing the experimental design and data.

model The logic model to be simulated.

30 simulate

Value

a CNOlist

Author(s)

Thomas Cokelaer

See Also

CellNOptR createlBodeContPars

Examples

data('ToyCNOlist',package='CNORode');
data('ToyModel',package="'CNORode");
data('ToyIndices',package='CNORode');

simdata = getlLBodeModelSim(cnolistCNORodeExample, model,indices=indices)
cnolist = simdata2cnolist(simdata, cnolistCNORodeExample, model)

cnolist = simdata2cnolist(simdata, cnolistCNORodeExample, model)

simulate Simulate value signals a CNO list With Logic-Based ODEs.

Description

This function receives a set of inputs, namely the cnolist and the model and returns a list with the
same size of the cnolist$valueSignals.

Usage

simulate(cnolist, model, ode_parameters=NULL, indices=NULL,
adjMatrix=NULL, time=1, verbose=0, transfer_function=3,
reltol=1e-04, atol=0.001, maxStepSize=Inf, maxNumSteps=1e+0@5,
maxErrTestsFails=50)

Arguments

cnolist A list containing the experimental design and data.

model A list with the ODEs parameter information. Obtained with createLBodeContPars.

ode_parameters A list with the ODEs parameter information. Obtained with makeParameterList
function.

indices Indices to map data in the model. Obtained with indexFinder function from
CelINOptR.

adjMatrix The adjacency matrix. Recomputed if not provided

time An integer with the index of the time point to start the simulation. Default is 1.

verbose A logical value that triggers a set of comments.

transfer_function
The type of used transfer. Use 1 for no transfer function, 2 for Hill function and
3 for normalized Hill function.

simulate 31
reltol Relative Tolerance for numerical integration.
atol Absolute tolerance for numerical integration.
maxStepSize The maximum step size allowed to ODE solver.
maxNumSteps The maximum number of internal steps between two points being sampled be-
fore the solver fails.
maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one
step.
Details

Check CellNOptR for details about the cnolist and the model format. For more details in the con-
figuration of the ODE solver check the CVODES manual.

Value

Returns a list with simulated data that has the same structure as the cnolist$valueSignals. One
matrix for each time-point.

Author(s)

David Henriques, Thomas Cokelaer

See Also

CellNOptR parEstimationLBode parEstimationLBodeSSm

Examples

library(CNORode)

data("ToyCNOlist", package="CNORode");
data("ToyModel"”, package="CNORode");
data("ToyIndices”,package="CNORode");

dataSimulation

simulate(cnolistCNORodeExample, model,indices=indices);

Index

x+ CNORode
CNORode, 3
x+ CVODES
getLBodeSimFunction, 14
x CelINOptR
parEstimationLBode, 18
parEstimationLBodeGA, 20
* SSm
defaultParametersSSm, 7
* adjacency
getStates, 15
incidence2Adjacency, 15
+ algorithm
defaultParametersGA, 6
parEstimationLBode, 18
parEstimationLBodeGA, 20
+ default
defaultParametersGA, 6
defaultParametersSSm, 7
* essR
defaultParametersSSm, 7
* genetic
defaultParametersGA, 6
parEstimationLBode, 18
parEstimationLBodeGA, 20
x incidence
incidence2Adjacency, 15
* logic
parEstimationLBode, 18
parEstimationLBodeGA, 20
* matrix
incidence2Adjacency, 15
+ model
parEstimationLBode, 18
parEstimationLBodeGA, 20
* parameters
defaultParametersGA, 6
* states
getStates, 15

CellNOptR, 3,6, 7,9, 10, 12, 13, 15-19, 21,

23, 24, 26, 27, 30, 31
cnodata, 2
cnolist, 2

cnolistCNORodeExample, 2

CNORode, 3, 15

createlBodeContPars, 4, 8~14, 16, 18-22,
24-30

crossvalidateODE, 5

defaultParametersGA, 6
defaultParametersSSm, 7

getlLBodeContObjFunction, 8, 20, 22
getlLBodeDataSim, 9
getLBodeMINLPObjFunction, 11, 16
getLBodeModelSim, 3, 12
getLBodeSimFunction, 14
getStates, 15

incidence2Adjacency, 15, 15
indices, 16

minlpLBodeSSm, 16
model, 18

parEstimationLBode, 3, 6, 7, 10, 18, 31
parEstimationLBodeGA, 6, 18, 20
parEstimationLBodeSSm, 7, 10, 18, 22, 29, 31
pknmodel, 24

plotLBodeFitness, 3, 24
plotLBodeModelSim, 26

preprocessing, 28

rbga, 19, 21
runCNORode, 28

simdata2cnolist, 29
simulate, 30

	cnodata
	cnolist
	cnolistCNORodeExample
	CNORode
	createLBodeContPars
	crossvalidateODE
	defaultParametersGA
	defaultParametersSSm
	getLBodeContObjFunction
	getLBodeDataSim
	getLBodeMINLPObjFunction
	getLBodeModelSim
	getLBodeSimFunction
	getStates
	incidence2Adjacency
	indices
	minlpLBodeSSm
	model
	parEstimationLBode
	parEstimationLBodeGA
	parEstimationLBodeSSm
	pknmodel
	plotLBodeFitness
	plotLBodeModelSim
	runCNORode
	simdata2cnolist
	simulate
	Index

