Package ‘CIMICE’

January 19, 2026
Type Package
Title CIMICE-R: (Markov) Chain Method to Inferr Cancer Evolution
Version 1.18.0

Description CIMICE is a tool in the field of tumor phylogenetics and
its goal is to build a Markov Chain (called Cancer Progression Markov Chain,
CPMC) in order to model tumor subtypes evolution.
The input of CIMICE is a Mutational Matrix, so a boolean matrix representing
altered genes in a collection of samples. These samples are assumed to be
obtained with single-cell DNA analysis techniques and the tool is
specifically written to use the peculiarities of this data for the CMPC
construction.

License Artistic-2.0
Encoding UTF-8

Imports dplyr, ggplot2, glue, tidyr, igraph, networkD3, visNetwork,
ggcorrplot, purrr, ggraph, stats, utils, maftools, assertthat,
tidygraph, expm, Matrix

RoxygenNote 7.1.2
VignetteBuilder knitr
Suggests BiocStyle, knitr, rmarkdown, testthat, webshot

biocViews Software, BiologicalQuestion, NetworkInference,
ResearchField, Phylogenetics, StatisticalMethod,
GraphAndNetwork, Technology, SingleCell

BugReports https://github.com/redsnic/CIMICE/issues

URL https://github.com/redsnic/CIMICE
BiocType Software

git_url https://git.bioconductor.org/packages/CIMICE
git_branch RELEASE_3_22

git_last_commit 4b7030e

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

https://github.com/redsnic/CIMICE/issues
https://github.com/redsnic/CIMICE

2 Contents

Author Nicold Rossi [aut, cre] (Lab. of Computational Biology and
Bioinformatics, Department of Mathematics, Computer Science and
Physics, University of Udine, ORCID:
<https://orcid.org/0000-0002-6353-7396>)

Maintainer Nicolo Rossi <olocin.issor@gmail.com>

Contents
annotate_mutational_matrix L e e e 3
binary_radix_Sort 4
build_subset_graph 4
build_topology_subset 5
chunk reader e 6
CIMICE e e e e 6
compact_dataset e e e e e e 7
computetDWNW 0 o 7
computetDWNW_aux e 8
computetUPW 9
computetUPW_aux e 10
compute_weights_default oo 10
corrplot_from_mutational_matrixo 11
Corrplot_GeNes e e e e e e e e 11
corrplot_samples e 12
dataset_preprocessing e e e e 12
dataset_preprocessing_population L Lo 13
draw_ggraph e 14
draw_networkD3 e 14
draw_visNetwork e e 15
example_dataset e 15
example_dataset_withFreqs L 16
finalize_generator e e 16
fix_clonal_genotype 17
format_labels e 18
gene_mutations_hist oL 18
get_no_of children 19
graph_non_transitive_subset_topology 20
make_dataset L e e 20
make_generator_stub 21
make_labels e e 21
normalizeDWNW e 22
normalizeUPW e 23
perturb_dataset L. e e e e e 23
PlOL_ZENErator e e e e e e e e 24
prepare_generator_edge_set_command 25
prepare_labels e e 26
quick_run e 27
read 27
read_CAPRI e 28
read_CAPRIpop e 28
read_CAPRIpop_string e 29

read_CAPRL string e 29

https://orcid.org/0000-0002-6353-7396

annotate_mutational _matrix 3

Index

read_MAF e 30
read_MatriX e e e e e e e e 31
remove_transitive_edges L. L e e e e e 31
sample_mutations_hist Lo 32
select_genes_on_mutations et e e e e e e e e 32
select_samples_on_mutationSo e e e e e e e e 33
set_generator_edges 34
simulate_generatoro e e e e e e e e e e 35
to_dot . . L e 36
update_df 36

38

annotate_mutational_matrix

Add samples and genes names to a mutational matrix

Description

Given M mutational matrix, add samples as row names, and genes as column names. If there are
repetitions in row names, these are solved by adding a sequential identifier to the names.

Usage

annotate_mutational_matrix(M, samples, genes)

Arguments
M mutational matrix
samples list of sample names
genes list of gene names
Value

N with the set row and column names

Examples

require(Matrix)

genes <_ C(HA”, HBII’ HCII)

samples <- c(”S1", "S2", "S2")

M <- Matrix(c(9,0,1,0,0,1,0,1,1), ncol=3, sparse=TRUE, byrow = TRUE)

annotate_mutational_matrix(M, samples, genes)

build_subset_graph

binary_radix_sort Radix sort for a binary matrix

Description

Sort the rows of a binary matrix in ascending order

Usage

binary_radix_sort(mat)

Arguments

mat a binary matrix (of 0 and 1)

Value

the sorted matrix

Examples

require(Matrix)
m <- Matrix(c(1,1,0,1,0,0,0,1,1), sparse = TRUE, ncol = 3)
binary_radix_sort(m)

build_subset_graph Remove transitive edges and prepare graph

Description

Create a graph from the "build_topology_subset" edge list, so that it respects the subset relation,

omitting the transitive edges.

Usage

build_subset_graph(edges, labels)

Arguments
edges edge list, built from "build_topology_subset"
labels list of node labels, to be paired with the graph
Value

a graph with the subset topology, omitting transitive edges

build_topology_subset

Examples

require(dplyr)

preproc <- example_dataset() %>% dataset_preprocessing
samples <- preproc[["samples”]]

freqs <- preproc[["fregs"]]

labels <- preproc[["labels"]]

genes <- preproc[["genes"]]

edges <- build_topology_subset(samples)

g <- build_subset_graph(edges, labels)

build_topology_subset Compute subset relation as edge list

Description

Create an edge list E representing the ’subset’ relation for binary strings so that:

(A, B)inE <=> forall(i) : Ali]— > B]i]

Usage

build_topology_subset(samples)

Arguments

samples input dataset (mutational matrix) as matrix

Value

the computed edge list

Examples

require(dplyr)

preproc <- example_dataset() %>% dataset_preprocessing
samples <- preproc[["samples”]]

freqs <- preproc[["fregs"]]

labels <- preproc[["labels"]]

genes <- preproc[["genes"]]
build_topology_subset(samples)

6 CIMICE

chunk_reader Gradually read a file from disk

Description

This function creates a reader to read a text file in batches (or chunks). It can be used for very large
files that cannot fit in RAM.

Usage
chunk_reader(file_path)

Arguments

file_path path to large file

Value

a list-object containing the function ‘read‘ to read lines from the given file, and ‘close’ to close the
connection to the file stream.

Examples

open connection to file
reader <- chunk_reader(

system.file("extdata"”, "paac_jhu_2014_500.maf", package = "CIMICE"”, mustWork = TRUE)
)

while(TRUE){
read a chunk
chunk <- reader$read(10)
if(length(chunk) == 0){
break
3
--- process chunk ---
3
close connection
reader$close()

CIMICE CIMICE Package

Description

R implementation of the CIMICE tool. CIMICE is a tool in the field of tumor phylogenetics and

its goal is to build a Markov Chain (called Cancer Progression Markov Chain, CPMC) in order to

model tumor subtypes evolution. The input of CIMICE is a Mutational Matrix, so a boolean matrix

representing altered genes in a collection of samples. These samples are assumed to be obtained

with single-cell DNA analysis techniques and the tool is specifically written to use the peculiarities

of this data for the CMPC construction. See ‘https://github.com/redsnic/tumorEvolutionWithMarkovChains/tree/master/(
for the original Java version of this tool.

compact_dataset 7

Details

CIMICE-R: (Markov) Chain Method to Infer Cancer Evolution

Author(s)

Nicolo Rossi <olocin.issor@gmail.com>

compact_dataset Compact dataset rows

Description

Count duplicate rows and compact the dataset (mutational). The column ’freq’ will contain the
counts for each row.

Usage

compact_dataset(mutmatrix)

Arguments

mutmatrix input dataset (mutational matrix)

Value

a list with matrix (the compacted dataset (mutational matrix)), counts (frequencies of genotypes)
and row_names (comma separated string of sample IDs) fields

Examples

compact_dataset(example_dataset())

computeDWNW Down weights computation

Description

Computes the Down weights formula using a Dinamic Programming approach (starting call), see
vignettes for further explaination.

Usage

computeDWNW(g, freqs, no.of.children, A, normUpWeights)

8 computeDWNW_aux
Arguments

g graph (a Directed Acyclic Graph)

fregs observed genotype frequencies

no.of.children number of children for each node

A adjacency matrix of G

normUpWeights normalized up weights as computed by normalizeUPW
Value

a vector containing the Up weights for each edge
Examples

require(dplyr)

require(igraph)

preproc <- example_dataset() %>% dataset_preprocessing

samples <- preproc[["samples”]]

freqs <- preproc[["fregs"]]

labels <- preproc[["labels"]]

genes <- preproc[["genes"]]

g <- graph_non_transitive_subset_topology(samples, labels)

prepare adj matrix

A <- as.matrix(as_adj(g))

pre-compute exiting edges from each node

no.of.children <- get_no_of_children(A,g)

upWeights <- computeUPW(g, fregs, no.of.children, A)

normUpWeights <- normalizeUPW(g, fregs, no.of.children, A, upWeights)

computeDWNW(g, freqs, no.of.children, A, normUpWeights)

computeDWNW_aux Down weights computation (aux)

Description

Computes the Down weights formula using a Dinamic Programming approach (recursion), see

vignettes for further explaination.
Usage

computeDWNW_aux(g, edge, freqgs, no.of.children, A, normUpWeights)
Arguments

g graph (a Directed Acyclic Graph)

edge the currently considered edge

fregs observed genotype frequencies

no.of.children number of children for each node

A

adjacency matrix of G

normUpWeights normalized up weights as computed by normalizeUPW

computeUPW

Value

a vector containing the Up weights for each edge

computeUPW

Up weights computation

Description

Computes the up weights formula using a Dinamic Programming approach (starting call), see vi-

gnettes for further explaination.

Usage

computeUPW(g, freqgs, no.of.children, A)

Arguments
g
fregs
no.of.chi

A

Value

graph (a Directed Acyclic Graph)
observed genotype frequencies
ldren number of children for each node

adjacency matrix of G

a vector containing the Up weights for each edge

Examples
require(dplyr)
require(igraph)
preproc <- example_dataset() %>% dataset_preprocessing
samples <- preproc[["samples”]]
freqs <- preproc[["freqgs"]]
labels <- preproc[["labels"]]
genes <- preproc[["genes"]]
g <- graph_non_transitive_subset_topology(samples, labels)
prepare adj matrix
A <- as.matrix(as_adj(g))

pre-compute exiting edges from each node

no.of.chil

dren <- get_no_of_children(A,g)

computeUPW(g, freqgs, no.of.children, A)

10 compute_weights_default

computeUPW_aux Up weights computation (aux)

Description

Computes the up weights formula using a Dinamic Programming approach (recursion), see vi-
gnettes for further explaination.

Usage

computeUPW_aux(g, edge, fregs, no.of.children, A)

Arguments
g graph (a Directed Acyclic Graph)
edge the currently considered edge
freqgs observed genotype frequencies

no.of.children number of children for each node

A adjacency matrix of G

Value

a vector containing the Up weights for each edge

compute_weights_default
Compute default weights

Description
This procedure computes the weights for edges of a graph accordingly to CIMICE specification.
(See vignettes for further explainations)

Usage

compute_weights_default(g, freqgs)

Arguments
g a graph (must be a DAG with no transitive edges)
freqgs observed frequencies of genotypes

Value

a graph with the computed weights

corrplot_from_mutational_matrix

Examples

require(dplyr)

preproc <- example_dataset() %>% dataset_preprocessing
samples <- preproc[["samples”]]

freqs <- preproc[["fregs"]]

labels <- preproc[["labels"]]

genes <- preproc[["genes"]]

g <- graph_non_transitive_subset_topology(samples, labels)
compute_weights_default(g, fregs)

corrplot_from_mutational_matrix
Correlation plot from mutational matrix

Description

Prepare correlation plot based on a mutational matrix

Usage

corrplot_from_mutational_matrix(mutmatrix)

Arguments

mutmatrix input dataset

Value

the computed correlation plot

Examples

corrplot_from_mutational_matrix(example_dataset())

corrplot_genes Gene based correlation plot

Description

Prepare a correlation plot computed from genes’ perspective using a mutational matrix

Usage

corrplot_genes(mutmatrix)

Arguments

mutmatrix input dataset (mutational matrix)

12 dataset_preprocessing

Value

the computed correlation plot

Examples

corrplot_genes(example_dataset())

corrplot_samples Sample based correlation plot

Description

Prepare a correlation plot computed from samples’ perspective using a mutational matrix

Usage

corrplot_samples(mutmatrix)

Arguments

mutmatrix input dataset (mutational matrix)

Value

the computed correlation plot

Examples

corrplot_samples(example_dataset())

dataset_preprocessing Run CIMICE preprocessing

Description

executes the preprocessing steps of CIMICE

Usage

dataset_preprocessing(dataset)

Arguments

dataset a mutational matrix as a (sparse) matrix

dataset_preprocessing_population 13

Details

Preprocessing steps:
1) dataset is compacted
2) genotype frequencies are computed

3) labels are prepared

Value
a list containing the mutational matrix ("samples"), the mutational frequencies of the genotypes
("fregs"), the node labels ("labels") and finally the gene names ("genes")

Examples

require(dplyr)
example_dataset() %>% dataset_preprocessing

dataset_preprocessing_population
Run CIMICE preprocessing for poulation format dataset

Description

executes the preprocessing steps of CIMICE

Usage

dataset_preprocessing_population(compactedDataset)

Arguments
compactedDataset
a list (matrix: a mutational matrix, counts: number of samples with given geno-
type). "counts" is normalized automatically.
Details

Preprocessing steps:
1) genotype frequencies are computed

2) labels are prepared

Value
a list containing the mutational matrix ("samples"), the mutational frequencies of the genotypes
("fregs"), the node labels ("labels") and finally the gene names ("genes")

Examples

require(dplyr)
example_dataset_withFreqs() %>% dataset_preprocessing_population

14

draw_networkD3

draw_ggraph ggplot graph output

Description

Draws the output graph using ggplot

Usage
draw_ggraph(out, digits = 4, ...)

Arguments
out the output object of CIMICE (es, from quick run)
digits precision for edges’ weights
other arguments for format_labels
Value

ggraph object representing g as described

Examples

draw_ggraph(quick_run(example_dataset()))

draw_networkD3 NetworkD3 graph output

Description

Draws the output graph using networkD3

Usage
draw_networkD3(out, ...)
Arguments
out the output object of CIMICE (es, from quick run)
other arguments for format_labels
Value

networkD3 object representing g as described

Examples

draw_networkD3(quick_run(example_dataset()))

draw_visNetwork

draw_visNetwork VisNetwork graph output (default)

Description

Draws the output graph using VisNetwork

Usage
draw_visNetwork(out, ...)
Arguments
out the output object of CIMICE (es, from quick run)
other arguments for format_labels
Value

visNetwork object representing g as described

Examples

draw_visNetwork(quick_run(example_dataset()))

example_dataset Creates a simple example dataset

Description

Creates a simple example dataset

Usage

example_dataset()

Value

a simple mutational matrix

Examples

example_dataset ()

16 finalize_generator

example_dataset_withFreqgs
Creates a simple example dataset with frequency column

Description

Creates a simple example dataset with frequency column

Usage

example_dataset_withFreqs()

Value

a simple mutational matrix

Examples

example_dataset_withFreqgs()

finalize_generator Finalize generator normalizing edge weights

Description

Checks if a generator can be normalized so that it actually is a Markov Chain

Usage

finalize_generator(generator)

Arguments

generator a generator

Value

A generator with edge weights that respect DTMC definition

Examples
require(dplyr)
example_dataset() %»>%

make_generator_stub() %>%
set_generator_edges(

list(
"D" A, D", 1,
PATCMAL DM, T,

"A, D", "A, C, D", 1,

fix_clonal_genotype

"A, D", "A, B, D", 1,
"Clonal”, "D", 1 ,
"Clonal”, "A", 1,
"b", "D", 1,
A", "A", 1
"A, D", "A, D", 1,
"A, C, D", "A, C, D", 1,
"A, B, D", "A, B, D", 1,
"Clonal”, "Clonal”, 1

)) %>%

finalize_generator

17

fix_clonal_genotype Manage Clonal genotype in data

Description

Fix the absence of the clonal genotype in the data (if needed)

Usage

fix_clonal_genotype(samples, freqs, labels, matching_samples)

Arguments
samples input dataset (mutational matrix) as matrix
freqgs genotype frequencies (in the rows’ order)
labels list of gene names (in the columns’ order)

matching_samples
list of sample names matching each genotype

Value

a named list containing the fixed "samples", "freqs" and "labels"

Examples

require(dplyr)

compact
compactedDataset <- compact_dataset(example_dataset())
samples <- compactedDataset$matrix

save genes' names
genes <- colnames(compactedDataset$matrix)

keep the information on frequencies for further analysis
freqs <- compactedDataset$counts/sum(compactedDataset$counts)

prepare node labels listing the mutated genes for each node
labels <- prepare_labels(samples, genes)
if(is.null(compactedDataset$row_names)){

18 gene_mutations_hist

compactedDataset$row_names <- rownames(compactedDataset$matrix)
3
matching_samples <- compactedDataset$row_names
matching_samples
matching_samples

fix Colonal genotype absence, if needed
fix <- fix_clonal_genotype(samples, freqgs, labels, matching_samples)

format_labels Format labels for output object

Description

Prepare labels based on multiple identifiers so that they do not excede a certain size (if they do, a
simple number is used)

Usage

format_labels(labels, max_col = 3, max_row = 3)

Arguments

labels a charachter vector of the labels to manage
max_col maximum number of identifiers in a single row for a label

max_row maximum number of rows of identifiers in a label

Value

the updated labels

Examples

format_labels(c("A, B”, "C, D, E"))

gene_mutations_hist Histogram of genes’ frequencies

Description

Create the histogram of the genes’ mutational frequencies

Usage

gene_mutations_hist(mutmatrix, binwidth = 1)

get_no_of_children

Arguments

mutmatrix input dataset (mutational matrix)

binwidth binwidth parameter for the histogram (as in ggplot)
Value

the newly created histogram

Examples

gene_mutations_hist(example_dataset(), binwidth = 10)

19

get_no_of_children Get number of children

Description

Compute number of children for each node given an adj matrix

Usage

get_no_of_children(A, g)

Arguments
A Adjacency matrix of the graph g
g a graph

Value

a vector containing the number of children for each node in g

Examples

require(dplyr)

require(igraph)

preproc <- example_dataset() %>% dataset_preprocessing
samples <- preproc[["samples”]]

freqs <- preproc[["fregs"”]]

labels <- preproc[["labels"]]

genes <- preproc[["genes"]]

g <- graph_non_transitive_subset_topology(samples, labels)
A <- as_adj(g)

get_no_of_children(A, g)

20 make_dataset

graph_non_transitive_subset_topology
Default preparation of graph topology

Description
By default, CIMICE computes the relation between genotypes using the subset relation. For the
following steps it is also important that the transitive edges are removed.

Usage

graph_non_transitive_subset_topology(samples, labels)

Arguments
samples mutational matrix
labels genotype labels
Value

a graph with the wanted topology

Examples

require(dplyr)

preproc <- example_dataset() %>% dataset_preprocessing
samples <- preproc[["samples”]]

freqs <- preproc[["freqgs"]]

labels <- preproc[["labels”]]

genes <- preproc[["genes"]]
graph_non_transitive_subset_topology(samples, labels)

make_dataset Dataset line by line construction: initialization

Description

Initialize a dataset for "line by line" creation

Usage

make_dataset(...)

Arguments

EXIR)

gene names (do not use ’"’, the input is automatically converted to strings)

Value

a mutational matrix without samples structured as (sparse) matrix

make_generator_stub 21

Examples

make_dataset (APC,P53,KRAS)

make_generator_stub Create a stub for a generator

Description

Create a generator topology directly from a dataset. The topology will follow the subset relation.

Usage

make_generator_stub(dataset)

Arguments

dataset A compacted CIMICE dataset

Value

a generator, with weight = O for all the edges

Examples

make_generator_stub(example_dataset())

make_labels Helper function to create labels

Description

This function helps creating labels for nodes with different information

Usage
make_labels(out, mode = "samplesIDs"”, max_col = 3, max_row = 3)
Arguments
out the output object of CIMICE (es, from quick run)
mode which labels to print: samplesIDs (matching samples), sequentiallDs (just a
sequential numer), genelDs (genotype)
max_col identifiers are represented in a max_col times max_row grid (if the number of
IDs exceeds, a the sequentialID number is used instead)
max_row identifiers are represented in a max_col times max_row grid (if the number of

IDs exceeds, a the sequentialID number is used instead)

22 normalizeDWNW

Value

the requested labels

Examples

make_labels(quick_run(example_dataset()))

normalizeDWNW Down weights normalization

Description

Normalizes Down weights so that the sum of weights of edges exiting a node is 1

Usage

normalizeDWNW(g, fregs, no.of.children, A, downWeights)

Arguments
g graph (a Directed Acyclic Graph)
freqgs observed genotype frequencies

no.of.children number of children for each node
A adjacency matrix of G

downWeights Down weights as computed by computeDWNW

Value

a vector containing the normalized Down weights for each edge

Examples

require(dplyr)

require(igraph)

preproc <- example_dataset() %>% dataset_preprocessing

samples <- preproc[["samples”]]

freqs <- preproc[["freqgs"]]

labels <- preproc[["labels"]]

genes <- preproc[["genes"]]

g <- graph_non_transitive_subset_topology(samples, labels)

prepare adj matrix

A <- as.matrix(as_adj(g))

pre-compute exiting edges from each node

no.of.children <- get_no_of_children(A,g)

upWeights <- computeUPW(g, fregs, no.of.children, A)

normUpWeights <- normalizeUPW(g, freqgs, no.of.children, A, upWeights)
downWeights <- computeDWNW(g, fregs, no.of.children, A, normUpWeights)
normalizeUPW(g, fregs, no.of.children, A, downWeights)

normalizeUPW 23

normalizeUPW Up weights normalization

Description

Normalizes up weights so that the sum of weights of edges entering in a node is 1

Usage

normalizeUPW(g, fregs, no.of.children, A, upWeights)

Arguments
g graph (a Directed Acyclic Graph)
freqgs observed genotype frequencies

no.of.children number of children for each node

A adjacency matrix of G
upWeights Up weights as computed by computeUPW
Value

a vector containing the normalized Up weights for each edge

Examples

require(dplyr)

require(igraph)

preproc <- example_dataset() %>% dataset_preprocessing
samples <- preproc[["samples"”]]

freqs <- preproc[["fregs"]]

labels <- preproc[["labels"]]

genes <- preproc[["genes"]]

g <- graph_non_transitive_subset_topology(samples, labels)
prepare adj matrix

A <- as.matrix(as_adj(g))

pre-compute exiting edges from each node
no.of.children <- get_no_of_children(A,g)

upWeights <- computeUPW(g, fregs, no.of.children, A)
normalizeUPW(g, fregs, no.of.children, A, upWeights)

perturb_dataset Perturbate a boolean matrix

Description

Given a boolean matrix, randomly add False Positives (FP), False Negatives (FN) and Missing data
following user defined rates. In the final matrix, missing data is represented by the value 3.

24 plot_generator

Usage
perturb_dataset(dataset, FP_rate = @, FN_rate = @, MIS_rate = 0)

Arguments
dataset a matrix/sparse matrix
FP_rate False Positive rate
FN_rate False Negative rate
MIS_rate Missing Data rate
Details

Note that CIMICE does not support dataset with missing data natively, so using MIS_rate != 0 will
then require some pre-processing.

Value

the new, perturbed, matrix

Examples

require(dplyr)

example_dataset() %>%
make_generator_stub() %>%
set_generator_edges(

list(
"Dr AL DY, T,
AT AL DM, 1,

"A, D", "A, C, D", 1,
"A, D", "A, B, D", 1,
"Clonal”, "D", 1 ,
"Clonal”, "A", 1 ,
"D", "D", 1,
AT, AT, 1,
"A, D", "A, D", 1,
"A, C, D", "A, C, D", 1,
"A, B, D", "A, B, D", 1,
"Clonal”, "Clonal”, 1
)) %>%
finalize_generator %>%
simulate_generator(3, 10) %>%
perturb_dataset(FP_rate = 0.01, FN_rate = 0.1, MIS_rate = 0.12)

plot_generator Plot a generator

Description

Simple ggraph interface to draw a generator

prepare_generator_edge_set_command 25

Usage

plot_generator(generator)

Arguments

generator a generator

Value

a basic plot of this generator

Examples
require(dplyr)
example_dataset() %>%

make_generator_stub() %>%
set_generator_edges(

list(
HDII, IIA’ DII’ ‘I s
RN

"A, D", "A, C, D", 1,
"A, D", "A, B, D", 1,
"Clonal”, "D", 1 ,
"Clonal”, "A", 1 ,
"D", "D", 1,
"AT, "AT, T,
"A, D", "A, D", 1,
"A, C, D", "A, C, D", 1,
"A, B, D", "A, B, D", 1,
"Clonal”, "Clonal”, 1
)) %>%
finalize_generator %>%
plot_generator

prepare_generator_edge_set_command
Prepare a command to add edge weights to a generator

Description

Prints a string in the form of the command that sets weights for all the edges of this generator.

Usage
prepare_generator_edge_set_command(generator, by = "labels")
Arguments
generator a generator
by "labels" or "samples" to use gene labels or sample labels as references for edge

identifiers.

26 prepare_labels

Value

NULL (the string with the function calls is printed on the stdout)

Examples

require(dplyr)

example_dataset() %>%
make_generator_stub() %>%
prepare_generator_edge_set_command()

prepare_labels Prepare node labels based on genotypes

Description

Prepare node labels so that each node is labelled with a comma separated list of the alterated genes
representing its associated genotype.

Usage

prepare_labels(samples, genes)

Arguments
samples input dataset (mutational matrix) as matrix
genes list of gene names (in the columns’ order)
Details

Note that after this procedure the user is expected also to run fix_clonal_genotype to also add the
clonal genortype to the mutational matrix if it is not present.
Value

the computed edge list

Examples
require(dplyr)
compact

compactedDataset <- compact_dataset(example_dataset())
samples <- compactedDataset$matrix

save genes' names
genes <- colnames(compactedDataset$matrix)

keep the information on frequencies for further analysis
fregs <- compactedDataset$counts/sum(compactedDataset$counts)

prepare node labels listing the mutated genes for each node
labels <- prepare_labels(samples, genes)

quick_run 27

quick_run Run CIMICE defaults

Description

This function executes CIMICE analysis on a dataset using default settings.

Usage

quick_run(dataset, mode = "CAPRI")

Arguments

dataset a mutational matrix as a (sparse) matrix

mode indicates the used input format. Must be either "CAPRI" or "CAPRIpop"
Value

a list object representing the graph computed by CIMICE with the structure ‘list(topology = g,
weights = W, labels = labels, freqs=freqs)‘

Examples

quick_run(example_dataset())

read Read a "CAPRI" file

Description

Read a "CAPRI" formatted file, as read_CAPRI

Usage
read(filepath)

Arguments

filepath path to file

Value

the described mutational matrix as a (sparse) matrix

Examples

read(system.file("extdata”, "example.CAPRI", package = "CIMICE"”, mustWork = TRUE))

28 read_CAPRIpop

read_CAPRI Read a "CAPRI" file

Description

Read a "CAPRI" formatted file from the file system

Usage
read_CAPRI(filepath)

Arguments

filepath path to file

Value

the described mutational matrix as a (sparse) matrix

Examples

"pathToDataset/myDataset.CAPRI"
read_CAPRI(system.file("extdata”, "example.CAPRI", package = "CIMICE"”, mustWork = TRUE))

read_CAPRIpop Read a "CAPRIpop" file

Description

Read a "CAPRIpop" formatted file from the file system

Usage
read_CAPRIpop(filepath)

Arguments

filepath path to file

Value

a list containing the described mutational matrix as a (sparse) matrix and a list of the frequency of
the genotypes

Examples

"pathToDataset/myDataset.CAPRI"
read_CAPRI(system.file("extdata”, "example.CAPRIpop", package = "CIMICE"”, mustWork = TRUE))

read_CAPRIpop_string

read_CAPRIpop_string Read "CAPRIpop" file from a string

Description

Read a "CAPRIpop" formatted file, from a text string

Usage
read_CAPRIpop_string(txt)

Arguments

txt string in valid "CAPRIpop" format

Value

the described mutational matrix as a (sparse) matrix

Examples

read_CAPRIpop_string("
s\\g A B C D fregs

ST000180.1
S2 1000 0.1
S3100020.2
S410010.3
S51T 101 0.05
S6110180.1
S710110.05
S811010.01
")
read_CAPRI_string Read "CAPRI" file from a string
Description

Read a "CAPRI" formatted file, from a text string

Usage
read_CAPRI_string(txt)

Arguments

txt string in valid "CAPRI" format

Value

the described mutational matrix as a (sparse) matrix

30 read_MAF

Examples

read_CAPRI_string("

s\\g ABCD
S1 0001

S2 1000

S31000

S41001

S51 101

S61101

S71011

S81 101

")

read_MAF Create mutational matrix from MAF file
Description

Read a MAF (Mutation Annotation Format) file and create a Mutational Matrix combining gene
and sample IDs.

Usage
read_MAF (path, ...)
Arguments
path path to MAF file
other maftools::mutCountMatrix arguments
Value

the mutational (sparse) matrix associated to the MAF file

Examples

read_MAF (system.file("extdata"”, "paac_jhu_2014_500.maf", package = "CIMICE", mustWork = TRUE))

read_matrix 31

read_matrix Read dataset from an R matrix

Description

also converts that matrix to a sparse matrix

Usage

read_matrix(mat)

Arguments

mat a boolean mutational matrix

Value

the sparse mutational matrix to be used as CIMICE’s input

Examples

m <- matrix(c(9,0,1,1,0,1,1,1,1), ncol=3)
colnames(m) <- c("A","B","C")

rownames(m) <- c("S1", "S2", "S3")
read_matrix(m)

remove_transitive_edges
Remove transitive edges from an edgelist

Description
Remove transitive edges from an edgelist. This procedure is temporary to cover a bug in ’relations’
package.

Usage

remove_transitive_edges(E)

Arguments

E edge list, built from "build_topology_subset"

Value

a new edgelist without transitive edges (as a N*2 matrix)

Examples

1 <- list(c(1,2),c(2,3), c(1,3))
remove_transitive_edges(1l)

32

select_genes_on_mutations

sample_mutations_hist Histogram of samples’ frequencies

Description

Create the histogram of the samples’ mutational frequencies

Usage

sample_mutations_hist(mutmatrix, binwidth = 1)

Arguments

mutmatrix input dataset (mutational matrix)

binwidth binwidth parameter for the histogram (as in ggplot)
Value

the newly created histogram

Examples

sample_mutations_hist(example_dataset(), binwidth = 10)

select_genes_on_mutations
Filter dataset by genes’ mutation count

Description

Dataset filtering on genes, based on their mutation count

Usage

select_genes_on_mutations(mutmatrix, n, desc = TRUE)

Arguments

mutmatrix input dataset (mutational matrix) to be reduced

n number of genes to be kept

desc TRUE: select the n least mutated genes, FALSE: select the n most mutated genes
Value

the modified dataset (mutational matrix)

select_samples_on_mutations

Examples

keep information on the 100 most mutated genes
select_genes_on_mutations(example_dataset(), 5)

keep information on the 100 least mutated genes
select_genes_on_mutations(example_dataset(), 5, desc = FALSE)

33

select_samples_on_mutations
Filter dataset by samples’ mutation count

Description

Dataset filtering on samples, based on their mutation count

Usage

select_samples_on_mutations(mutmatrix, n, desc = TRUE)

Arguments

mutmatrix input dataset (mutational matrix) to be reduced

n number of samples to be kept

desc T: select the n least mutated samples, F: select the n most mutated samples
Value

the modified dataset (mutational matrix)

Examples

require(dplyr)

keep information on the 5 most mutated samples

select_samples_on_mutations(example_dataset(), 5)

keep information on the 5 least mutated samples

select_samples_on_mutations(example_dataset(), 5, desc = FALSE)

combine selections

select_samples_on_mutations(example_dataset() , 5, desc = FALSE) %>%
select_genes_on_mutations(5)

34 set_generator_edges

set_generator_edges Add edge weights to a generator

Description

Add edge weights to a generator

Usage
set_generator_edges(generator, f_t_w_list, by = "labels"”)
Arguments
generator a generator
f_t_w_list a list of triplets (from, to, list), the triplets must not be nested in the list. For
example list("A","B",0.3, "B", "C", 0.2) is a valid input.
by "labels" or "samples" to use gene labels or sample labels as references for edge
identifiers.
Value

the generator with the modified edges (invalid edges are ignored)

Examples
require(dplyr)

example_dataset() %»>%
make_generator_stub() %>%
set_generator_edges(

list(
"D" A, D", 1,
HAII, HA’ DIY’ 1 s

"A, D", "A, C, D", 1,
"A, D", "A, B, D", 1,
"Clonal”, "D", 1,
"Clonal”, "A", 1,
"b”, "D", 1,
AT, TAT, 1,
"A, D", "A, D", 1,
"A, C, D", "A, C, D", 1,
"A, B, D", "A, B, D", 1,
"Clonal”, "Clonal”, 1

)

simulate_generator

35

simulate_generator Create datasets from generators

Description

Simulate the DTMC associated to the generator to create a dataset that reflects the genotypes of
‘times* cells, sampled after ‘time_ticks‘ passages.

Usage

simulate_generator(

generator,
time_ticks,
times,

starting_label = "Clonal”,
by = "labels"”,

mode = "full”

Arguments

generator
time_ticks
times
starting_label
by

mode

Value

a generator

number of steps (updates) of the DTMC associated to the generato
number of sumlated cells

node from which to start the simulation

"labels" or "samples" to use gene labels or sample labels as references to identify
the ‘starting_label“’s node

"full" to generate a matrix with ‘times* genotypes, "compacted” to *efficiently*
create an already compacted dataset (a dataset showing the genotypes and their
respective frequencies)

the simulated dataset

Examples

require(dplyr)

example_dataset ()

make_generator_

%>%
stub() %>%

set_generator_edges(

list(
"D, "A, D", 1,
"AT.MAL D", 1,
"A, D", "A, C, D", 1,
"A, D", "A, B, D", 1,

"Clonal”, "D", 1 ,
"Clonal”, "A", 1,

npn npn
D", "D", 1
naAn AN

A", AT

’

’

36

"A, D", "A, D", 1,
"A, C, D", "A, C, D", 1,
"A, B, D", "A, B, D", 1,
"Clonal”, "Clonal”, 1
)) %>%
finalize_generator %>%
simulate_generator(3, 10)

update_df

to_dot Dot graph output

Description

Represents this graph in dot format (a textual output format)

Usage
to_dot(out, ...)
Arguments
out the output object of CIMICE (es, from quick run)
other arguments for format_labels
Value

a string representing the graph in dot format

Examples

to_dot(quick_run(example_dataset()))

update_df Dataset line by line construction: add a sample

Description

Add a sample (a row) to an existing dataset. This procedure is meant to be used with the

Usage
update_df (mutmatrix, sampleName, ...)

Arguments
mutmatrix an existing (sparse) matrix (mutational matrix)
sampleName the row (sample) name

sample’s genotype (0/1 numbers)

update_df

Value

the modified (sparse) matrix (mutational matrix)

Examples

require(dplyr)

make_dataset (APC,P53,KRAS) %>%
update_df ("S1", 1, 0, 1) %>%
update_df("s2", 1, 1, 1)

37

Index

annotate_mutational_matrix, 3

binary_radix_sort, 4
build_subset_graph, 4
build_topology_subset, 5

chunk_reader, 6

CIMICE, 6

compact_dataset, 7
compute_weights_default, 10
computeDWNW, 7
computeDWNW_aux, 8
computeUPW, 9
computeUPW_aux, 10
corrplot_from_mutational_matrix, 11
corrplot_genes, 11
corrplot_samples, 12

dataset_preprocessing, 12
dataset_preprocessing_population, 13
draw_ggraph, 14

draw_networkD3, 14
draw_visNetwork, 15

example_dataset, 15
example_dataset_withFregs, 16

finalize_generator, 16
fix_clonal_genotype, 17
format_labels, 18

gene_mutations_hist, 18

get_no_of_children, 19

graph_non_transitive_subset_topology,
20

make_dataset, 20
make_generator_stub, 21
make_labels, 21

normalizeDWNW, 22
normalizeUPW, 23

perturb_dataset, 23
plot_generator, 24

38

prepare_generator_edge_set_command, 25
prepare_labels, 26

quick_run, 27

read, 27

read_CAPRI, 28
read_CAPRI_string, 29
read_CAPRIpop, 28
read_CAPRIpop_string, 29
read_MAF, 30

read_matrix, 31
remove_transitive_edges, 31

sample_mutations_hist, 32
select_genes_on_mutations, 32
select_samples_on_mutations, 33
set_generator_edges, 34
simulate_generator, 35

to_dot, 36

update_df, 36

	annotate_mutational_matrix
	binary_radix_sort
	build_subset_graph
	build_topology_subset
	chunk_reader
	CIMICE
	compact_dataset
	computeDWNW
	computeDWNW_aux
	computeUPW
	computeUPW_aux
	compute_weights_default
	corrplot_from_mutational_matrix
	corrplot_genes
	corrplot_samples
	dataset_preprocessing
	dataset_preprocessing_population
	draw_ggraph
	draw_networkD3
	draw_visNetwork
	example_dataset
	example_dataset_withFreqs
	finalize_generator
	fix_clonal_genotype
	format_labels
	gene_mutations_hist
	get_no_of_children
	graph_non_transitive_subset_topology
	make_dataset
	make_generator_stub
	make_labels
	normalizeDWNW
	normalizeUPW
	perturb_dataset
	plot_generator
	prepare_generator_edge_set_command
	prepare_labels
	quick_run
	read
	read_CAPRI
	read_CAPRIpop
	read_CAPRIpop_string
	read_CAPRI_string
	read_MAF
	read_matrix
	remove_transitive_edges
	sample_mutations_hist
	select_genes_on_mutations
	select_samples_on_mutations
	set_generator_edges
	simulate_generator
	to_dot
	update_df
	Index

