Package ‘BANDITS’

January 19, 2026
Type Package
Title BANDITS: Bayesian ANalysis of DIfferenTial Splicing
Version 1.26.0
Author Simone Tiberi [aut, cre].
Maintainer Simone Tiberi <simone.tiberi@unibo.it>

Description BANDITS is a Bayesian hierarchical model for detecting differential splic-
ing of genes and transcripts,
via differential transcript usage (DTU), between two or more conditions.
The method uses a Bayesian hierarchical framework, which allows for sample specific proportions
in a Dirichlet-Multinomial model, and samples the allocation of fragments to the transcripts.
Parameters are inferred via Markov chain Monte Carlo (MCMC) tech-
niques and a DTU test is performed
via a multivariate Wald test on the posterior densities for the average relative abundance of tran-
scripts.

biocViews DifferentialSplicing, AlternativeSplicing, Bayesian,
Genetics, RNASeq, Sequencing, DifferentialExpression,
GeneExpression, MultipleComparison, Software, Transcription,
StatisticalMethod, Visualization

License GPL (>= 3)
Depends R (>=4.3.0)

Imports Rcpp, doRNG, MASS, data.table, R.utils, doParallel, parallel,
foreach, methods, stats, graphics, ggplot2, DRIMSeq,
BiocParallel

LinkingTo Rcpp, ReppArmadillo

Suggests knitr, rmarkdown, testthat, tximport, BiocStyle,
GenomicFeatures, Biostrings

SystemRequirements C++17
VignetteBuilder knitr
RoxygenNote 7.3.2
ByteCompile true

URL https://github.com/SimoneTiberi/BANDITS

BugReports https://github.com/SimoneTiberi/BANDITS/issues
git_url https://git.bioconductor.org/packages/BANDITS
git_branch RELEASE_3_22

https://github.com/SimoneTiberi/BANDITS
https://github.com/SimoneTiberi/BANDITS/issues

git_last_commit eafeel4

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22
Date/Publication 2026-01-19

Contents

BANDITS-package
BANDITS data-class
BANDITS test-class

BANDITS-package

create_data
eff_len_compute .
filter_genes
filter_transcripts . .
gene_tr_id
input_data
plot_precision . . .
precision.
prior_precision . .
results
test. DTU

Index

BANDITS-package

BANDITS: Bayesian ANalysis of DlfferenTial Splicing

Description

BANDITS is a Bayesian hierarchical model for detecting differential splicing of genes and tran-
scripts, via differential transcript usage (DTU), between two or more conditions. The method uses
a Bayesian hierarchical framework, which allows for sample specific proportions in a Dirichlet-
Multinomial model, and samples the allocation of fragments to the transcripts. Parameters are
inferred via Markov chain Monte Carlo (MCMC) techniques and a DTU test is performed via a
multivariate Wald test on the posterior densities for the average relative abundance of transcripts.

Questions relative to BANDITS should be either written to the Bioconductor support site, tagging
the question with "TBANDITS’, or reported as a new issue at BugReports.

To access the vignettes, type: browseVignettes("BANDITS").

Author(s)

Simone Tiberi [aut, cre].

Maintainer: Simone Tiberi <simone.tiberi @unibo.it>

https://support.bioconductor.org
https://github.com/SimoneTiberi/BANDITS/issues

BANDITS_data-class 3

BANDITS_data-class BANDITS_data class

Description

BANDITS_data contains all the information required to perform differential transcript usage (DTU).
BANDITS_data associates each gene (genes), to its transcript ids (transcripts), effective transcript
lengths (effLen), equivalence classes (classes) and respective counts (counts). The same structure
is also used for groups of genes with reads/fragments compatible with >1 gene (with uniqueld
== FALSE); in this case the ’genes’ field contains all the genes ids in the group. Created via
create_data.

Usage

S4 method for signature 'BANDITS_data'
show(object)

Arguments

object a ’BANDITS_data’ object.

Value

* show(object): returns the number of genes and transcripts in the BANDITS_data object.

Slots
genes list of gene names: each element is a vector of 1 or more gene names indicating the genes
to be analyzed together.

transcripts list of transcript names: each element is a vector of 1 or more transcript names
indicating the transcripts matching the gene names in the corresponding element of @genes
object.

effLen list of transcript effective lengths: each element is a vector of 1 or more numbers, in-
dicating the effective length of the transcripts in the corresponding element of @transcripts
object.

classes list of matrices: the (i,j) element of each matrix is 1 if the i-th transcript is present in the
j-th equivalence class, 0 otherwise.

counts list of matrices: the (i,j) element indicates the reads/fragments compatible with the i-th
equivalence class in sample j.

uniqueld logical, it indicates if the element contains one gene to be analyzed alone (TRUE), or
more genes to be analyzed jointly (FALSE).

all_genes vector, it lists all the genes to be analyzed (with at least 2 transcripts).

Author(s)

Simone Tiberi <simone.tiberi@uzh.ch>

See Also

create_data, filter_transcripts, eff_len_compute

4 BANDITS_test-class

Examples

load the pre-computed data:
data("input_data"”, package = "BANDITS")
show(input_data)

BANDITS_test-class BANDITS _test class

Description

BANDITS_test contains the results of the differential transcript usage (DTU) test. BANDITS_test
is organized in three data.frames containing: gene-level results, transcript-level results and con-
vergence diagnostics of the Markov chain Monte Carlo (MCMC) posterior chains. Created via
test_DTU. To test for convergence, we use Heidelberger and Welch’s convergence diagnostic, im-
plemented in coda: :heidel.diag, to test for the stationarity of the chain for the full log-posterior
density; we use a 0.01 threshold on the p.value to reject the null hypotehsis of stationarity.

Usage

S4 method for signature 'BANDITS_test'
show(object)

S4 method for signature 'BANDITS_test'
convergence(x)

S4 method for signature 'BANDITS_test'
top_genes(x, n = Inf, sort_by_g = "p.value")

S4 method for signature 'BANDITS_test'
top_transcripts(x, n = Inf, sort_by_tr = "gene")

S4 method for signature 'BANDITS_test'
gene(x, gene_id)

S4 method for signature 'BANDITS_test'
transcript(x, transcript_id)

S4 method for signature 'BANDITS_test'
plot_proportions(x, gene_id, CI = TRUE, CI_level = 0.95)

Arguments
object, x a ’BANDITS_test’ object.
n the number of genes or transcripts to report. By default n = Inf and all results
will be reported.
sort_by_g "p.value" for sorting results according to gene-level significance (i.e., p.value);

"DTU_measure" for sorting results according to the ’DTU_measure’ (check the
vignette for details).

BANDITS_ test-class 5

sort_by_tr "gene" for sorting results according to gene-level significance (i.e., p.value);
"transcript” for sorting results according to transcript-level significance (i.e.,
p-value).

gene_id a character string or vector indicating the gene or genes whose results should be
retrieved.

transcript_id a character string or vector indicating the transcript or transcripts whose results
should be retrieved.

CI a logical element indicating whether to also plot confidence boundaries (TRUE)
or not (FALSE).
CI_level a number between 0 and 1, indicating the level of the confidence interval to plot.
Value

* show(object): prints the number of gene and transcript level results in the BANDITS_test
object.

* top_genes(x, n=1Inf, sort_by_g="p.value"): returns the gene-level results of the DTU
test for the top ’n’ significant genes. By default n = Inf and all results will be reported.
sort_by_g = "gene" for sorting results according to gene-level significance; sort_by_g = "DTU_measure"
for sorting results according to the 'DTU_measure’.

e top_transcripts(x, n=1Inf, sort_by_tr = "gene"): returns the transcript-level results of
the DTU test for the top 'n’ significant genes. By default n = Inf and all results will be re-
ported. sort_by_tr = "gene" for sorting results according to gene-level significance; sort_by_tr
= "transcript” for sorting results according to transcript-level significance.

* convergence(x): returns the convergence diagnostic of the posterior MCMC chains for every
gene.

* gene(x, gene_id): returns a list with all results for the gene(s) specified in *gene_id’: gene
results, corresponding transcript results and convergence diagnostic.

* transcript(x, transcript_id): returns a list with all results for the trancript specified in
“transcript_id’: transcript results, corresponding gene results and convergence diagnostic.

* plot_proportions(x, gene_id, CI = TRUE, CI_level =0.95): plots the posterior means
of the average transcripts relative expression (i.e., the proportions) of each condition, for the
gene specified in 'gene_id’. If CI’ is TRUE, a profile Wald type confidence interval will
also be plotted for each transcript estimated proportion; the level of the confidence interval is
specified by *CI_level’.

Slots

Gene_results a data.frame containing the gene-level results of the DTU test, structured in the
following columns:
* Gene_id contains the gene names;
* p.values is the gene-level p.values of the DTU test;
¢ adj.p.values is the Benjamini-Hochberg adjusted p.values (via p.adjust);

* p.values_inverted (only available for 2-group comparisons) is a conservative p.value, ac-
counting for the inversion of the dominant transcript between conditions: p.values_inverted
= p.values, if the dominant transcript varies between conditions, and p.values_inverted =
sqrt(p.values) if both conditions have the same dominant transcript;

¢ adj.p.values_inverted (only available for 2-group comparisons) is the Benjamini-Hochberg
adjusted p.values_inverted, via p.adjust;

BANDITS_test-class

DTU_measure (only available for 2-group comparisons) represents a measure of the in-
tensity of changes between conditions. This measure ranges between 0, when proportions
are identical between groups, and 2, when an isoform is always expressed in group A and
a different transcript is always chosen in group B;

Mean log-prec "group_name" indicates the posterior mean of the logarithm of the Dirich-
let precision parameter in group "group_name". The precision parameter models the
degree of over-dispersion between samples: the higher the precision parameter (or its
logarithm), the lower the sample-to-sample variability.

SD log-prec "group_name" indicates the standard deviation of the logarithm of the Dirich-
let precision parameter in group "group_name".

Transcript_results adata.frame containing the transcript-level results of the DTU test, struc-
tured in the following columns:

Gene_id contains the gene names;

Transcript_id contains the transcript names;

p-values is the transcript-level p.values of the DTU test;

adj.p.values is the Benjamini-Hochberg adjusted p.values (via p.adjust);
Max_Gene_Tr.p.val is a conservative p.value and represents the maximum between the
transcript p.value and corresponding gene p.value;

Max_Gene_Tr.Adj.p.val is the Benjamini-Hochberg adjusted Max_Gene_Tr.p.val (via
p.adjust);

Mean "group_name" indicates the posterior mean of the average relative abundance of
the transcript in group "group_name" (an NaN value indicates that no data was available
for a group to estimate parameters);

SD "group_name" indicates the standard deviation of the average relative abundance of
the transcript in group "group_name" (an NaN value indicates that no data was available
for a group to estimate parameters); this column indicates the variability in the mean esti-
mate and is used to plot a Wald type confidence interval for the mean relative abundance
via plot_proportions.

Convergence adata.frame containing the convercence diagnostics of the DTU test, structured in
the following columns:

L]

samples_

Gene_id contains the gene names;

converged is 1 if convergence was reached, O otherwise;

burn_in indicates what fraction of the chain was removed to ensure convergence (exclud-
ing the burn_in parameter specified in test_DTU.

design a data.frame containing the design of the experiment, with one row for each

sample and two columns with names ’sample_id’ and ’group’, specifying the id and group of
each sample, respectively. It is provided by the user to test_DTU.

Author(s)

Simone Tiberi <simone.tiberi@uzh.ch>

See Also

test_DTU, create_data, BANDITS_data

Examples

load the pre-computed results:
data("results”, package = "BANDITS")

create_data

show(results)

Visualize the most significant Genes, sorted by gene level significance.
head(top_genes(results))

Alternatively, gene-level results can also be sorted according to DTU_measure,
which is a measure of the strength of the change between the

average relative abundances of the two groups.

head(top_genes(results, sort_by = "DTU_measure"))

Visualize the most significant transcripts, sorted by transcript level significance.
head(top_transcripts(results, sort_by = "transcript”))

Visualize the convergence output for the most significant genes,
sorted by gene level significance.
head(convergence(results))

We can further use the 'gene' function to gather all output for a specific gene:
gene level, transcript level and convergence results.

top_gene = top_genes(results, n = 1)

gene(results, top_gene$Gene_id)

Similarly we can use the 'transcript function to gather all output
for a specific transcript.

top_transcript = top_transcripts(results, n = 1)

transcript(results, top_transcript$Transcript_id)

#Finally, we can plot the estimated average transcript relative expression
in the two groups for a specific gene via 'plot_proportions'.
plot_proportions(results, top_gene$Gene_id)

create_data Create a 'BANDITS_data’ object

Description

create_data imports the equivalence classes and create a "' BANDITS_data’ object.

Usage

create_data(
salmon_or_kallisto,
gene_to_transcript,
salmon_path_to_eq_classes = NULL,
kallisto_equiv_classes = NULL,
kallisto_equiv_counts = NULL,
kallisto_counts = NULL,
eff_len,
n_cores = NULL,
transcripts_to_keep = NULL,
max_genes_per_group = 50

8 create_data

Arguments

salmon_or_kallisto
a character string indicating the input data: ’salmon’ or “kallisto’.

gene_to_transcript
a matrix or data.frame with a list of gene-to-transcript correspondances. The
first column represents the gene id, while the second one contains the transcript
id.

salmon_path_to_eq_classes
(for salmon input only) a vector of length equals to the number of samples: each
element indicates the path to the equivalence classes of the respective sample
(computed by salmon).

kallisto_equiv_classes
(for kallisto input only) a vector of length equals to the number of samples: each
element indicates the path to the equivalence classes (’.ec’ files) of the respective
sample (computed by kallisto).

kallisto_equiv_counts
(for kallisto input only) a vector of length equals to the number of samples: each
element indicates the path to the counts of the equivalence classes (’.tsv’ files)
of the respective sample (computed by kallisto).

kallisto_counts
(for kallisto input only) a matrix or data.frame, with 1 column per sample and
1 row per transcript, containing the estimated abundances for each transcript in
each sample, computed by kallisto. The matrix must be unfiltered and the order
or rows must be unchanged.

eff_len a vector containing the effective length of transcripts; the vector names indicate
the transcript ids. Ideally, created via eff_len_compute.

n_cores the number of cores to parallelize the tasks on. It is highly suggested to use at
least one core per sample (default if not specificied by the user).

transcripts_to_keep
a vector containing the list of transcripts to keep. Ideally, created via filter_transcripts.

max_genes_per_group
an integer number specifying the maximum number of genes that each group can
contain. When equivalence classes contain transcripts from distinct genes, these
genes are analyzed together. For computational reasons, max_genes_per_group’
sets a limit to the number of genes that each group can contain.

Value

A BANDITS_data object.

Author(s)

Simone Tiberi <simone. tiberi@uzh.ch>

See Also

eff_len_compute, filter_transcripts, filter_genes, BANDITS _data

eff_len_compute 9

Examples

specify the directory of the internal data:
data_dir = system.file("extdata”, package = "BANDITS")

load gene_to_transcript matching:
data("gene_tr_id", package = "BANDITS")

Specify the directory of the transcript level estimated counts.
sample_names = paste@("”sample”, seq_len(4))
quant_files = file.path(data_dir, "STAR-salmon”, sample_names, "quant.sf")

Load the transcript level estimated counts via tximport:
library(tximport)

txi = tximport(files = quant_files, type = "salmon"”, txOut = TRUE)
counts = txi$counts

Optional (recommended): transcript pre-filtering

transcripts_to_keep = filter_transcripts(gene_to_transcript = gene_tr_id,
transcript_counts = counts,
min_transcript_proportion = 0.01,
min_transcript_counts = 10,
min_gene_counts = 20)

compute the Median estimated effective length for each transcript:
eff_len = eff_len_compute(x_eff_len = txi$length)

specify the path to the equivalence classes:
equiv_classes_files = file.path(data_dir, "STAR-salmon"”, sample_names, "aux_info", "eq_classes.txt")

create data from 'salmon' and filter internally lowly abundant transcripts:
input_data = create_data(salmon_or_kallisto = "salmon”,
gene_to_transcript = gene_tr_id,
salmon_path_to_eq_classes = equiv_classes_files,
eff_len = eff_len,
n_cores = 2,
transcripts_to_keep = transcripts_to_keep)
input_data

create data from 'kallisto' and filter internally lowly abundant transcripts:
kallisto_equiv_classes = file.path(data_dir, "kallisto”, sample_names, "pseudoalignments.ec")
kallisto_equiv_counts = file.path(data_dir, "kallisto”, sample_names, "pseudoalignments.tsv")

input_data_2 = create_data(salmon_or_kallisto = "kallisto”,
gene_to_transcript = gene_tr_id,
kallisto_equiv_classes = kallisto_equiv_classes,
kallisto_equiv_counts = kallisto_equiv_counts,
kallisto_counts = counts,
eff_len = eff_len, n_cores = 2,
transcripts_to_keep = transcripts_to_keep)

input_data_2

eff_len_compute Compute the median effective length of transcripts.

10 filter_genes

Description
eff_len_compute inputs the estimated effective length of transcripts from every sample, and com-
putes the median effective length of each transcript across samples.

Usage

eff_len_compute(x_eff_len)

Arguments
x_eff_len is a list: each element of the list refers to a specific sample and is a matrix
or data.frame with the estimated effective length under the column ’Effective-
Length’ and the transcript name under the column "Name’.
Value

A vector containing the effective length of transcripts; the vector names indicate the transcript ids.

Author(s)

Simone Tiberi <simone. tiberi@uzh.ch>

See Also

filter_transcripts, create_data

Examples

specify the directory of the internal data:
data_dir = system.file("extdata”, package = "BANDITS")

Specify the directory of the transcript level estimated counts.
quant_files = file.path(data_dir, "STAR-salmon”, paste@("sample”, seq_len(4)), "quant.sf")

Load the transcript level estimated counts via tximport:
library(tximport)
txi = tximport(files = quant_files, type = "salmon"”, txOut = TRUE)

compute the Median estimated effective length for each transcript:
eff_len = eff_len_compute(x_eff_len = txi$length)
head(eff_len)

filter_genes Filter lowly abundant genes.

Description

filter_genes filters genes, according to the overall number of counts (across all samples) com-
patible with the gene. The filtering also applies to groups of genes with reads/fragments compatible
with >1 gene; in this case, the number of counts considered is across all genes in the group.

filter_transcripts 11

Usage

filter_genes(BANDITS_data, min_counts_per_gene = 10)

Arguments
BANDITS_data a ’BANDITS_data’ object, created with the create_data function.
min_counts_per_gene
the minimum number of counts compatible with a gene (across all samples).
Details
The function inputs a " BANDITS_data’ object, and returns again a 'BANDITS_data’ object after
filtering genes and groups of genes.
Value

A BANDITS_data object.

Author(s)

Simone Tiberi <simone.tiberi@uzh.ch>

See Also

filter_transcripts, create_data, BANDITS_data

Examples

load the pre-computed data:
data("input_data"”, package = "BANDITS")
input_data

Filter lowly abundant genes:
input_data = filter_genes(input_data, min_counts_per_gene = 20)

filter_transcripts Filter lowly abundant transcripts.

Description

filter_transcripts filters transcripts, before loading the data, according to estimated transcript
level counts. The function outputs a vector containing the list of transcripts which respect the filter-
ing criteria across all samples (i.e., min_transcript_proportion, min_transcript_counts and min_gene_counts).

Usage

filter_transcripts(
gene_to_transcript,
transcript_counts,
min_transcript_proportion = 9.01,
min_transcript_counts = 1,
min_gene_counts = 10

12 filter_transcripts

Arguments

gene_to_transcript
a matrix or data.frame with a list of gene-to-transcript correspondances. The
first column represents the gene id, while the second one contains the transcript
id.

transcript_counts

a matrix or data.frame, with 1 column per sample and 1 row per transcript,

containing the estimated abundances for each transcript in each sample.
min_transcript_proportion

the minimum relative abundance (i.e., proportion) of a transcript in a gene.
min_transcript_counts

the minimum overall abundance of a transcript (adding counts from all samples).
min_gene_counts

the minimum overall abundance of a gene (adding counts from all samples).

Details

Transcript pre-filtering is highly suggested: it both improves the performance of the method and
decreases its computational cost.

Value

A vector containing the list of transcripts which respect the filtering criteria.

Author(s)

Simone Tiberi <simone.tiberi@uzh.ch>

See Also

filter_genes, create_data, BANDITS _data

Examples

specify the directory of the internal data:
data_dir = system.file("extdata”, package = "BANDITS")

load gene_to_transcript matching:
data("gene_tr_id", package = "BANDITS")

Load the transcript level estimated counts via tximport:

library(tximport)

quant_files = file.path(data_dir, "STAR-salmon"”, paste@("sample”, seq_len(4)), "quant.sf")
txi = tximport(files = quant_files, type = "salmon”, txOut = TRUE)

counts = txi$counts

transcript pre-filtering:

transcripts_to_keep = filter_transcripts(gene_to_transcript = gene_tr_id,
transcript_counts = counts,
min_transcript_proportion = 0.01,
min_transcript_counts = 10,
min_gene_counts = 20)

head(transcripts_to_keep)

gene_tr_id 13

gene_tr_id Gene-transcript matching

Description

Gene-transcript matching

Arguments
gene_tr_id adata. frame containing the matching between gene (1st column) and transcript
identifiers (2nd column). The gtf file used was downloaded from the ARMOR
github repository here.
Author(s)

Simone Tiberi <simone.tiberi@uzh.ch>

Examples

Compute the 'gene_tr_id' object from the gtf file as shown in the vignettes,

see: browseVignettes("BANDITS").

suppressMessages(library(GenomicFeatures))

tx = makeTxDbFromGFF ("Homo_sapiens.GRCh38.93.1.1.10M.gtf")

ss = unlist(transcriptsBy(tx, by="gene"))

gene_tr_id_gtf = data.frame(gene_id = names(ss), transcript_id = ss$tx_name)

gene_tr_id_gtf = gene_tr_id_gtf[rowSums(is.na(gene_tr_id_gtf)) == 0,] # remove eventual NA's
gene_tr_id_gtf = unique(gene_tr_id_gtf) # remove eventual duplicated rows

load the Gene-Transcript data.frame and visualize its top
data(gene_tr_id, package = "BANDITS")
head(gene_tr_id)

input_data A BANDITS_data object, generated with create_data

Description

A BANDITS_data object, generated with create_data

Arguments

input_data a BANDITS_data object, generated via create_data.

Author(s)

Simone Tiberi <simone. tiberi@uzh.ch>

See Also

create_data, BANDITS_data

https://github.com/csoneson/ARMOR/blob/master/example_data/reference/Ensembl.GRCh38.93/Homo_sapiens.GRCh38.93.1.1.10M.gtf

14 plot_precision

Examples

Object 'input_data' is generated via 'create_data' as shown in the vignettes:
see browseVignettes("BANDITS").

load the pre-computed data:
data("input_data"”, package = "BANDITS")
input_data

plot_precision Plot the log-precision estimates

Description

plot_precision plots a histogram of the estimates for the log-precision parameter of the Dirichlet-
Multinomial distribution, obtained via prior_precision. The solid line represents the normal prior
for the log-precision parameter.

Usage

plot_precision(prior)

Arguments

prior the prior of the log-precision parameter, computed via prior_precision.

Value

A plot.

Author(s)

Simone Tiberi <simone.tiberi@uzh.ch>

See Also

test_DTU, prior_precision

Examples

load the pre-computed precision estimates:
data(precision, package = "BANDITS")

Plot the histogram of the genewise log-precision estimates.

The black solid line represents the normally distributed prior distribution
for the log-precision parameter.

plot_precision(precision)

precision 15

precision Estimates for the log-precision parameter, generated with
prior_precision

Description

Estimates for the log-precision parameter, generated with prior_precision

Arguments

precision a list, generated via prior_precision, with two elements:

* ’prior’, a numeric vector containing the mean and standard deviation prior
estimates for the log-precision parameter of the Dirichlet-multinomial dis-
tribution;

* ’genewise_log_precision’, a numeric vector containing the gene-wise pre-
cision estimates of the log-precision parameter of the Dirichlet-multinomial
distribution.

Author(s)

Simone Tiberi <simone.tiberi@uzh.ch>

See Also

prior_precision, plot_precision

Examples

Object 'precision' is generated via 'prior_precision' as shown in the vignettes:
see browseVignettes("BANDITS").

load the pre-computed precision estimates:
data(precision, package = "BANDITS")

precision$prior
head(precision$genewise_log_precision)

prior_precision Infer an informative prior for the precision

Description

prior_precision uses DRIMSeq’s pipeline to infer an informative prior for the precision parameter
of the Dirichlet-Multinomial distribution. The function computes the genewise estimates for the
precision via DRIMSeq: : dmPrecision, and calculates the mean and standard deviation of the log-
precision estimates.

16 prior_precision

Usage

prior_precision(
gene_to_transcript,
transcript_counts,
n_cores = 1,
transcripts_to_keep = NULL,
max_n_genes_used = 100

Arguments

gene_to_transcript
a matrix or data.frame with a list of gene-to-transcript correspondances. The
first column represents the gene id, while the second one contains the transcript
id.
transcript_counts
a matrix or data.frame, with 1 column per sample and 1 row per transcript,
containing the estimated abundances for each transcript in each sample.
n_cores the number of cores to parallelize the tasks on.
transcripts_to_keep
a vector containing the list of transcripts to keep. Ideally, created via filter_transcripts.
max_n_genes_used
the maximum number of genes to compute the prior on. First, genes with at
least 2 transcripts are selected. Then, if more than max_n_genes_used’ such
genes are available, 'max_n_genes_used’ of these genes are sampled at ran-
dom and used to calculate the prior of the precision parameter. A smaller
’max_n_genes_used’ (minimum 100) will lead to faster but more approximate
prior estimates.

Value

A list with 2 objects containing:

e prior: a vector containing the mean and standard deviation of the log-precision, used to for-
mulate an informative prior in test_DTU;

» genewise_log_precision: a numeric vector with the individual genewise estimates for the log-
precision.

Author(s)

Simone Tiberi <simone.tiberi@uzh.ch>

See Also

test_DTU, plot_precision

Examples

specify the directory of the internal data:
data_dir = system.file("extdata"”, package = "BANDITS")

load gene_to_transcript matching:
data("gene_tr_id", package = "BANDITS")

results 17

Load the transcript level estimated counts via tximport:

library(tximport)

quant_files = file.path(data_dir, "STAR-salmon"”, paste@("sample”, seq_len(4)), "quant.sf")
txi = tximport(files = quant_files, type = "salmon"”, txOut = TRUE)

counts = txi$counts

Optional (recommended): transcript pre-filtering

transcripts_to_keep = filter_transcripts(gene_to_transcript = gene_tr_id,
transcript_counts = counts,
min_transcript_proportion = 0.01,
min_transcript_counts = 10,
min_gene_counts = 20)

Infer an informative prior for the precision parameter
Use the same filtering criteria as in 'create_data', by choosing the same argument for 'transcripts_to_keep'.
If transcript pre-filtering is not performed, leave 'transcripts_to_keep' unspecified.
set.seed(61217)
precision = prior_precision(gene_to_transcript = gene_tr_id, transcript_counts = counts,
n_cores = 2, transcripts_to_keep = transcripts_to_keep)
precision$prior
head(precision$genewise_log_precision)

results Results of the DTU test, generated with test_DTU

Description

Results of the DTU test, generated with test_DTU

Arguments
results a BANDITS_test object containing the results of the DTU test, generated with
test_DTU.
Author(s)

Simone Tiberi <simone.tiberi@uzh.ch>

See Also

test_DTU, BANDITS_test

Examples

Object 'results' is generated via 'test_DTU' as shown in the vignettes:
see browseVignettes("BANDITS").

load the pre-computed results:
data("results”, package = "BANDITS")
results

18

test DTU

test_DTU

Perform differential splicing

Description

test_DTU performs differential splicing, via differential transcript usage (DTU), between 2 or more
groups. Parameters are inferred via Markov chain Monte Carlo (MCMC) techniques and a DTU

test is performed

via a multivariate Wald test on the posterior densities for the average relative

abundance of transcripts. Warning: the samples in samples_design must have the same order as
those in the ’path_to_eq_classes’ parameter of the create_data function.

Usage

test_DTU(

BANDITS_data
precision =
R = 10%4,

burn_in = 2
samples_desi
group_col_na
n_cores = 1,
gene_to_tran
theshold_pva

Arguments

BANDITS_data
precision
R

burn_in

samples_design

group_col_name

n_cores
gene_to_transc

’

NULL,

* 1073,

gn,
me = "group”,

script,
1 =0.1

a ’BANDITS_data’ object.
a vector with the mean and standard deviation of the log-precision parameter.

the number of iterations for the MCMC algorithm (after the burn-in). Min
1074, Albeit no difference was observed in simulation studies when increas-
ing 'R’ above 10”4, we encourage users to possibly use higher values of R (e.g.,
2*1074), if the computational time allows it, particularly for comparisons be-
tween 3 or more groups.

the length of the burn-in to be discarded (before convergence is reached). Min
2*1073. Albeit no difference was observed in simulation studies when increas-
ing burn_in’ above 2*1073, we encourage users to possibly use higher values
of R (e.g., double) if the computational time allows it.

a data.frame indicating the design of the experiment with one row for each
sample: samples_design must contain a column with the sample id and one with
the group id. Warning: the samples in samples_design must have the same order
as those in the ’path_to_eq_classes’ parameter of the create_data function.

the name of the column of ’samples_design’ containing the group id. By default
group_col_name = "group".
the number of cores to parallelize the tasks on.
ript
a matrix or data.frame with a list of gene-to-transcript correspondances. The

first column represents the gene id, while the second one contains the transcript
id.

test DTU

theshold_pval

Value

19

is a threshold between O and 1; when running test_DTU, if the p.value of a gene
is < theshold_pval, a second (independent) MCMC chain is run and the p.value
is re-computed on the aggregation of the two chains. By defauls theshold_pval
= 0.1, while theshold_pval = 1 corresponds to running all chains twice, and
theshold_pval = 0 means all chains will only run once.

A BANDITS_test object.

Author(s)

Simone Tiberi <simone.tiberi@uzh.ch>

See Also

create_data, BANDITS_data, BANDITS_test

Examples

load gene_to_transcript matching:
data("gene_tr_id", package = "BANDITS")

We define the design of the study

samples_design

data.frame(sample_id = paste@("sample”, seq_len(4)),

group = C(”A”, ”A", an’ IIBII))

load the pre-computed data:
data("input_data”, package = "BANDITS")

input_data

Filter lowly abundant genes:
input_data = filter_genes(input_data, min_counts_per_gene = 20)

load the pre-computed precision estimates:
data(precision, package = "BANDITS")

Test for DTU
set.seed(61217)

results = test_DTU(BANDITS_data = input_data,

results

precision = precision$prior,
samples_design = samples_design,

R = 10%4, burn_in = 2%10"3, n_cores = 2,
gene_to_transcript = gene_tr_id)

Index

x differential splicing, differential transcript
usage, DTU,
Dirichlet-multinomial, Bayesian
hierarchical modelling, data
augmentation

BANDITS-package, 2

BANDITS-package, 2

BANDITS (BANDITS-package), 2
BANDITS-package, 2

BANDITS_data, 6, 8, 11-13, 19
BANDITS_data (BANDITS_data-class), 3
BANDITS_data-class, 3
BANDITS_test, /7, 19

BANDITS_test (BANDITS_test-class), 4
BANDITS_test-class, 4

convergence (BANDITS_test-class), 4

convergence,BANDITS_test-method
(BANDITS_test-class), 4

create_data, 3,6, 7, 10-13, 18, 19

eff_len_compute, 3, 8,9

filter_genes, 8, 10, 12
filter_transcripts, 3,8, 10, 11,11, 16

gene (BANDITS_test-class), 4
gene,BANDITS_test-method

(BANDITS_test-class), 4
gene_tr_id, 13

input_data, 13

p.adjust, 5, 6

plot_precision, 14,14, 15, 16

plot_proportions, 6

plot_proportions (BANDITS_test-class), 4

plot_proportions,BANDITS_test-method
(BANDITS_test-class), 4

precision, 15

prior_precision, 14, 15,15

results, 17

show,BANDITS_data-method
(BANDITS_data-class), 3

show,BANDITS_test-method
(BANDITS_test-class), 4

test_DTU, 4, 6, 14, 16, 17,18, 19
top_genes (BANDITS_test-class), 4
top_genes,BANDITS_test-method
(BANDITS_test-class), 4
top_transcripts (BANDITS_test-class), 4
top_transcripts,BANDITS_test-method
(BANDITS_test-class), 4
transcript (BANDITS_test-class), 4
transcript,BANDITS_test-method
(BANDITS_test-class), 4

	BANDITS-package
	BANDITS_data-class
	BANDITS_test-class
	create_data
	eff_len_compute
	filter_genes
	filter_transcripts
	gene_tr_id
	input_data
	plot_precision
	precision
	prior_precision
	results
	test_DTU
	Index

