Package ‘CNEr’

January 19, 2026
Version 1.46.0
Date 2024-04-23
Title CNE Detection and Visualization

Description Large-scale identification and advanced visualization
of sets of conserved noncoding elements.

Author Ge Tan <ge_tan@live.com>

Maintainer Boris Lenhard <b.lenhard@imperial.ac.uk> Damir Barana-
sic <damir.baranasic@lms.mrc.ac.uk>

Imports Biostrings (>=2.33.4), pwalign, DBI (>=0.7), RSQLite (>=
0.11.4), GenomelnfoDb (>= 1.1.3), GenomicRanges (>= 1.23.16),
Seqinfo (>= 0.99.2), rtracklayer (>= 1.25.5), XVector (>=
0.5.4), GenomicAlignments (>= 1.1.9), methods, S4Vectors (>=
0.13.13), IRanges (>=2.5.27), readr (>= 0.2.2), BiocGenerics,
tools, parallel, reshape2 (>= 1.4.1), ggplot2 (>=2.1.0),
poweRlaw (>= 0.60.3), annotate (>= 1.50.0), GO.db (>=3.3.0),
R.utils (>= 2.3.0), KEGGREST (>= 1.14.0)

Depends R (>=3.4)

Suggests Gviz (>= 1.7.4), BiocStyle, knitr, rmarkdown, testthat,
BSgenome.Drerio.UCSC.danRer10, BSgenome.Hsapiens. UCSC.hg38,
TxDb.Drerio.UCSC.danRer10.refGene, BSgenome.Hsapiens.UCSC.hg19,
BSgenome.Ggallus.UCSC.galGal3

LinkingTo S4Vectors, IRanges, X Vector
VignetteBuilder knitr
License GPL-2 | file LICENSE

License_restricts_use yes
URL https://github.com/ComputationalRegulatoryGenomicsICL/CNEr

BugReports https://github.com/ge11232002/CNEr/issues
Type Package

biocViews GeneRegulation, Visualization, Datalmport
NeedsCompilation yes

LazyData no

https://github.com/ComputationalRegulatoryGenomicsICL/CNEr
https://github.com/ge11232002/CNEr/issues

2 Contents

Collate GRangePairs-class.R GRangePairs-methods.R Axt-class.R
CNE-class.R utils.R ceScan.R plot.R makeGeneDbFromUCSC.R
IO-methods.R scoringMatrix.R subAxt-methods.R Axt-methods.R
DB.R AssemblyStats.R GRB.R WholeGenomeAlignment.R Ancora.R
CNE-methods.R GO.R KEGG.R

git_url https://git.bioconductor.org/packages/CNEr
git_branch RELEASE_3_22

git_last_commit a5d64f4

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents
addAncestorGO L e e e e 3
axisTrack e e e 4
AXE-Class L e e e e 4
axtChain e e e e e 6
axtInfo e e 8
binning-utils 8
blatCNE e 9
ceScan-methods e 10
chainMergeSort 12
chainNetSyntenic e 13
chainPreNet 14
CNE-class e 16
CNEDanRerlOHg38 e 18
CNEDensity-methods 18
cneFinalListDanRer1OHEg38 20
cneMerge-methods 20
fetchChromSizes e 21
fixCoordinates 22
GRangePairs-class 23
grangesPairsForDotplot 25
lastal L 26
[astz . . . e 27
IavToPsl o e e 28
makeAncoraFiles L 29
makeAxtTracks e 30
makeCNEDensity e e 31
makeGRBS e 32
matchDistribution L e 33
NSO . e 34
netTOAXE e 35
orgKEGGIds2EntrezIDs e 36
plotCNEDistribution L e 37
plotCNEWIidth e 38
PSUDAXL . . . o e e e 39
queryCNEData e e 40

readrmMask.GRanges 41

addAncestorGO 3
readrmskFasta L 41
readANCcora e e 42
readAncoralntoSQLite 43
readAXto e e e e 44
readBed e 45
readCNERangesFromSQLite, 46
reverseCigar e 47
saveCNEToSQLite-methods 48
scoringMatrix L. 49
subAxt-methods L e 50
SUIMMATY .« . v v v v v e e e et e e e e e e e e e e 51
syntenicDotplot-methods L oL 52
WILEAXE . . . o o o e e e e e e 53

Index 55

addAncestorGO Add ancestor GO IDs

Description

Given a list of GO IDs, add the corresponding ancestor GO IDs.

Usage
addAncestorGO(go)
Arguments
go A list of GO IDs. The elements of the list can be empty.
Details

The ancestor GO IDs for each GO ID are added to the elements.

Value

A list of GO IDs with their ancestor GO IDs.

Note

This function is mainly designed for processing the gff annotation generated from interproscan,
where for each gene, a set of GO IDs are assigned. However, for GO enrichment analysis, we need

a list of mapping from genes to the GO IDs and their ancestor GO IDs as well.

Author(s)

Ge Tan

4 Axt-class

Examples

Not run:
library(GO.db)
go <- list(c("G0:0005215", "G0:0006810", "GO:0016020"), "GO:0016579")
addAncestorGO(go)

End(Not run)

axisTrack Example data for plotting annotation.

Description

Five annotation tracks for plotting in Gviz.

Usage

data(axisTrack)
data(cpglslands)
data(refGenes)

Details

These tracks are based on genome="danRer10", chr = "chr6", start = 24000000, end = 27000000.

Examples

data(axisTrack)
data(cpglslands)
data(refGenes)

Axt-class Class "Axt"

Description

The Axt S4 object to hold a axt file.

Usage

Constructors:

Axt(targetRanges=GRanges(), targetSeqs=DNAStringSet(),
queryRanges=GRanges(), querySeqs=DNAStringSet(),
score=integer (@), symCount=integer(@), names=NULL)

Accessor-like methods:

S4 method for signature 'Axt'
targetRanges(x)

S4 method for signature 'Axt'
targetSeqs(x)

Axt-class 5

S4 method for signature 'Axt'
queryRanges(x)

S4 method for signature 'Axt'
querySeqs(x)

S4 method for signature 'Axt'
score(x)

S4 method for signature 'Axt'
symCount (x)

... and more (see Methods)

Arguments

targetRanges Object of class "GRanges": The ranges of net alignments on reference genome.

targetSeqgs Object of class "DNAStringSet": The alignment sequences of reference genome.
queryRanges Object of class "GRanges": The ranges of net alignments on query genome.
querySeqs Object of class "DNAStringSet"”: The alignment sequences of query genome.
score Object of class "integer": The alignment score.
symCount Object of class "integer"”: The alignment length.
names character(): the names of axt alignments.
X Object of class "Axt": A Axt object.

Details

In ‘axt’ files and Axt object, the ‘targetRanges’ also have the alignments on positive strands. How-
ever, the ‘queryRanges’ can have alignments on negative strands, and the coordinates are based
on negative strands, which is quite different from the convention in Bioconductor. To convert the
coordinates of alignments on the negative strand to the positive strand, use normaliseStrand.

Methods
[signature(x ="Axt", i ="ANY", j = "ANY"): Axt getter
¢ signature(x = "Axt"): Axt concatenator.
length signature(x = "Axt"): Get the number of alignments.
queryRanges signature(x = "Axt"): Get the ranges of query genome.
querySeqs signature(x = "Axt"): Get the alignment sequences of query genome.
score signature(x = "Axt"): Get the alignment score.
symCount signature(x = "Axt"): Get the alignment lengths.
targetRanges signature(x = "Axt"): Get the ranges of reference genome.

targetSeqs signature(x = "Axt"): Get the alignment sequences of reference genome.

Author(s)
Ge Tan

See Also

readAxt writeAxt subAxt fixCoordinates makeAxtTracks

6 axtChain

Examples

library(GenomicRanges)

library(Biostrings)

Constructor

targetRanges <- GRanges(seqgnames=c("chr1”, "chr1”, "chr2"”, "chr3"),
ranges=IRanges(start=c(1, 20, 2, 3),

end=c(10, 25, 10, 10)),

strand="+")

targetSeqs <- DNAStringSet(c("ATTTTATGTG", "GGGAAG", "GGGCTTTTG",

"TTGTGTAG"))

queryRanges <- GRanges(segnames=c("chr1”, "chri10", "chr1@", "chr20"),

ranges=IRanges(start=c(1, 25, 50, 5),
end=c(10, 30, 58, 12)),

strand="+"

querySeqs <- DNAStringSet(c("ATTTAAAGTG", "GGAAAA", "GGGCTCTGG",

"TTAAATAA™))

score <- c(246L, 4422L, 5679L, 1743L)

symCount <- c(1eL, 6L, 9L, 8L)

axt <- Axt(targetRanges=targetRanges, targetSeqs=targetSegs,

queryRanges=queryRanges, querySeqs=querySeqs,
score=score, symCount=symCount)

getters
names (axt)
length(axt)
first(axt)
last(axt)
segnames (axt)
strand(axt)
seqinfo(axt)

Vector methods
axt[1]

List methods
unlist(axt)

Combining
c(axt, axt)

axtChain axtChain

Description

Wrapper function of axtChain: chain together psl alignments. If two matching alignments next
to each other are close enough, they are joined into one segment. This function doesn’t work on
Windows platform since Kent utilities only support Unix-based platforms.

Usage
axtChain(psls, chains=sub(”\\.psl$", ".chain"”, psls, ignore.case=TRUE),
assemblyTarget, assemblyQuery,
distance=c("far"”, "medium”, "near"),

removePs1=TRUE, binary="axtChain")

axtChain

Arguments
psls character(n): file names of input ps! files.
chains character(n): file names of output chain files. By default, in the same folder

of input lav files with same names.
assemblyTarget character(1): the file name of target assembly twoBit file.

assemblyQuery character(1): the file name of query assembly twoBit file.

"non

distance It can be "far", "medium" or "close". It decides the score matrix used in lastz

aligner. See ‘?scoringMatrix‘ for more details.

removePsl boolean: When TRUE, the input ps! files will be removed from the conversion.
binary character(1): the name/filename of the binary axtChain to call.
Value

character(n): the file names of output chain files.

Author(s)

Ge Tan

References

http://hgdownload.cse.ucsc.edu/admin/exe/

See Also

lavToPsl

Examples

Not run:
This example doesn't run because it requires two bit files and external
Kent utilities.
psls <- tools::list_files_with_exts(
dir="/Users/gtan/OneDrive/Project/CSC/CNEr/axt"”, exts="psl")
assemblyTarget <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/danRer10.2bit"
assemblyQuery <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/hg38.2bit"
axtChain(psls, assemblyTarget=assemblyTarget,
assemblyQuery=assemblyQuery, distance="far",
removePs1=FALSE, binary="axtChain")

End(Not run)

http://hgdownload.cse.ucsc.edu/admin/exe/

8 binning-utils

axtInfo axtInfo function

Description

Given the path of the axt file, this function retrieves information on the widths of the alignments.

Usage
axtInfo(axtFiles)
Arguments
axtFiles The filenames of axt files.
Value

A vector of integer is returned. It stores the widths of all the alignments.

Author(s)
Ge Tan

See Also

readAxt

Examples

axtFile <- file.path(system.file("extdata"”, package="CNEr"),
"hg38.danRer10.net.axt")
axtInfo <- axtInfo(axtFile)

binning-utils UCSC bin indexing system utility functions

Description

Utility functions for UCSC bin indexing system manipulation

Usage

binFromCoordRange(starts, ends)
binRangesFromCoordRange(start, end)
binRestrictionString(start, end, field="bin")

Arguments
starts, ends A vector of integers. A set of ranges.
start, end A integer vector of length 1. A coordinate range.

field Name of bin column. Default: "bin".

blatCNE 9

Details

The UCSC bin indexing system was initially suggested by Richard Durbin and Lincoln Stein to
speed up the SELECT of a SQL query for the rows overlapping with certain genome coordinate.
The system first used in UCSC genome browser is described by Kent et. al. (2002).

Value
For binFromCoordRange, it returns the bin number that should be assigned to a feature spanning
the given range. Usually it is used when creating a database for the features.

For binRangesFromCoordRange, it returns the set of bin ranges that overlap a given coordinate
range. It is usually used to find out the bins overlapped with a range. For SQL query, it is more
convenient to use binRestrictionString than to use this function directly.

For binRestrictionString, it returns a string to be used in the WHERE section of a SQL SELECT
statement that is to select features overlapping a certain range. * USE THIS WHEN QUERYING

A DB *
Author(s)
Ge Tan

References

Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., & Haus-
sler, A. D. (2002). The Human Genome Browser at UCSC. Genome Research, 12(6), 996-1006.
doi:10.1101/gr.229102

http://genomewiki.ucsc.edu/index.php/Bin_indexing_system

Examples

binFromCoordRange(starts=c(10003, 1000000), ends=c(10004, 1100000))
binRangesFromCoordRange(start=10000, end=2000000)
binRestrictionString(start=10000, end=2000000, field="bin")

blatCNE Wrapper function of blat for CNE object

Description
This wrapper function blat the CNEs against the reference genome. Note that blat must be installed
on your system.

Usage

blatCNE(cne, blatOptions=NULL, cutIdentity=90)

Arguments

cne cne object after cneMerge step.

blatOptions character(1): the blat options. When it is NULL, the options will be chosen
based on the window size for scanning CNEs.

cutIdentity integer(1): the minimum sequence identity (in percent) for a match in blat.
By default, it is 90.

http://genomewiki.ucsc.edu/index.php/Bin_indexing_system

10 ceScan-methods

Details

When winSize > 45, the blat option is "-tileSize=11 -minScore=30 -repMatch=1024".
When 35 < winSize <= 45, the blat option is "-tileSize=10 -minScore=28 -repMatch=4096".
When the winSize <= 35, the blat option is "-tileSize=9 -minScore=24 -repMatch=16384".

Value

A CNE object with a final set of CNEs.

Author(s)
Ge Tan

Examples

Not run:
data(CNEDanRer10QHg38)
data(CNEHg38DanRer10)
cne <- CNE(assemblylFn=file.path(system.file("extdata”,
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit"),
assembly?2Fn=file.path(system.file("extdata"”,
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit"),
window=50L, identity=45L, CNE12=CNEDanRer10Hg38[["45_50"11],
CNE21=CNEHg38DanRer10[["45_50"1], aligner="blat")
cne <- cneMerge(cne)
cne <- blatCNE(cne)

End(Not run)

ceScan-methods ceScan function

Description

This is the main function for conserved noncoding elements (CNEs) identification.

Usage

ceScan(x, tFilter=NULL, gFilter=NULL,
tSizes=NULL, gSizes=NULL, window=50L, identity=50L)

Arguments

X CNE object, or Axt object, or character(n) object of Axt filenames.
tFilter, gFilter

GRanges object or NULL.: regions to filter out for target and query assembly.

tSizes, qSizes Seqginfoobjector integer(n) or NULL: it contains the segnames and seqlengths
for target and query genome. When it’s NULL, this ‘seqinfo’ must exist in ‘x’.

window integer(n): the window size of scanning CNEs. By default, it is SOL.

identity integer(n): the minimal identity score over the scanning window. By default,
itis S0L.

ceScan-methods 11

Details

ceScan scan the axts alignments and identify the CNEs. ceScan can accept axts in Axt object and
regions to filter out as GRanges objects, or directly the ‘axt’ files and ‘bed’ files.

The details of the algorithm are described in the vignette.

Value

A list of GRangePairs or CNE object is returned. Each element of the list corresponds to one
user-specified threshold for identifying CNEs.

Author(s)
Ge Tan

Examples

library(BSgenome.Drerio.UCSC.danRer10)

library(BSgenome.Hsapiens.UCSC.hg38)

axtFnHg38DanRer10 <- file.path(system.file("extdata”, package="CNEr"),
"hg38.danRer10.net.axt")

axtHg38DanRer10 <- readAxt(axtFnHg38DanRer10)

axtFnDanRer10QHg38 <- file.path(system.file("extdata”, package="CNEr"),
"danRer10.hg38.net.axt")

axtDanRer10Hg38 <- readAxt(axtFnDanRer10Hg38)

bedHg38Fn <- file.path(system.file("extdata”, package="CNEr"),

"filter_regions.hg38.bed")
bedHg38 <- readBed(bedHg38Fn)
bedDanRer10Fn <- file.path(system.file("extdata”, package="CNEr"),
"filter_regions.danRer1@.bed")

bedDanRer10 <- readBed(bedDanRer10Fn)

qSizesHg38 <- seqinfo(BSgenome.Hsapiens.UCSC.hg38)

gSizesDanRer1@ <- seqginfo(BSgenome.Drerio.UCSC.danRer10)

Axt object

windows <- c(50L, 50L, 50L)

identities <- c(45L, 48L, 49L)

CNEHg38DanRer10@ <- ceScan(x=axtHg38DanRer10, tFilter=bedHg38,
gFilter=bedDanRer19,
tSizes=gSizesHg38, gSizes=gSizesDanRer10,
window=windows, identity=identities)

CNEDanRer10Hg38 <- ceScan(x=axtDanRer10Hg38, tFilter=bedDanRer10,
gFilter=bedHg38,
tSizes=gSizesDanRer10, gSizes=qSizesHg38,
window=windows, identity=identities)

CNE object
cneDanRer10@Hg38 <- CNE(
assemblyl1Fn=file.path(system.file("extdata",
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit"),
assembly2Fn=file.path(system.file("extdata",
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit"),
axt12Fn=axtFnDanRer10Hg38, axt21Fn=axtFnHg38DanRer10,
cutoffs1=8L, cutoffs2=4L)
Here danRer1@Filter is tFilter since danRer10 is assembly1

12 chainMergeSort

cneListDanRer10Hg38 <- ceScan(x=cneDanRer10Hg38, tFilter=bedDanRer10,
gFilter=bedHg38,
window=windows, identity=identities)

chainMergeSort chainMergeSort

Description

Wrapper function of chainMergeSort: Combines sorted files into a larger sorted file. This function
doesn’t work on Windows platform since Kent utilities only support Linux and Unix platforms.

Usage
chainMergeSort(chains, assemblyTarget, assemblyQuery,
allChain=paste@(sub("\\.2bit$", "", basename(assemblyTarget),
ignore.case=TRUE), ".",
sub("\\.2bit$", "", basename(assemblyQuery),
ignore.case=TRUE), ".all.chain"),

removeChains=TRUE, binary="chainMergeSort")

Arguments

chains character(n): file names of input chains files.
assemblyTarget character(l): the file name of target assembly rwoBit file.
assemblyQuery character(1): the file name of query assembly rwoBit file.
allChain character(1): file names of merged allChain file.

removeChains boolean: When TRUE, the input chains files will be removed after the conver-
sion.

binary character(1): the name/filename of the binary chainMergeSort to call.

Details

This allChain file is what we get from UCSC download, e.g., hgl9.danRer7.all.chain.gz.

Value

character(1): the file names of merged allChain file.

Author(s)
Ge Tan

References

http://hgdownload.cse.ucsc.edu/admin/exe/

See Also

axtChain

http://hgdownload.cse.ucsc.edu/admin/exe/

chainNetSyntenic 13

Examples

Not run:

This example doesn't run because it requires two bit files and external

Kent utilities.
chains <- tools::list_files_with_exts(

dir="/Users/gtan/OneDrive/Project/CSC/CNEr/axt"”, exts="chain")
assemblyTarget <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/danRer10.2bit"
assemblyQuery <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/hg38.2bit"
chainMergeSort(chains, assemblyTarget, assemblyQuery,
allChain=file.path("/Users/gtan/OneDrive/Project/CSC/CNEr/axt"”,

paste@(sub("\\.2bit$", "", basename(assemblyTarget),
ignore.case=TRUE), ".",
sub("\\.2bit$", "", basename(assemblyQuery),

ignore.case=TRUE), ".all.chain")),
removeChains=FALSE, binary="chainMergeSort")

End(Not run)

chainNetSyntenic chainNetSyntenic

Description

Wrapper function of chainNetSyntenic: Makes alignment nets out of chains and adds synteny info
to net. This function doesn’t work on Windows platform since Kent utilities only support Linux and
Unix platforms.

Usage

chainNetSyntenic(allPreChain, assemblyTarget, assemblyQuery,
netSyntenicFile=paste@(sub("\\.2bit$", "",
basename (assemblyTarget),
ignore.case = TRUE), ".",
sub(”"\\.2bits$", "",
basename (assemblyQuery),
ignore.case = TRUE),
".noClass.net"”),
binaryChainNet="chainNet"”, binaryNetSyntenic="netSyntenic")

Arguments

allPreChain character(1): file names of input allPreChain file.
assemblyTarget character(1): the file name of target assembly twoBit file.
assemblyQuery character(1): the file name of query assembly twoBit file.
netSyntenicFile

character(1): file names of output netSyntenicFile file.
binaryChainNet character(1): the name/filename of the binary chainNet to call.

binaryNetSyntenic
character(1): the name/filename of the binary netSyntenic to call.

14 chainPreNet

Details

Add classification information using the database tables: actually this step is not necessary in this
pipeline according to http://blog.gmane.org/gmane.science.biology.ucscgenome.general/month=20130301.
The class information will only be used for Genome Browser. Since it needs some specific modi-
fication of the table names for certain species, we skip this step now. If this step is done, then the
generated class.net is the gzipped net file that you see in UCSC Downloads area.

Value

character(1): the file names of generated net file.

Author(s)
Ge Tan

References

http://hgdownload.cse.ucsc.edu/admin/exe/

See Also

chainPreNet

Examples

Not run:
This example doesn't run because it requires two bit files and external
Kent utilities.
allPreChain <- file.path("/Users/gtan/OneDrive/Project/CSC/CNEr/axt",
"danRer10.hg38.all.pre.chain")
assemblyTarget <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/danRer10.2bit"
assemblyQuery <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/hg38.2bit"
chainNetSyntenic(allPreChain, assemblyTarget, assemblyQuery,
netSyntenicFile=file.path(
"/Users/gtan/OneDrive/Project/CSC/CNEr/axt"”,
paste@(sub("\\.2bit$", "",
basename (assemblyTarget),
ignore.case = TRUE), ".",
sub("\\.2bit$", "",
basename (assemblyQuery),
ignore.case = TRUE),
".noClass.net")),
binaryChainNet="chainNet"”, binaryNetSyntenic="netSyntenic")

End(Not run)

chainPreNet chainPreNet

Description

Wrapper function of chainPreNet: Removes chains that don’t have a chance of being netted. This
function doesn’t work on Windows platform since Kent utilities only support Linux and Unix plat-
forms.

http://hgdownload.cse.ucsc.edu/admin/exe/

chainPreNet 15

Usage
chainPreNet(allChain, assemblyTarget, assemblyQuery,
allPreChain=paste@(sub(”\\.2bit$", "", basename(assemblyTarget),
ignore.case = TRUE), ".",
sub("\\.2bit$", "", basename(assemblyQuery),
ignore.case = TRUE), ".all.pre.chain"),

removeAllChain=TRUE, binary="chainPreNet")

Arguments

allChain character(1): file names of input allChain file.
assemblyTarget character(l): the file name of target assembly rwoBit file.
assemblyQuery character(1): the file name of query assembly twoBit file.
allPreChain character(1): file names of merged allPreChain file.

removeAllChain boolean: When TRUE, the input allChain file will be removed after the conver-
sion.

binary character(1): the name/filename of the binary chainPreNet to call.

Value

character(1): the file names of merged allPreChain file.

Author(s)
Ge Tan

References

http://hgdownload.cse.ucsc.edu/admin/exe/

See Also

chainMergeSort

Examples

Not run:
This example doesn't run because it requires two bit files and external
Kent utilities.
allChain <- file.path("/Users/gtan/OneDrive/Project/CSC/CNEr/axt",
"danRer1@.hg38.all.chain")
assemblyTarget <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/danRer10.2bit"
assemblyQuery <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/hg38.2bit"
chainPreNet(allChain, assemblyTarget, assemblyQuery,
allPreChain=file.path(
"/Users/gtan/OneDrive/Project/CSC/CNEr/axt"”,
paste@(sub("\\.2bit$", "",
basename(assemblyTarget),
ignore.case = TRUE), ".",
sub("\\.2bit$", "",
basename (assemblyQuery),
ignore.case = TRUE),
".all.pre.chain")),

http://hgdownload.cse.ucsc.edu/admin/exe/

16 CNE-class

removeAllChain=FALSE, binary="chainPreNet")

End(Not run)

CNE-class Class "CNE"

Description

CNE class contains all the meta-data of CNEs, including the pair of assemblies, the thresholds, the
intermediate and final CNE sets.

Usage

Constructors:

CNE(assemblyl1Fn=character(1), assembly2Fn=character(1),
axt12Fn=character(), axt21Fn=character(),
window=50L, identity=50L,

CNE12=GRangePairs(), CNE21=GRangePairs(),
CNEMerged=GRangePairs(), CNEFinal=GRangePairs(),
aligner="blat", cutoffsl=4L, cutoffs2=4L)

#i## Accessor-like methods:
S4 method for signature 'CNE'

thresholds(x)

S4 method for signature 'CNE'

CNE12(x)

S4 method for signature 'CNE'

CNE21(x)

S4 method for signature 'CNE'

CNEMerged(x)

S4 method for signature 'CNE'

CNEFinal(x)

... and more (see Methods)
Arguments

assembly1Fn, assembly2Fn
Object of class "character"”: The twoBit filenames of assemblyl, assembly2
axt12Fn, axt21Fn
Object of class "character”: The Axt filenames of assemblyl to assembly2,
assembly?2 to assemblyl

window Object of class "integer"”: The window size for scanning CNEs. By default, it
is 50.

identity Object of class "integer”: The identity over the window size for scanning
CNEs. By default, it is 50.

CNE12 Object of class "GRangePairs”: The preliminary CNEs from axt file with as-

sembly! as reference.

CNE21 Object of class "GRangePairs”: The preliminary CNEs from axt file with as-
sembly? as reference.

CNE-class

CNEMerged
CNEFinal

aligner

17

Object of class "GRangePairs"”: The CNEs after merging CNE1 and CNE2.

Object of class "GRangePairs": The CNEs after being realigned back to refer-
ence genome, with blat in current implementation.

Object of class "character”: The method to realign CNEs back to the reference
genome.

cutoffsl, cutoffs2

Methods

Object of class "integer"”: The CNEs with more than the cutoff hits on the
reference genome are removed.

Object of class "CNE": A "CNE" object.

CNEI12 signature(x = "CNE"): Get the CNEI1 results.

CNE21 signature(x = "CNE"): Get the CNE2 results.

CNEMerged signature(x = "CNE"): Get the merged CNE results.

CNEFinal signature(x ="CNE"): Get the final CNE results.

thresholds signature(x = "CNE"): Get the thresholds used for scanning CNEs.

Author(s)
Ge Tan

Examples

library(GenomicRanges)

Constructor

CNE12 <- GRangePairs(first=GRanges(segnames=c("chr13"”, "chr4", "chr4"),

ranges=IRanges(start=c(71727138,150679343,
146653164),
end=c(71727224, 150679400,
146653221)),
strand="+"),
second=GRanges(seqnames=c("chr1"),
ranges=IRanges(start=c(29854162, 23432387,
35711077),
end=c(29854248, 23432444,
35711134)),
strand="+"

)

CNE21 <- GRangePairs(first=GRanges(seqnames=c("chri1”),

ranges=IRanges(start=c(29854162, 23432387,

35711077),
end=c (29854248, 23432444,
35711134)),
strand="+"),
second=GRanges(seqgnames=c("chr13"”, "chr4"”, "chr4"),
ranges=IRanges(start=c(71727138,150679343,
146653164),
end=c (71727224, 150679400,
146653221)),
strand="+"

)

cne <- CNE(assemblylFn=file.path(system.file("extdata”,

18 CNEDensity-methods

package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit"),
assembly2Fn=file.path(system.file("extdata"”,
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit"),
window=50L, identity=50L,
CNE12=CNE12, CNE21=CNE21, CNEMerged=CNE12, CNEFinal=CNE12,
aligner="blat", cutoffsi=4L, cutoffs2=4L)

Accessor
CNE12(cne)
CNE21(cne)
thresholds(cne)
CNEMerged(cne)
CNEFinal(cne)

CNEDanRer1@Hg38 CNEHg38DanRer10 and CNEDanRer10Hg38 dataset

Description

These two datasets are the direct output from ceScan.

Usage

data(CNEHg38DanRer10)

Examples

data(CNEHg38DanRer10)

CNEDensity-methods CNEDensity function

Description

This function queries the database and generates the CNEs’ density values.

Usage

CNEDensity(dbName, tableName, chr, start, end,
whichAssembly=c("first”, "second"),
windowSize=300, minLength=NULL)

CNEDensity-methods

Arguments

dbName
tableName

chr
start, end

whichAssembly

windowSize

minLength

Value

19

character(1): the path of the local SQLite database.

character(1): the name of table for this CNE data table. It can be missing
when assembly1, assembly2 and threshold are provided.

character(1): the chromosome to query.
integer(1): the start and end coordinate to fetch the CNEs.

character(1): the genome to fetch is in the ‘first’ column or ‘second’ column
of the table.

integer(1): the window size in kb that is used to smooth the CNEs.
integer(1): the minimal length of CNEs to fetch.

A GRanges object with density values is returned.

Methods

signature(tableName = "character”, assemblyl = "character”, assembly2 = "missing”, threshold = "missil

signature(tableName = "missing”, assembly1 = "character”, assembly2 = "character”, threshold = "chara

Author(s)
Ge Tan

Examples

dbName <- file.path(system.file("extdata"”, package="CNEr"),

"danRer10CNE.sqlite")

genome <- "danRer10"

chr <- "chr6”

start <- 24000000L

end <- 27000000L

windowSize <- 200L

minLength <- 50L

cneDanRer10Hg38_45_50 <-

CNEDensity(dbName=dbName,
tableName="danRer10_hg38_45_50",
whichAssembly="first", chr=chr, start=start,
end=end, windowSize=windowSize,
minLength=minLength)

cneDanRer10Hg38_49_50 <-

CNEDensity(dbName=dbName,
tableName="danRer10_hg38_49_50",
whichAssembly="first", chr=chr, start=start,
end=end, windowSize=windowSize,
minLength=minLength)

20 cneMerge-methods

cneFinallListDanRer10Hg38
cneFinalListDanRer10Hg38 dataset

Description

cneFinalListDanRer10Hg38 dataset contains the CNE between danRer10 and hg38 around chr6:24,000,000..27,000,000.

Usage

data("cneFinalListDanRer10@Hg38")

Examples

data(cneFinallListDanRer10Hg38)

cneMerge-methods CNE merge function

Description

Removes the CNEs which overlap on both genomes.

Usage

cneMerge(cnel2, cne2l)

Arguments
cnel2 A object of CNE or GRangePairs.
cne21 A object of GRangePairs object. When cnel2 is a CNE object, cne21 can be
missing.
Value

A GRangePairs of CNEs or a CNE object is returned. In this table, the order of columns is consistent
with cnel. For instance, if cnel has the first three columns for zebrafish and next three columns for
human, in the merged table, the first three columns are still the coordinates for zebrafish while the
next three columns are the coordinates for human.

Author(s)

Ge Tan

fetchChromSizes 21

Examples

library(GenomicRanges)
firstGRange <- GRanges(segnames=c("chr1”, "chr1”, "chr2", "chr2", "chr5"),
ranges=IRanges(start=c(1, 20, 2, 3, 1),
end=c(10, 25, 10, 10, 10)),
strand="+"
lastGRange <- GRanges(segnames=c("chr15", "chr10"”, "chr1@", "chri1e"”, "chri15"),
ranges=IRanges(start=c(1, 25, 50, 51, 5),
end=c(8, 40, 55, 60, 10)),
strand="+"
cnel2 <- GRangePairs(firstGRange[1:3], lastGRange[1:3])
cne21 <- GRangePairs(lastGRange[4:5], firstGRange[4:5])

GRangePairs, GRangePairs
cneMerge(cnel2, cne2l)

CNE, missing
cne <- CNE(assemblylFn=file.path(system.file("extdata”,
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit"),
assembly2Fn=file.path(system.file("extdata",
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit"),
window=50L, identity=50L,
CNE12=cnel12, CNE21=cne21, aligner="blat")
cneMerge(cne)

fetchChromSizes fetchChromSizes function.

Description

This function tries to automate the fetch of chromosome sizes for assemblies from UCSC.

Usage
fetchChromSizes(assembly)

Arguments

assembly A character object: the canonical name of assembly, i.e., ‘hg19’ for UCSC.

Details

This function downloads ‘chromlInfo.txt.gz’ from UCSC golden path for UCSC assemblies.

Value

A object of Seqinfo is returned.

Note

Currently, the assemblies from UCSC are supported.

22 fixCoordinates

Author(s)
Ge Tan

Examples

fetchChromSizes("hg19")
fetchChromSizes("mm10")

fixCoordinates Fix the coordinates in Axt object

Description

In ‘axt’ file and Axt object, the coordinates of negative query alignments are relative to the reverse-
complemented coordinates of its chromosome. This is different from the convention in Bioconduc-
tor. This function fixes the coordinates which are always relative to the positive strand.

Usage
fixCoordinates(x)
Arguments
X Axt object.
Details

@ 9

In Axt, the ‘strand’ is for the aligning organism. If the strand value is “-”, the values of the aligning
organism’s start and end fields are relative to the reverse-complemented coordinates of its chromo-
some.

Value

A Axt object.

Author(s)
Ge Tan

Examples

axtFnDanRer10QHg38 <- file.path(system.file("extdata"”, package="CNEr"),
"danRer10.hg38.net.axt")
gAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit")
tAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit")
axtDanRer10Hg38 <- readAxt(axtFnDanRer10Hg38, tAssemblyFn=tAssemblyFn,
gAssemblyFn=gAssemblyFn)
Fix the coordinates

GRangePairs-class 23

fixCoordinates(axtDanRer10Hg38)

Restore it
fixCoordinates(fixCoordinates(axtDanRer10Hg38))

GRangePairs-class GRangePFairs objects

Description

The GRangePairs class is a container for a pair of GRanges objects that have the same lengths.

Details

A GRangePairs object is a list-like object where each element describes a pair of genomic range.
They do not necessarily have the same seqinfo, i.e., the coordinates from the same assembly.

Constructor

GRangePairs(first=GRanges(), second=GRanges(), ..., names=NULL, hits=NULL): GRange-
Pairs constructor.

Accessors

In the code snippets below, x is a GRangePairs object.

length(x): Return the number of granges pairs in Xx.
names(x), names(x) <- value: Get or set the names on x.

first(x), last(x), second(x): Get the ‘first’ or ‘last’/‘second’ GRange for each grange pair in
x. The result is a GRanges object of the same length as x.

first(x)<-, second(x)<-: Set the ‘first’ or ‘second’ GRange for each grange pair in x. The
result is a GRanges object of the same length as x.

seqnames(x): Get the seqname of first GRanges and last GRanges and return in a DataFrame
object.

strand(x): Get the strand for each grange pair in x.

seginfo(x): Get the information about the underlying sequences.
Vector methods
In the code snippets below, x is a GRangePairs object.

x[1]: Return a new GRangePairs object made of the selected genomic ranges pairs.

List methods

In the code snippets below, x is a GRangePairs object.

unlist(x, use.names=TRUE): Return the GRangePairs object conceptually defined by c(x[[1]],
x[[21], ..., x[[length(x)11). use.names determines whether x names should be passed
to the result or not.

24 GRangePairs-class

Coercion

In the code snippets below, x is a GRangePairs object.

grglist(x, use.mcols=FALSE):
Return a GRangesList object of length 1ength(x) where the i-th element represents the ranges
(with respect to the reference) of the i-th grange pair in x.
Note that this results in the ranges being always ordered consistently with the original "query
template", that is, being in the order defined by walking the "query template" from the begin-
ning to the end.
If use.mcols is TRUE and x has metadata columns on it (accessible with mcols(x)), they’re
propagated to the returned object.

as(x, "GRangesList"): Alternate ways of doing grglist(x, use.mcols=TRUE).

as(x, "GRanges"): Equivalent of unlist(x, use.names=TRUE).

Other methods

In the code snippets below, x is a GRangesList object.

swap(x): Swap the first, last GRanges.
unique(x): Get the unique GRangePairs.

show(x): By default, the show method displays 5 head and 5 tail elements. This can be changed
by setting the global options showHeadLines and showTaillLines. If the object length is less
than (or equal to) the sum of these 2 options plus 1, then the full object is displayed.

Author(s)
Ge Tan

See Also

Axt

Examples

Constructor
library(GenomicRanges)
first <- GRanges(segnames=c("chr1”, "chr1”, "chr2", "chr3"),
ranges=IRanges(start=c(1, 20, 2, 3),
end=c(10, 25, 10, 10)),
strand="+"
last <- GRanges(seqgnames=c("chr1”, "chr1@”, "chri10"”, "chr20"),
ranges=IRanges(start=c(1, 25, 50, 5),
end=c(8, 40, 55, 16)),
strand="+"
namesGRangePairs <- c("a","b","c","d")
grangesPairs1 <- GRangePairs(first, last, names=namesGRangePairs)
grangesPairs2 <- GRangePairs(first, last)

getters and setters
names(grangesPairs1)

names(grangesPairs2) <- namesGRangePairs

first(grangesPairs1)

grangesPairsForDotplot

first(grangesPairs1) <- second(grangesPairs1)

second(grangesPairs1)
second(grangesPairs1) <- first(grangesPairs1)

length(grangesPairs1)
seqgnames(grangesPairs1)
strand(grangesPairs1)
seqinfo(grangesPairs1)

Vector methods
grangesPairs1[1]

List methods
unlist(grangesPairs1)

Coersion
grglist(grangesPairs1)
as(grangesPairs1, "GRangesList")
as(grangesPairs1, "GRanges")
as(grangesPairs1, "DataFrame")
as.data.frame(grangesPairs1)

Combining
c(grangesPairs1, grangesPairs2)

Swap
swap(grangesPairs1)

Unique
unique(c(grangesPairs1, grangesPairs1))

grangesPairsForDotplot
grangesPairsForDotplot

Description

Example of GrangePairs object from the collinear regions of Adineta vaga.

Usage

data("grangesPairsForDotplot")

Details

The collinear regions from “scaffold_1" and “scaffold_5".

Source

Example from own project.

Examples

data(grangesPairsForDotplot)

26 lastal

lastal lastal wrapper

Description

Wrapper function of lastal to do the pairwise whole genome alignment. This function doesn’t
work on Windows platform.

Usage
lastal(db, queryFn,
outputFn=sub("\\. (fa|fasta)$", ".maf",
paste(basename(db), basename(queryFn), sep = ","),
ignore.case = TRUE),
distance=c("far"”, "medium”, "near"), binary="lastal”,

mc.cores=getOption(”"mc.cores”, 2L), echoCommand=FALSE)

Arguments
db character(1): the file name of target assembly’s lastal index.
queryFn character(1): the file name of query assembly fasta file.
outputFn character(1): the file name of the output maf file.
distance It can be "far", "medium" or "near". It decides the score matrix used in lasiz
aligner. See ‘?scoringMatrix‘ for more details.
binary character(1): the name/filename of the binary lastal to call.
mc.cores integer(1): the number of threads to use. By default, getOption("mc.cores”,
2L).
echoCommand boolean(1): When TRUE, only the command to run lastal is returned.
Value

A character(1) vector of ouput maf file names.

Note

lastal aligner must be installed on the machine to use this function.

Author(s)
Ge Tan

References

http://last.cbrc. jp/

See Also

lastz

http://last.cbrc.jp/

lastz 27

Examples

Not run:
assemblyDir <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit"
Build the lastdb index
system2(command="lastdb"”, args=c(”"-c", file.path(assemblyDir, "danRer10"),
file.path(assemblyDir, "danRer10.fa")))

Run lastal aligner

lastal(db=file.path(assemblyDir, "danRer10"),
queryFn=file.path(assemblyDir, "hg38.fa"),
outputFn=file.path(axtDir, "danRer1@.hg38.maf"),
distance="far"”, binary="lastal”, mc.cores=4L)

maf to psl
psls <- file.path(axtDir, "danRer10.hg38.psl")
system2(command="maf-convert”,
args=c("psl”, file.path(axtDir, "danRer1@.hg38.maf"),
">" psls))

End(Not run)

lastz lastz wrapper

Description

Wrapper function of 1astz to do the pairwise whole genome alignment. This function doesn’t work
on Windows platform.

Usage
lastz(assemblyTarget, assemblyQuery, outputDir = ".",
chrsTarget = NULL, chrsQuery = NULL,
distance = c("far”, "medium”, "near"), binary = "lastz",

mc.cores = getOption("mc.cores”, 2L), echoCommand = FALSE)

Arguments

assemblyTarget character(1): the file name of target assembly twoBit file.

assemblyQuery character(1): the file name of query assembly twoBit file.

outputDir character(1): the folder to put the generated lav files.

chrsTarget NULL or character(n): when it’s NULL, all the available chromosomes from
the target assembly will be aligned.

chrsQuery NULL or character(n): when it’s NULL, all the available chromosomes from
the query assembly will be aligned.

distance It can be "far", "medium" or "near". It decides the score matrix used in lastz
aligner. See ‘?scoringMatrix‘ for more details.

binary character(1): the name/filename of the binary lastz to call.

mc.cores integer(1): the number of threads to use. By default, getOption("mc.cores”,
2L).

echoCommand boolean(1): When TRUE, only the command to run lastz is returned.

28 lavToPsl

Value

A character(n) vector of ouput lav file names.

Note

lastz aligner must be installed on the machine to use this function.

Author(s)
Ge Tan

References

http://www.bx.psu.edu/~rsharris/lastz/

See Also
lavToPsl

Examples

Not run:
This example doesn't run because it requires two bit files and external
Kent utilities.
assemblyTarget <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/danRer10.2bit"
assemblyQuery <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/hg38.2bit"
lavs <- lastz(assemblyTarget, assemblyQuery,
outputDir="/Users/gtan/OneDrive/Project/CSC/CNEr/axt",
chrsTarget=c("chr1”, "chr2", "chr3"),
chrsQuery=c(”"chr1”, "chr2", "chr3"),
distance="far"”, mc.cores=4)

End(Not run)

lavToPsl lavToPsl

Description

Wrapper function of lavToPsl: Convert blastz lav to psl format. This function doesn’t work on
Windows platform since Kent utilities only support Linux and Unix platforms.

Usage
lavToPsl(lavs, psls=sub(”\\.lav$", ".psl"”, lavs, ignore.case = TRUE),
removeLav=TRUE, binary="lavToPsl")

Arguments

lavs character(n): file names of input lav files.

psls codecharacter(n): file names of output ps/ files. By default, in the same folder

of input lav files with same names.
removelav boolean: When TRUE, the input lavs files will be removed after the conversion.

binary character(1): the name/filename of the binary 1lavToPs1 to call.

http://www.bx.psu.edu/~rsharris/lastz/

makeAncoraFiles

Value

character(n): the file names of output psl files.

Author(s)
Ge Tan

References

http://hgdownload.cse.ucsc.edu/admin/exe/

See Also

lastz

Examples

Not run:
This example doesn't run because it requires lav files from previous steps
and external Kent utilities.
lavs <- tools::list_files_with_exts(
dir="/Users/gtan/OneDrive/Project/CSC/CNEr/axt"”, exts="lav")
lavToPsl(lavs, removeLav=FALSE, binary="lavToPsl")

End(Not run)

29

makeAncoraFiles makeAncoraFiles

Description

Make ancora format files from GRangePairs of CNE

Usage

n on

makeAncoraFiles(cne, outputDir = ".",
genomeFirst = "first"”, genomeSecond = "second”,
threshold = "50_50")

Arguments

cne GRangePairs object of CNE.

outputDir character(1): the output directory of ‘Bed” and ‘BigWig’ files.
genomeFirst, genomeSecond
character(1l): the genome name of the first and second species.

threshold character(1): the threshold used to identify the CNEs in the format of "50_50"

etc

Value

The filenames of output.

http://hgdownload.cse.ucsc.edu/admin/exe/

30 makeAxtTracks

Note

This function is mainly for internal use in Lenhard group.

Author(s)
Ge Tan

See Also

readAncora

Examples

data(cneFinallListDanRer10Hg38)

cne <- CNEFinal(cneFinallListDanRer10Hg38[["45_50"1])

makeAncoraFiles(cne, genomeFirst = "danRer10”, genomeSecond = "hg38",
threshold = "45_50")

makeAxtTracks makeAxtTracks

Description

Make the bed tracks for the ‘Axt’” alignment.

Usage
makeAxtTracks(x)
Arguments
X A Axt object.
Details

The coordinates of query ‘Axt’ alignment are fixed to be relative to positive strand before output
into ‘bed’ file.

Value

A list of GRanges for target and query alignments. The two output ‘bed’ files are “targetAxt.bed”
and “queryAxt.bed”.

Author(s)
Ge Tan

See Also

fixCoordinates

makeCNEDensity 31

Examples

tAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit")
gAssemblyFn <- file.path(system.file("extdata",
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit")
axtFn <- file.path(system.file("extdata"”, package="CNEr"),
"danRer10.hg38.net.axt")
axt <- readAxt(axtFn, tAssemblyFn, gAssemblyFn)
makeAxtTracks(axt)

makeCNEDensity Make ‘Bed’, ‘bedGraph’ and ‘BigWig’ files

Description

Make ‘Bed’, ‘bedGraph’, ‘BigWig’ files from GRangePairs for display in other Genome Browser.

Usage

n on

makeCNEDensity(x, outputDir = ".",
genomeFirst = "first”, genomeSecond = "second”,
threshold = "50_50",
windowSizeFirst = 300L, windowSizeSecond = 300L)

Arguments
X GRangePairs object of CNEs.
outputDir character(1): the output directory of ‘Bed’, ‘bedGraph’ and ‘BigWig’ files.

genomeFirst, genomeSecond
character(1l): the genome name of the first and second species.

threshold character(1): the threshold used to identify the CNEs in format of "50_50".
windowSizeFirst, windowSizeSecond
integer(1): the smoothing window size for generating the CNE density in kb.
Details
The CNE density is defined as the percentage of regions covered by CNEs within the smoothing
window.
Value

The filenames of output ‘Bed’, ‘bedGraph’ and ‘BigWig’ files.

Note

This function is mainly for internal use in Lenhard group.

Author(s)
Ge Tan

32 makeGRBs

See Also

readAncora

Examples

Not run:
dbName <- file.path(system.file("extdata”, package="CNEr"),
"danRer10CNE.sqlite")
gAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit")
tAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit")
cneGRangePairs <- readCNERangesFromSQLite(dbName=dbName,
tableName="danRer10_hg38_45_50",
tAssemblyFn=tAssemblyFn,
gAssemblyFn=gAssemblyFn)
makeCNEDensity(cneGRangePairs[1:1000])

End(Not run)

makeGRBs makeGRBs

Description

Make Genomic Regulatory Blocks (GRBs) boundaries prediction from a set of CNEs.

Usage
makeGRBs(x, winSize=NULL, genes=NULL, ratio=1,
background=c("chromosome”, "genome"), minCNEs=1L)
Arguments
X GRangesList object of a set of CNEs to use.
winSize integer: the smoothing window size for CNE densities in kb. This value de-
pends on the genome size of the reference genome. A larger genome requires
bigger window size. For instance, 300kb is the appropriate window size for the
human genome. By default, it is determined internally based on the genome
size.
genes NULL or GRanges object: the protein-coding genes ranges.
ratio numeric(1l): the threshold to control the stringency of the GRBs. Higher value,
shorter and fewer GRBs, and vice versa.
background character(1): can be "chromosome" or "genome". When using slice for

the CNE density, the background is calculated on a per-chromosome or whole-
genome basis.

minCNEs integer(1): the minimal number of CNEs that a GRB needs to have.

matchDistribution 33

Details

First we calculate the CNE densities from the CNEs. Then we segment the regions according to the
values of CNE densities. The regions with CNE densities above the expected CNE densities * ratio
are considered as putative GRBs. Putative GRBs that do not encompass any gene are filtered out.
Finally, the GRBs that have fewer than minCNEs number of CNEs will be filtered out.

Value

A GRanges object of GRB coordinates is returned. The numbers of CNEs and the coordinates of
CNEs within each GRB are returned as a metadata column.

Author(s)

Ge Tan

Examples

library(TxDb.Drerio.UCSC.danRer10.refGene)
refGenesDanRer10 <- genes(TxDb.Drerio.UCSC.danRer10.refGene)
ancoraCNEsFns <- file.path(system.file("extdata”, package="CNEr"),
c("cne2wBf_cypCaril_danRer10_100_100",
"cne2wBf_cteldel_danRer10_100_100",
"cne2wBf _AstMex102_danRer10_48_50"))
cnelList <- do.call(GRangeslList,
lapply(ancoraCNEsFns, readAncora, assembly="danRer10"))
names(cneList) <- c(”"Common carp”, "Grass carp”, "Blind cave fish")
seglengths(cneList) <- seqlengths(TxDb.Drerio.UCSC.danRer1@.refGene)[
names(seqglengths(cnelList))]
makeGRBs(cneList, winSize=200, genes=refGenesDanRer10, ratio=1.2,
background="genome")
makeGRBs (cneList, winSize=200, genes=refGenesDanRer1@, ratio=1.2,
background="chromosome"”, minCNEs=3L)

matchDistribution Plot the distribution of matched alignments.

Description

Given a Axt alignment, plot a heatmap showing the percentage of each matched alignments.

Usage

matchDistribution(x, size=10000, title=NULL)

Arguments
X Axt object.
size integer(1): the number of alignments to use. By default, it is 10000.

title character(1): the customised title for the plot.

34 N50

Details

By default, if there are more than 10,000 alignments, 10,000 alignments will be sampled and cal-
culated for the distribution for speed purposes.

Only the four bases (A, C, G, T), gap (-) and any (N) are displayed. Other ambiguous bases are not
considered.
Value

A ggplot2 object will be returned.

Author(s)
Ge Tan

Examples

axtFile <- file.path(system.file("extdata"”, package="CNEr"),
"hg38.danRer1@.net.axt")

axt <- readAxt(axtFile)

matchDistribution(axt)

N50 Assembly statistics.

Description

Calculate the N50, N90 values for a fasta or 2bit file.

Usage
N50(fn)
N9@(fn)

Arguments

fn character(1): The path of a fasta or 2bit file.

Details

This function calculates the N50, N90 values for an assembly. The N50 value is calculated by first

ordering every contig/scaffold by length from longest to shortest. Next, starting from the longest

contig/scaffold, the lengths of each contig are summed, until this running sum equals one-half of

the total length of all contigs/scaffolds in the assembly. Then the length of shortest contig/scaffold

in this list is the N50 value. Similar procedure is used for N90 but including 90% of the assembly.
Value

An integer value of N50 or N90 value.

Author(s)
Ge Tan

netToAxt 35

Examples

twoBitFn <- file.path(system.file("extdata"”,
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit")
N50 (twoBitFn)

netToAxt netToAxt

Description

Wrapper function of netToAxt and axtSort: convert net (and chain) to axt, and sort axt files. This
function doesn’t work on the Windows platform since Kent utilities only support Linux and Unix

platforms.
Usage
netToAxt(in.net, in.chain, assemblyTarget, assemblyQuery,
axtFile=paste@(sub("\\.2bit$", "", basename(assemblyTarget),
ignore.case = TRUE), ".",
sub("\\.2bit$", "", basename(assemblyQuery),
ignore.case = TRUE), ".net.axt"),

removeFiles=FALSE,
binaryNetToAxt="netToAxt", binaryAxtSort="axtSort")

Arguments
in.net character(1): file names of input net file.
in.chain character(1): file names of input chain file.

assemblyTarget character(1): the file name of target assembly twoBit file.
assemblyQuery character(l): the file name of query assembly twoBit file.

axtFile character(1): file names of output axt file.
removeFiles boolean: When TRUE, the input net and chain files will be removed after the
conversion.

binaryNetToAxt character(1): the name/filename of the binary netToAxt to call.

binaryAxtSort character(l): the name/filename of the binary axtSort to call.

Value

character(1): the file name of output axt file.

Author(s)
Ge Tan

References

http://hgdownload.cse.ucsc.edu/admin/exe/

http://hgdownload.cse.ucsc.edu/admin/exe/

36 orgKEGGIds2EntrezIDs

See Also

chainNetSyntenic

Examples

Not run:
This example doesn't run because it requires two bit files and external
Kent utilities.
in.net <- file.path("/Users/gtan/OneDrive/Project/CSC/CNEr/axt",
"danRer1@.hg38.noClass.net")
in.chain <- file.path("/Users/gtan/OneDrive/Project/CSC/CNEr/axt",
"danRer10.hg38.all.pre.chain")
assemblyTarget <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/danRer10.2bit"
assemblyQuery <- "/Users/gtan/OneDrive/Project/CSC/CNEr/2bit/hg38.2bit"
netToAxt(in.net, in.chain, assemblyTarget, assemblyQuery,
axtFile=file.path("”/Users/gtan/OneDrive/Project/CSC/CNEr/axt",
paste@(sub("\\.2bit$", "",
basename(assemblyTarget),
ignore.case = TRUE), ".",
sub(”"\\.2bits$", "",
basename (assemblyQuery),
ignore.case = TRUE),
".net.axt")),
removeFiles=FALSE,
binaryNetToAxt="netToAxt", binaryAxtSort="axtSort")

End(Not run)

orgKEGGIds2EntrezIDs Fetch mapping from KEGG IDs to Entrez IDs

Description

Given the desired organism name, fetch the mapping between KEGG IDs and Entrez gene IDs.

Usage

orgKEGGIds2EntrezIDs(organism="Homo sapiens")

Arguments

organism character(1l): the name of organism to query. It has to be available at http://rest.kegg.jp/list/organism

Value

A list of Entrez gene IDs with KEGG IDs as names.

Author(s)

Ge Tan

plotCNEDistribution 37

Examples

Not run:
orgKEGGIds2EntrezIDs(organism="Homo sapiens”)

End(Not run)

plotCNEDistribution Plot sequential CNE number against CNE genomic location

Description

Plot the CNE genomic location distribution. It gives an overview of the tendency of CNEs to form
clusters.

Usage

plotCNEDistribution(x, chrs = NULL, chrScale = c("Mb", "Kb"))

Arguments
X GRanges object: the CNE locations.
chrs character(n): the chromosomes to show. By default, the largest 6 chromo-
somes/scaffolds are selected.
chrScale character(1): the chromosome/scaffold scale of ‘Mb’ or ‘Kb’ in the plot.
Details

In the plot, x axis is the genomic location along each chromosome/scaffold. The y axis is the
sequential CNE number. A typical CNE cluster can be spotted by the dramatic increase in y axis
and small increase in x axis.

Value

A ggplot object.

Author(s)

Ge Tan

See Also

plotCNEWidth

38 plotCNEWidth

Examples

dbName <- file.path(system.file("extdata"”, package="CNEr"),
"danRer10CNE.sqlite")
gAssemblyFn <- file.path(system.file("extdata",
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit")
tAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit")
cneGRangePairs <- readCNERangesFromSQLite(dbName=dbName,
tableName="danRer10_hg38_45_50",
tAssemblyFn=tAssemblyFn,
gAssemblyFn=gAssemblyFn)
plotCNEDistribution(first(cneGRangePairs))

plotCNEWidth Plot the CNE widths distribution

Description

CNE widths can follow heavy tailed distribution that are associated with power-laws. This func-
tion plots the reverse cumulative density distribution of CNE widths, and fits a discrete power-law
distribution. Goodness of fit can also be evaluated.

Usage
plotCNEWidth(x, ...)
Arguments
X GRangePairs object: a pair of CNEs.
Additional points passed to plot function.
Details

The power-law distribution is associated with heavy tailed distribution.

A reverse cumulative density distribution plot will be generated with optimal lower bound xmin,
scaling parameteralpha for power-law fit.

Value

An invisible list of fitted model is returned.

Note

The power-law distribution implementation is based on the poweRlaw package.

Author(s)
Ge Tan

psubAxt 39

References

Salerno, W., Havlak, P., and Miller, J. (2006). Scale-invariant structure of strongly conserved se-
quence in genomic intersections and alignments. Proc. Natl. Acad. Sci. U.S.A. 103, 13121-13125.

Examples

dbName <- file.path(system.file("extdata”, package="CNEr"),
"danRer10CNE.sqglite")
cneGRangePairs <- readCNERangesFromSQLite(dbName=dbName,
tableName="danRer10_hg38_45_50")
plotCNEWidth(cneGRangePairs)

psubAxt Parallel subset of Axt alignment

Description

Given two GRanges objects, select the Axt alignments whose the target and query alignments are
both within each pair of ranges.

Usage

psubAxt(x, targetSearch, querySearch)

Arguments

X Axt object.

targetSearch, querySearch
GRanges objects: the ranges to keep for target and query alignments. They must
be of the same length. Strand information is ignored.
Details
The ‘targetSearch’ and ‘querySearch’ have the coordinates relative to the positive strand. For each
pair of the ranges, the alignments that lie within both the target and query range are kept.
Value

A Axt object.

Author(s)

Ge Tan

See Also

psubAxt

40 queryCNEData

Examples

library(GenomicRanges)
tAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit")
gAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit")
axtFn <- file.path(system.file("extdata”, package="CNEr"),
"danRer10.hg38.net.axt")
axt <- readAxt(axtFn, tAssemblyFn, gAssemblyFn)

targetSearch <- GRanges(segnames=c("chr6"),
ranges=IRanges(start=c(24000000, 26900000),
end=c (24060000, 26905000)),
strand="+"
)
querySearch <- GRanges(segnames=c("chr7", "chr2"),
ranges=IRanges(start=c(12577000, 241262700),
end=c (12579000, 241268600)),
strand="+"

)
psubAxt(axt, targetSearch, querySearch)

queryCNEData Query the CNEData package to fetch the CNEs

Description

Query the CNEData package to fetch the CNEs based on target, query species, winSize and identity.

Usage
queryCNEData(dbName, target, query, winSize, identity,
type=c("target”, "all"))
Arguments

dbName The path of SQLite database.

target, query The CNEs between target and query species.
winSize, identity
The thresholds of CNEs to fetch on identity over winSize.

type Which set of CNEs are returned. When it is "all", the CNEs of target always on
the left side of returned data.frame.

Value

A data.frame of CNEs coordinates in chr, start, end.

Author(s)
Ge Tan

read.rmMask.GRanges 41

read.rmMask.GRanges Read a RepeatMasker .out file

Description

Read a RepeatMasker .out file into a GRanges object.

Usage
read.rmMask.GRanges(fn)

Arguments

fn character(1): the filename of a RepeatMasker .out file.

Value
A GRanges object with metadata columns containing the name of the matching interspersed repeat,
the class of the repeat and the Smith-Waterman score of the match.

Author(s)
Ge Tan

References

http://www.repeatmasker.org/webrepeatmaskerhelp.html

Examples

fn <- system.file("extdata”, "ce2chrM.fa.out”, package="IRanges")
read.rmMask.GRanges(fn)

read.rmskFasta Read a soft repeat masked fasta

Description

Read a soft repeat masked fasta file into a GRanges object.

Usage

read.rmskFasta(fn)

Arguments

fn character(1): The filename of the soft repeat masked fasta.

Details

(I I T T T TR

Only the lower case based ("a", "c", "g", "t") are considered in the soft repeat masked fasta.

http://www.repeatmasker.org/webrepeatmaskerhelp.html

42 readAncora

Value

GRanges object with coordinates of repeat masked regions.

Author(s)
Ge Tan

See Also

read.rmMask.GRanges

Examples

fn <- file.path(system.file("extdata”, package="CNEr"),
"rmsk.fa")
read.rmskFasta(fn)

readAncora Read the cne file from Ancora format.

Description

Read the Ancora CNE file into a GRanges or GRangePairs object.

Usage

readAncora(fn, assembly=NULL, tAssemblyFn=NULL, gAssemblyFn=NULL)

Arguments
fn character(1): the path of the Ancora CNE file in the format of "cne2wBf_hg38_mm10_50_50".
assembly character(1): the assembly to fetch. When it is NULL, CNEs on both assem-

blies are returned.
tAssemblyFn, gAssemblyFn

character(1): filename of the ‘twoBit’ or ‘fasta’ file for the target and query
genomes.

Details

The Ancora CNE filename has its own naming style. For example, "cne2wBf_hg38_mm10_50_50"
denotes human coordinates for the first three columns of the file and mouse coordinates from the
forth to the sixth column.

The start coordinate system is O-based.

Value

A GRanges object of the CNE ranges when assembly is specified, or a GRangePairs object when
assembly is NULL.

Note

This function is mainly for internal use in Lenhard group.

readAncoralntoSQLite 43

Author(s)
Ge Tan

Examples

fn <- file.path(system.file("extdata”, package="CNEr"),
"cne2wBf_danRer10_hg38_45_50")

zebrafishCNEs <- readAncora(fn, "danRer10")

humanCNEs <- readAncora(fn, "hg38")

zebrafishHumanCNEs <- readAncora(fn)

readAncoraIntoSQLite Read Ancora legacy CNE format

Description

Read Ancora legacy CNE format into a SQLite database.

Usage

readAncoralntoSQLite(cneFns, dbName, overwrite=FALSE)

Arguments

cneFns character(n): filenames of Ancora CNE files.

dbName character(1): filename of SQLite database.

overwrite boolean(1): whether or not to overwrite the existing table.
Details

The Ancora legacy CNE file has the filename in the format of "cne2wBf_AstMex102_danRer10_48_50".
The first six columns are the coordinates of pairs of CNEs. The start coordinate system is 0-based
and is converted into 1-based when it is imported into the SQLite database.

Value

A character vector of table names.

Note

This function is mainly for internal use in Lenhard group.

Author(s)
Ge Tan

See Also

readAncora

44 readAxt
Examples
ancoraCNEsFns <- file.path(system.file("extdata”, package="CNEr"),
c("cne2wBf_cypCarl_danRer10_100_100",
"cne2wBf_cteldel_danRer10_100_100",
"cne2wBf_AstMex102_danRer10_48_50"))
dbName <- tempfile()
readAncoralntoSQLite(ancoraCNEsFns, dbName, overwrite=FALSE)
readAxt Read ‘Axt’ file
Description

This function reads the ‘Axt’ files into an Axt object.

Usage

readAxt(axtFiles, tAssemblyFn=NULL, gAssemblyFn=NULL)

Arguments

axtFiles character(n): filenames of the ‘Axt’ files to read.

tAssemblyFn, gAssemblyFn

character(l): filename of the ‘twoBit’ or ‘fasta’ file for the target and query

genome.

Details

This function reads the ‘Axt’ files of two assemblies. It can be a single big ‘Axt’ file or several
small ‘Axt’ files. Contrary to the start coordinate in ‘Axt’ file, the start coordinate in Axt object is

1-based.

When ‘tAssemblyFn’ and ‘qAssemblyFn’ are not NULL, the corresponding Seqinfo will be added

into the returned Axt object.

Value

A object Axt is returned.

Author(s)

Ge Tan

See Also

Axt

readBed 45

Examples

axtFile <- file.path(system.file("extdata”, package="CNEr"),
"hg38.danRer1@.net.axt")

tAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit")

gAssemblyFn <- file.path(system.file("extdata",
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit")

axt <- readAxt(axtFile, tAssemblyFn, gAssemblyFn)

readBed Read bed file

Description

Read the coordinates information from a bed file.

Usage

readBed(bedFile, assemblyFn=NULL)

Arguments

bedFile character(1): filename of the ‘bed’ file to read.

assemblyFn character(1): filename of the twoBit or fasta file of the genome.
Details

This function is designed to read the bed file as ‘chrom’, ‘chromStart’, ‘chromEnd’. The strand
information is also stored where available.

In the bed file, the ‘chromStart’ is on the 0-based coordinate system while ‘chromEnd’ is on
the 1-based coordinate system. For example, the first 100 bases of a chromosome are defined
as ‘chromStart=0’, ‘chromEnd=100’, and span the bases numbered 0-99. When it is read into
GRanges, both the ‘chromStart’ and ‘chromEnd’ are on 1-based coordinate, i.e., ‘chromStart=1’
and ‘chromEnd=100’.

When ‘assemblyFn’ is not NULL, the corresponding Seqinfo will be added into the returned GRanges.

Value
A GRanges object is returned. When no strand information is available in the bed file, all the ranges
are assumed to be on the positive strand.

Author(s)
Ge Tan

References

https://genome.ucsc.edu/FAQ/FAQformat.html#formati

https://genome.ucsc.edu/FAQ/FAQformat.html#format1

46 readCNERangesFromSQLite

See Also

import.bed

Examples

bedFn <- file.path(system.file("extdata”, package="CNEr"),
"filter_regions.hg38.bed")
assemblyFn <- file.path(system.file("extdata",
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit")
bed <- readBed(bedFn, assemblyFn=assemblyFn)

readCNERangesFromSQLite
readCNERangesFromSQLite function

Description

Query the SQLite database based on chromosome, coordinates and some other criteria. Primarily
not intended to be used directly. For the CNE density plot, fetchCNEDensity function should be
used.

Usage

readCNERangesFromSQLite(dbName, tableName, chr=NULL, start=NULL, end=NULL,
whichAssembly=c("first"”,"second”), minLength=NULL,
tAssemblyFn=NULL, gAssemblyFn=NULL)

Arguments
dbName A object of character, the path of the local SQLite database.
tableName A object of character, the name of table for this CNE data table.
chr character(n): the chromosomes to query. When it’s NULL, all CNEs will be
returned.
start, end integer(n): the start and end coordinates to fetch the CNE:s.

whichAssembly character(l): The coordinates to fetch CNEs are based on ‘first’ genome or
‘last’ genome.

minLength integer(1): the minimal length for selected CNEs. The pair of CNEs must be
both longer than this minLength.

tAssemblyFn, gAssemblyFn

character(l): filename of the ‘twoBit’ or ‘fasta’ file for the target and query
genome.

Value

An object of GRangePairs is returned.

Author(s)
Ge Tan

reverseCigar 47

Examples

dbName <- file.path(system.file("extdata”, package="CNEr"),
"danRer10CNE.sqlite")
tableName <- "danRer10@_hg38_45_50"

gAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit")

tAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit")

single chr, start, end

chr <- "chré6”

start <- 24000000L

end <- 27000000

minLength <- 50L

fetchedCNERanges <- readCNERangesFromSQLite(dbName, tableName, chr,
start, end,
whichAssembly="first",
minLength=minLength,
tAssemblyFn=tAssemblyFn,
gAssemblyFn=gAssemblyFn)

multiple chr, start, end

chr=c("chr1”, "chr3")

start=c(90730248, 137523122)

end=c(90730300, 137523190)

fetchedCNERanges <- readCNERangesFromSQLite(dbName, tableName, chr,
start, end,
whichAssembly="second”,
minLength=minLength)

chr, NULL, NULL

fetchedCNERanges <- readCNERangesFromSQLite(dbName, tableName, chr,
start=NULL, end=NULL,
whichAssembly="second”,
minLength=minLength)

reverseCigar reverseCigar function

Description

This function reverses the cigar string, i.e., 20M15110D will be reversed to 10D15120M.

Usage

reverseCigar(cigar, ops=CIGAR_OPS)

Arguments
cigar A character vector of cigar strings.
ops A character vector of the extended CIGAR operations. By default, CIGAR_OPS

is used.

48

Value

A character vector contains the reversed cigar strings.

Author(s)

Ge Tan

See Also

cigar-utils

Examples

cigar = c("20M15I1eD", "1@0D15I20M")
reverseCigar(cigar)

saveCNEToSQLite-methods

saveCNEToSQLite-methods
Save CNE to SQLite

Description

This function saves the CNE results into a local SQLite database.

Usage

saveCNEToSQLite(x, dbName, tableName=NULL, overwrite=FALSE)

Arguments
X An object of CNE, with CNEFinal computed or a GRangePairs object.
dbName character(1): the filename of the local SQLite database.
tableName character(1): the name of table for this CNE data table. When it is NULL,
the table name will be inferred from the assembly filenames and scanning win-
dow/identity, in the format of "danRer10_hg38_49_50".
overwrite boolean(1): whether or not to overwrite the existing table.
Details

before loading into an SQLite database, a bin indexing system is used to index the CNE range,

which provides faster SQL query.

Author(s)

Ge Tan

scoringMatrix 49

Examples

dbName <- tempfile()
data(cneFinallListDanRer10Hg38)
tableNames <- paste(”danRer10”, "hg38", names(cneFinallListDanRer10QHg38),
sep="_"
for(i in 1:length(cneFinallListDanRer10Hg38)){
saveCNEToSQLite(cneFinallListDanRer1@Hg38[[i]], dbName, tableNames[i],

overwrite=TRUE)

scoringMatrix scoringMatrix

Description

Generates the scoring matrix for lastz aligner.

Usage
scoringMatrix(distance = c("far"”, "medium”, "near"))
Arguments
distance It can be "far", "medium" or "close". It defines the scoring matrix used in lastz

aligner. Generally, if two species are close to each other, for example human
and chimp, "close" should be used. If two species have a divergence time of 100
MYA, "far" should be used. In other cases, "medium" should be used.

Value

A matrix of the scoring matrix is returned.

Note
HOXD70 is medium. HoxD55 is far. human-chimp.v2 is close.

Author(s)
Ge Tan

References

http://genomewiki.ucsc.edu/index.php/Hg38_17-way_conservation_lastz_parameters

See Also

lastz

Examples

scoringMatrix(distance="far")

http://genomewiki.ucsc.edu/index.php/Hg38_17-way_conservation_lastz_parameters

50

subAxt-methods

subAxt-methods

Subset an Axt object

Description

A ‘subAxt’ method for extracting a set of alignments from an Axt object.

Usage

subAxt(x, chr, start, end, select=c("target”, "query"”), qSize=NULL)

Arguments

X

chr

start, end

select

gSize

Details

An object of Axt.

An object of character containing the names of the sequences in "x’ where to
get the alignments from, or a GRanges object where ’start’ and "end’ are missing.
In the case of GRanges, the strand information is ignored.

An object of integer() or missing. These ranges should be based on the positive
strand. When select is "query", the reverse complement alignments which lay
inside this range will also be selected.

When select is ‘target’, the subset criteria are applied on target alignments in
Axt. When select is ‘query’, the subset criteria are applied on query alignments
in Axt.

integer(n): When select is ‘query’, ‘qSize’ must exist in ‘X’ or can be provided
as a vector of chromosome lengths.

Usually when we want to subset some axts from a Axt object, we care about all the axts within a
certain range. The axts can come from the axt file with chr as reference (i.e., target sequence), or the
axt file with chr as query sequence. When the chr is query sequence, it can be on the negative strand.
Hence, the size of chromosome is necessary to convert the search range to a range on negative strand

coordinate.

When one Axt alignment partially overlaps the range, the whole Axt alignment will be extracted.

Value

An extracted Axt object is returned.

Author(s)

Ge Tan

See Also

psubAxt

summary

Examples

library(GenomicRanges)
library(rtracklayer)

Prepare the axt object

tAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Hsapiens.UCSC.hg38"),
"single_sequences.2bit")

gAssemblyFn <- file.path(system.file("extdata”,
package="BSgenome.Drerio.UCSC.danRer10"),
"single_sequences.2bit")

axtFilesHg38DanRer10 <- file.path(system.file("extdata”, package="CNEr"),

"hg38.danRer10.net.axt")
axtHg38DanRer10 <- readAxt(axtFilesHg38DanRer1@, tAssemblyFn, gAssemblyFn)

"character”, "integer”, "integer"” on "target"” sequence
subAxt (axtHg38DanRer10, chr="chr1", start=148165963L, end=222131835L,
select="target")

"GRanges"" on "target"” sequence
searchGRanges <- GRanges(segnames="chr1",
ranges=IRanges(start=148165963L,
end=222131835L),
strand="+"
subAxt (axtHg38DanRer10, searchGRanges, select="target")

multiple "character”, "integer”, "integer"” on "target" sequence
subAxt (axtHg38DanRer10, chr=c("chr1”, "chr13"),
start=c(148165963L, 94750629L),
end=c(222131835L, 94966991L), select="target")

"character” only on "target” sequence
subAxt (axtHg38DanRer10, chr="chrl”, select="target")

GRanges on "query" sequence
searchGRanges <- GRanges(segnames="chr6",
ranges=IRanges(start=25825774,
end=26745499),
strand="+"
subAxt (axtHg38DanRer10, searchGRanges, select="query")

summary Utility functions related to Axt alignment

Description

A collection of different functions used to deal with Axt object.

Usage

summary(object, ...) ## mismatch number and proportion

52 syntenicDotplot-methods

Arguments
object An Axt object
Currently not used.
Value

A table object with the counts of mismatches, insertions, deletions and the matches of each base.

Author(s)

Ge Tan

Examples

axtFilesHg38DanRer10 <- file.path(system.file("extdata”, package="CNEr"),
"hg38.danRer1@.net.axt")

axtHg38DanRer10 <- readAxt(axtFilesHg38DanRer10)

summary (axtHg38DanRer10)

syntenicDotplot-methods
Syntenic dotplot

Description

Syntenic dotplot for Axt alignment object or GRangePairs.

Usage

syntenicDotplot(x, firstSeqlengths=NULL, secondSeqlengths=NULL,
firstChrs=NULL, secondChrs=NULL,
col=c("blue”, "red"), type=c("line”, "dot"))

Arguments
X Axt object: the whole genome pairwise alignment of two species under compar-
ison or GRangePairs object.

firstSeqlengths, secondSeqlengths
integer(n): seqlengths for both the first (target) and second (query) genomes.
When NULL, the seqlengths must exist in X.

firstChrs, secondChrs
character(n): the chromosomes to compare.

col character(2): the colours for positive and negative strands.

type “line” or “dot” plot type: When plotting massive number of ranges, “dot” should
be used. Otherwise, “line”” should be used.

writeAxt

Details

53

This syntenic dotplot is a type of scatter plot for Axt object, and line plot for GRangePairs object.
In the case of possibly massive number of Axt alignments, the line plots will make it invisible at a
large genome scale.

Each axis represents concatenated selected chromosomes laid end-to-end, and each dot in the
scatter-plot represents a putative homologous match between the two genomes. These dotplots are
used for whole genome comparisons within the same genome or across two genomes from different
taxa in order to identify synteny.

Value

A ggplot object.

Note

For highly fragmented assemblies, the synteny is invisible on the dotplot.

Author(s)

Ge Tan

Examples

library(GenomeInfoDb)

library(BSgenome.Ggallus.UCSC.galGal3)

library(BSgenome.Hsapiens.UCSC.hg19)

dotplot for Axt object

fn <- file.path(system.file("extdata”, package="CNEr"),
"chr4.hg19.galGal3.net.axt.gz")

axt <- readAxt(fn)

firstSeglengths <- seqglengths(BSgenome.Hsapiens.UCSC.hg19)

secondSeqglengths <- seqlengths(BSgenome.Ggallus.UCSC.galGal3)

firstChrs <- c("chr4")

secondChrs <- c("chr4")

syntenicDotplot(axt, firstSeqlengths, secondSeqlengths,
firstChrs=firstChrs, secondChrs=secondChrs,
type="dot")

dotplot for GRangePairs object
data(grangesPairsForDotplot)
syntenicDotplot(grangesPairsForDotplot, type="line")

writeAxt writeAxt function

Description

Write an axt object into a file.

Usage

writeAxt(axt, con)

54 writeAxt

Arguments

axt An Axt object to write.

con A connection object or a character string.

Author(s)
Ge Tan

See Also

readAxt

Examples

axtFile <- file.path(system.file("extdata”, package="CNEr"),
"hg38.danRer1@.net.axt")

axt <- readAxt(axtFile)

writeAxt(axt, con=tempfile())

Index

* classes
Axt-class, 4
CNE-class, 16
+ datasets
axisTrack, 4
CNEDanRer10@Hg38, 18
grangesPairsForDotplot, 25
[,Axt,ANY,ANY-method (Axt-class), 4

addAncestorGoO, 3
axisTrack, 4

Axt, 24,44

Axt (Axt-class), 4
Axt-class, 4
axtChain, 6, 12
axtInfo, 8

binFromCoordRange (binning-utils), 8
binning-utils, 8
binRangesFromCoordRange

(binning-utils), 8
binRestrictionString (binning-utils), 8
blatCNE, 9

c,Axt-method (Axt-class), 4

c,GRangePairs-method
(GRangePairs-class), 23

ceScan (ceScan-methods), 10

ceScan,Axt-method (ceScan-methods), 10

ceScan,CNE-method (ceScan-methods), 10

ceScan-methods, 10

chainMergeSort, 12, 15

chainNetSyntenic, 13, 36

chainPreNet, /4, 14

class:GRangePairs (GRangePairs-class),
23

CNE (CNE-class), 16

CNE-class, 16

CNE12 (CNE-class), 16

CNE12,CNE-method (CNE-class), 16

CNE21 (CNE-class), 16

CNE21,CNE-method (CNE-class), 16

CNEDanRer10Hg38, 18

CNEDensity (CNEDensity-methods), 18

55

CNEDensity,ANY,character,character,missing,missing-met}

(CNEDensity-methods), 18

CNEDensity,ANY,missing,character,character,character-me

(CNEDensity-methods), 18
CNEDensity-methods, 18
CNEFinal (CNE-class), 16
CNEFinal,CNE-method (CNE-class), 16
cneFinallListDanRer10Hg38, 20
CNEHg38DanRer10 (CNEDanRer10Hg38), 18
cneMerge (cneMerge-methods), 20
cneMerge,CNE,missing-method
(cneMerge-methods), 20
cneMerge,GRangePairs,GRangePairs-method
(cneMerge-methods), 20
cneMerge-methods, 20
CNEMerged (CNE-class), 16
CNEMerged, CNE-method (CNE-class), 16
coerce,GRangePairs,GRanges-method
(GRangePairs-class), 23
coerce,GRangePairs,GRangesList-method
(GRangePairs-class), 23
connection, 54
cpglslands (axisTrack), 4

fetchChromSizes, 21
first,GRangePairs-method
(GRangePairs-class), 23
fixCoordinates, 5, 22, 30
fixCoordinates,Axt-method
(fixCoordinates), 22

GRangePairs, 23

GRangePairs (GRangePairs-class), 23

GRangePairs-class, 23

GRanges, 23

GRangesList, 24

grangesPairsForDotplot, 25

grglist,GRangePairs-method
(GRangePairs-class), 23

import.bed, 46

last (GRangePairs-class), 23
last,GRangePairs-method
(GRangePairs-class), 23

56

lastal, 26

lastz, 26, 27, 29, 49
lavToPsl, 7, 28, 28
length,Axt-method (Axt-class), 4

makeAncoraFiles, 29

makeAxtTracks, 5, 30

makeCNEDensity, 31

makeGRBs, 32

matchDistribution, 33

matchDistribution,Axt-method
(matchDistribution), 33

N50, 34
N90 (N50), 34
netToAxt, 35

orgKEGGIds2EntrezIDs, 36

plotCNEDistribution, 37
plotCNEWidth, 37, 38
psubAxt, 39, 39, 50

queryCNEData, 40
gueryRanges (Axt-class), 4

queryRanges,Axt-method (Axt-class), 4

qguerySeqs (Axt-class), 4

querySeqs,Axt-method (Axt-class), 4

read.rmMask.GRanges, 41, 42
read.rmskFasta, 41
readAncora, 30, 32,42, 43
readAncoralntoSQLite, 43
readAxt, 5, 8, 44, 54
readBed, 45
readCNERangesFromSQLite, 46
refGenes (axisTrack), 4
reverseCigar, 47

saveCNEToSQLite

(saveCNEToSQLite-methods), 48

saveCNEToSQLite-methods, 48

score,Axt-method (Axt-class), 4

scoringMatrix, 49

second, GRangePairs-method
(GRangePairs-class), 23

seqginfo,GRangePairs-method
(GRangePairs-class), 23

segnames, GRangePairs-method
(GRangePairs-class), 23

strand, GRangePairs-method
(GRangePairs-class), 23

subAxt, 5

subAxt (subAxt-methods), 50

INDEX

subAxt,Axt,character, integer,integer-method
(subAxt-methods), 50

subAxt,Axt,character,missing,missing-method
(subAxt-methods), 50

subAxt,Axt,character,numeric,numeric-method
(subAxt-methods), 50

subAxt,Axt,GRanges,missing,missing-method
(subAxt-methods), 50

subAxt-methods, 50

summary, 51

summary, Axt-method (summary), 51

swap (GRangePairs-class), 23

swap, GRangePairs-method
(GRangePairs-class), 23

symCount (Axt-class), 4

symCount,Axt-method (Axt-class), 4

syntenicDotplot
(syntenicDotplot-methods), 52

syntenicDotplot,Axt-method
(syntenicDotplot-methods), 52

syntenicDotplot,GRangePairs-method
(syntenicDotplot-methods), 52

syntenicDotplot-methods, 52

targetRanges (Axt-class), 4
targetRanges,Axt-method (Axt-class), 4
targetSegs (Axt-class), 4
targetSeqs,Axt-method (Axt-class), 4
thresholds (CNE-class), 16
thresholds,CNE-method (CNE-class), 16

unique,GRangePairs-method
(GRangePairs-class), 23

unlist,GRangePairs-method
(GRangePairs-class), 23

writeAxt, 5,53

	addAncestorGO
	axisTrack
	Axt-class
	axtChain
	axtInfo
	binning-utils
	blatCNE
	ceScan-methods
	chainMergeSort
	chainNetSyntenic
	chainPreNet
	CNE-class
	CNEDanRer10Hg38
	CNEDensity-methods
	cneFinalListDanRer10Hg38
	cneMerge-methods
	fetchChromSizes
	fixCoordinates
	GRangePairs-class
	grangesPairsForDotplot
	lastal
	lastz
	lavToPsl
	makeAncoraFiles
	makeAxtTracks
	makeCNEDensity
	makeGRBs
	matchDistribution
	N50
	netToAxt
	orgKEGGIds2EntrezIDs
	plotCNEDistribution
	plotCNEWidth
	psubAxt
	queryCNEData
	read.rmMask.GRanges
	read.rmskFasta
	readAncora
	readAncoraIntoSQLite
	readAxt
	readBed
	readCNERangesFromSQLite
	reverseCigar
	saveCNEToSQLite-methods
	scoringMatrix
	subAxt-methods
	summary
	syntenicDotplot-methods
	writeAxt
	Index

