

Package ‘ANCOMBC’

January 19, 2026

Type Package

Title Microbiome differential abundance and correlation analyses with bias correction

Version 2.12.0

Description ANCOMBC is a package containing differential abundance (DA) and correlation analyses for microbiome data. Specifically, the package includes Analysis of Compositions of Microbiomes with Bias Correction 2 (ANCOM-BC2), Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC), and Analysis of Composition of Microbiomes (ANCOM) for DA analysis, and Sparse Estimation of Correlations among Microbiomes (SECOM) for correlation analysis. Microbiome data are typically subject to two sources of biases: unequal sampling fractions (sample-specific biases) and differential sequencing efficiencies (taxon-specific biases). Methodologies included in the ANCOMBC package are designed to correct these biases and construct statistically consistent estimators.

Date 2025-03-16

License Artistic-2.0

Imports stats, CVXR, DescTools, Hmisc, MASS, Matrix, Rdpack, doParallel, doRNG, energy, foreach, gtools, lme4, lmerTest, multcomp, nloptr, parallel, utils

Suggests mia (>= 1.6.0), DT, S4Vectors, SingleCellExperiment, SummarizedExperiment, TreeSummarizedExperiment, dplyr, knitr, magrittr, microbiome, phyloseq, rmarkdown, testthat, tidyverse, tidyverse

biocViews DifferentialExpression, Microbiome, Normalization, Sequencing, Software

BugReports <https://github.com/FrederickHuangLin/ANCOMBC/issues>

URL <https://github.com/FrederickHuangLin/ANCOMBC>

VignetteBuilder knitr

RdMacros Rdpack

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 4.5.0)

LazyData false

git_url <https://git.bioconductor.org/packages/ANCOMBC>
git_branch RELEASE_3_22
git_last_commit 5ceba73
git_last_commit_date 2025-10-29
Repository Bioconductor 3.22
Date/Publication 2026-01-19
Author Huang Lin [cre, aut] (ORCID: <<https://orcid.org/0000-0002-4892-7871>>)
Maintainer Huang Lin <huanglinfrederick@gmail.com>

Contents

ancom	2
ancombc	6
ancombc2	9
data_sanity_check	16
QMP	18
secom_dist	19
secom_linear	22
sim_plnm	25

Index	27
--------------	-----------

ancom

Analysis of Composition of Microbiomes (ANCOM)

Description

Determine taxa whose absolute abundances, per unit volume, of the ecosystem (e.g. gut) are significantly different with changes in the covariate of interest (e.g. group). The current version of ancom function implements ANCOM in cross-sectional and repeated measurements data while allowing for covariate adjustment.

Usage

```
ancom(
  data = NULL,
  taxa_are_rows = TRUE,
  assay.type = NULL,
  assay_name = "counts",
  rank = NULL,
  tax_level = NULL,
  aggregate_data = NULL,
  meta_data = NULL,
  p_adj_method = "holm",
  prv_cut = 0.1,
  lib_cut = 0,
  main_var,
  adj_formula = NULL,
  rand_formula = NULL,
```

```

lme_control = lme4::lmerControl(),
struc_zero = FALSE,
neg_lb = FALSE,
alpha = 0.05,
n_cl = 1,
verbose = TRUE
)

```

Arguments

<code>data</code>	the input data. The <code>data</code> parameter should be either a <code>matrix</code> , <code>data.frame</code> , <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> object. Both <code>phyloseq</code> and <code>TreeSummarizedExperiment</code> objects consist of a feature table (microbial count table), a sample metadata table, a taxonomy table (optional), and a phylogenetic tree (optional). If a <code>matrix</code> or <code>data.frame</code> is provided, ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names otherwise) in <code>data</code> . If a <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> is used, this standard has already been enforced. For detailed information, refer to <code>?phyloseq::phyloseq</code> or <code>?TreeSummarizedExperiment::TreeSummarizedExperiment</code> . It is recommended to use low taxonomic levels, such as OTU or species level, as the estimation of sampling fractions requires a large number of taxa.
<code>taxa_are_rows</code>	logical. Whether taxa are positioned in the rows of the feature table. Default is <code>TRUE</code> . It is recommended to use low taxonomic levels, such as OTU or species level, as the estimation of sampling fractions requires a large number of taxa.
<code>assay.type</code>	alias for <code>assay_name</code> .
<code>assay_name</code>	character. Name of the count table in the <code>data</code> object (only applicable if <code>data</code> object is a <code>(Tree)SummarizedExperiment</code>). Default is "counts". See <code>?SummarizedExperiment::assay</code> for more details.
<code>rank</code>	alias for <code>tax_level</code> .
<code>tax_level</code>	character. The taxonomic or non taxonomic(<code>rowData</code>) level of interest. The input data can be analyzed at any taxonomic or <code>rowData</code> level without prior agglomeration. Note that <code>tax_level</code> must be a value from <code>taxonomyRanks</code> or <code>rowData</code> , which includes "Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species" etc. See <code>?mia::taxonomyRanks</code> for more details. Default is <code>NULL</code> , i.e., do not perform agglomeration, and the ANCOM-BC2 analysis will be performed at the lowest taxonomic level of the input data.
<code>aggregate_data</code>	The abundance data that has been aggregated to the desired taxonomic level. This parameter is required only when the input data is in <code>matrix</code> or <code>data.frame</code> format. For <code>phyloseq</code> or <code>TreeSummarizedExperiment</code> data, aggregation is performed by specifying the <code>tax_level</code> parameter.
<code>meta_data</code>	a <code>data.frame</code> containing sample metadata. This parameter is mandatory when the input data is a generic <code>data.frame</code> . Ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names otherwise) in <code>data</code> .
<code>p_adj_method</code>	character. method to adjust p-values. Default is "holm". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See <code>?stats::p.adjust</code> for more details.
<code>prv_cut</code>	a numerical fraction between 0 and 1. Taxa with prevalences (the proportion of samples in which the taxon is present) less than <code>prv_cut</code> will be excluded in the analysis. For example, if there are 100 samples, and a taxon has nonzero

	counts present in less than $100 * \text{prv_cut}$ samples, it will not be considered in the analysis. Default is 0.10.
lib_cut	a numerical threshold for filtering samples based on library sizes. Samples with library sizes less than lib_cut will be excluded in the analysis. Default is 0, i.e. do not discard any sample.
main_var	character. The name of the main variable of interest.
adj_formula	character string representing the formula for covariate adjustment. Please note that you should NOT include the main_var in the formula. Default is NULL.
rand_formula	the character string expresses how the microbial absolute abundances for each taxon depend on the random effects in metadata. ANCOM follows the lmerTest package in formulating the random effects. See ?lmerTest::lmer for more details. Default is NULL.
lme_control	a list of control parameters for mixed model fitting. See ?lme4::lmerControl for details.
struc_zero	logical. whether to detect structural zeros based on main_var. main_var should be discrete. Default is FALSE.
neg_lb	logical. whether to classify a taxon as a structural zero using its asymptotic lower bound. Default is FALSE.
alpha	numeric. level of significance. Default is 0.05.
n_cl	numeric. The number of nodes to be forked. For details, see ?parallel::makeCluster. Default is 1 (no parallel computing).
verbose	logical. Whether to display detailed progress messages.

Details

A taxon is considered to have structural zeros in some (≥ 1) groups if it is completely (or nearly completely) missing in these groups. For instance, suppose there are three groups: g1, g2, and g3. If the counts of taxon A in g1 are 0 but nonzero in g2 and g3, then taxon A will be considered to contain structural zeros in g1. In this example, taxon A is declared to be differentially abundant between g1 and g2, g1 and g3, and consequently, it is globally differentially abundant with respect to this group variable. Such taxa are not further analyzed using ANCOM, but the results are summarized in the overall summary. For more details about the structural zeros, please go to the [ANCOM-II](#) paper. Setting neg_lb = TRUE indicates that you are using both criteria stated in section 3.2 of [ANCOM-II](#) to detect structural zeros; otherwise, the algorithm will only use the equation 1 in section 3.2 for declaring structural zeros. Generally, it is recommended to set neg_lb = TRUE when the sample size per group is relatively large (e.g. > 30).

Value

a list with components:

- res, a data.frame containing ANCOM result for the variable specified in main_var, each column is:
 - W, test statistics.
 - detected_0.9, detected_0.8, detected_0.7, detected_0.6, logical vectors representing whether a taxon is differentially abundant under a series of cutoffs. For example, TRUE in detected_0.7 means the number of ALR transformed models where the taxon is differentially abundant with regard to the main variable outnumbers $0.7 * (n_{\text{tax}} - 1)$. detected_0.7 is commonly used. Choose detected_0.8 or detected_0.9 for more conservative results, or choose detected_0.6 for more liberal results.

- `zero_ind`, a logical `data.frame` with TRUE indicating the taxon is detected to contain structural zeros in some specific groups.
- `beta_data`, a numeric `matrix` containing pairwise coefficients for the main variable of interest in ALR transformed regression models.
- `p_data`, a numeric `matrix` containing pairwise p-values for the main variable of interest in ALR transformed regression models.
- `q_data`, a numeric `matrix` containing adjusted p-values by applying the `p_adj_method` to the `p_data` matrix.

Author(s)

Huang Lin

References

Mandal S, Van Treuren W, White RA, Eggesbo M, Knight R, Peddada SD (2015). “Analysis of composition of microbiomes: a novel method for studying microbial composition.” *Microbial ecology in health and disease*, **26**(1), 27663.

Kaul A, Mandal S, Davidov O, Peddada SD (2017). “Analysis of microbiome data in the presence of excess zeros.” *Frontiers in microbiology*, **8**, 2114.

See Also

[ancombc](#) [ancombc2](#)

Examples

```
library(ANCOMBC)
if (requireNamespace("microbiome", quietly = TRUE)) {
  data(atlas1006, package = "microbiome")
  # subset to baseline
  pseq = phyloseq::subset_samples(atlas1006, time == 0)

  # run ancom function
  set.seed(123)
  out = ancom(data = pseq, tax_level = "Family",
              p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000,
              main_var = "bmi_group", adj_formula = "age + nationality",
              rand_formula = NULL, lme_control = NULL,
              struc_zero = TRUE, neg_lb = TRUE, alpha = 0.05, n_cl = 1)

  res = out$res
} else {
  message("The 'microbiome' package is not installed. Please install it to use this example.")
}
```

ancombc

*Analysis of Compositions of Microbiomes with Bias Correction
(ANCOM-BC)*

Description

Determine taxa whose absolute abundances, per unit volume, of the ecosystem (e.g., gut) are significantly different with changes in the covariate of interest (e.g., group). The current version of ancombc function implements Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) in cross-sectional data while allowing for covariate adjustment.

Usage

```
ancombc(
  data = NULL,
  taxa_are_rows = TRUE,
  assay.type = NULL,
  assay_name = "counts",
  rank = NULL,
  tax_level = NULL,
  aggregate_data = NULL,
  meta_data = NULL,
  pseudo = 1,
  formula,
  p_adj_method = "holm",
  prv_cut = 0.1,
  lib_cut = 0,
  group = NULL,
  struc_zero = FALSE,
  neg_lb = FALSE,
  tol = 1e-05,
  max_iter = 100,
  conserve = FALSE,
  alpha = 0.05,
  global = FALSE,
  n_cl = 1,
  verbose = TRUE
)
```

Arguments

data	the input data. The data parameter should be either a <code>matrix</code> , <code>data.frame</code> , <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> object. Both <code>phyloseq</code> and <code>TreeSummarizedExperiment</code> objects consist of a feature table (microbial count table), a sample metadata table, a taxonomy table (optional), and a phylogenetic tree (optional). If a <code>matrix</code> or <code>data.frame</code> is provided, ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names otherwise) in <code>data</code> . If a <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> is used, this standard has already been enforced. For detailed information, refer to <code>?phyloseq::phyloseq</code> or <code>?TreeSummarizedExperiment::TreeSummarizedExperiment</code> .
------	--

	<p>It is recommended to use low taxonomic levels, such as OTU or species level, as the estimation of sampling fractions requires a large number of taxa.</p>
<code>taxa_are_rows</code>	logical. Whether taxa are positioned in the rows of the feature table. Default is TRUE.
<code>assay.type</code>	alias for <code>assay_name</code> .
<code>assay_name</code>	character. Name of the count table in the data object (only applicable if data object is a <code>(Tree)SummarizedExperiment</code>). Default is "counts". See <code>?SummarizedExperiment::assay</code> for more details.
<code>rank</code>	alias for <code>tax_level</code> .
<code>tax_level</code>	character. The taxonomic level of interest. The input data can be agglomerated at different taxonomic levels based on your research interest. Default is NULL, i.e., do not perform agglomeration, and the ANCOM-BC analysis will be performed at the lowest taxonomic level of the input data.
<code>aggregate_data</code>	The abundance data that has been aggregated to the desired taxonomic level. This parameter is required only when the input data is in <code>matrix</code> or <code>data.frame</code> format. For <code>phyloseq</code> or <code>TreeSummarizedExperiment</code> data, aggregation is performed by specifying the <code>tax_level</code> parameter.
<code>meta_data</code>	a <code>data.frame</code> containing sample metadata. This parameter is mandatory when the input data is a generic <code>matrix</code> or <code>data.frame</code> . Ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is TRUE, and row names otherwise) in <code>data</code> .
<code>pseudo</code>	A small positive value (default: 1) added to all counts before log transformation to avoid numerical issues caused by <code>log(0)</code> .
<code>formula</code>	the character string expresses how microbial absolute abundances for each taxon depend on the variables in metadata. When specifying the <code>formula</code> , make sure to include the group variable in the formula if it is not NULL.
<code>p_adj_method</code>	character. method to adjust p-values. Default is "holm". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See <code>?stats::p.adjust</code> for more details.
<code>prv_cut</code>	a numerical fraction between 0 and 1. Taxa with prevalences (the proportion of samples in which the taxon is present) less than <code>prv_cut</code> will be excluded in the analysis. For example, if there are 100 samples, and a taxon has nonzero counts present in less than $100 * \text{prv_cut}$ samples, it will not be considered in the analysis. Default is 0.10.
<code>lib_cut</code>	a numerical threshold for filtering samples based on library sizes. Samples with library sizes less than <code>lib_cut</code> will be excluded in the analysis. Default is 0, i.e. do not discard any sample.
<code>group</code>	character. the name of the group variable in metadata. The <code>group</code> parameter should be a character string representing the name of the group variable in the metadata. The group variable should be discrete, meaning it consists of categorical values. Specifying the <code>group</code> variable is required if you are interested in detecting structural zeros and performing global tests. However, if these analyses are not of interest to you, you can leave the <code>group</code> parameter as NULL. If the <code>group</code> variable of interest contains only two categories, you can also leave the <code>group</code> parameter as NULL. Default is NULL.
<code>struc_zero</code>	logical. whether to detect structural zeros based on <code>group</code> . Default is FALSE.
<code>neg_lb</code>	logical. whether to classify a taxon as a structural zero using its asymptotic lower bound. Default is FALSE.

tol	numeric. the iteration convergence tolerance for the E-M algorithm. Default is 1e-05.
max_iter	numeric. the maximum number of iterations for the E-M algorithm. Default is 100.
conserve	logical. whether to use a conservative variance estimator for the test statistic. It is recommended if the sample size is small and/or the number of differentially abundant taxa is believed to be large. Default is FALSE.
alpha	numeric. level of significance. Default is 0.05.
global	logical. whether to perform the global test. Default is FALSE.
n_cl	numeric. The number of nodes to be forked. For details, see <code>?parallel::makeCluster</code> . Default is 1 (no parallel computing).
verbose	logical. Whether to generate verbose output during the ANCOM-BC fitting process. Default is FALSE.

Details

A taxon is considered to have structural zeros in some (≥ 1) groups if it is completely (or nearly completely) missing in these groups. For instance, suppose there are three groups: g1, g2, and g3. If the counts of taxon A in g1 are 0 but nonzero in g2 and g3, then taxon A will be considered to contain structural zeros in g1. In this example, taxon A is declared to be differentially abundant between g1 and g2, g1 and g3, and consequently, it is globally differentially abundant with respect to this group variable. Such taxa are not further analyzed using ANCOM-BC, but the results are summarized in the overall summary. For more details about the structural zeros, please go to the [ANCOM-II](#) paper. Setting `neg_1b = TRUE` indicates that you are using both criteria stated in section 3.2 of [ANCOM-II](#) to detect structural zeros; otherwise, the algorithm will only use the equation 1 in section 3.2 for declaring structural zeros. Generally, it is recommended to set `neg_1b = TRUE` when the sample size per group is relatively large (e.g. > 30).

Value

a list with components:

- `feature_table`, a `data.frame` of pre-processed (based on `prv_cut` and `lib_cut`) microbial count table.
- `zero_ind`, a logical `data.frame` with TRUE indicating the taxon is detected to contain structural zeros in some specific groups.
- `samp_frac`, a numeric vector of estimated sampling fractions in log scale (natural log).
- `delta_em`, estimated sample-specific biases through E-M algorithm.
- `delta_wls`, estimated sample-specific biases through weighted least squares (WLS) algorithm.
- `res`, a list containing ANCOM-BC primary result, which consists of:
 - `lfc`, a `data.frame` of log fold changes obtained from the ANCOM-BC log-linear (natural log) model.
 - `se`, a `data.frame` of standard errors (SEs) of `lfc`.
 - `W`, a `data.frame` of test statistics. $W = lfc/se$.
 - `p_val`, a `data.frame` of p-values. P-values are obtained from two-sided Z-test using the test statistic `W`.
 - `q_val`, a `data.frame` of adjusted p-values. Adjusted p-values are obtained by applying `p_adj_method` to `p_val`.

- `diff_abn`, a logical `data.frame`. `TRUE` if the taxon has `q_val` less than `alpha`.
- `res_global`, a `data.frame` containing ANCOM-BC global test result for the variable specified in `group`, each column is:
 - `W`, test statistics.
 - `p_val`, p-values, which are obtained from two-sided Chi-square test using `W`.
 - `q_val`, adjusted p-values. Adjusted p-values are obtained by applying `p_adj_method` to `p_val`.
 - `diff_abn`, A logical vector. `TRUE` if the taxon has `q_val` less than `alpha`.

Author(s)

Huang Lin

References

Kaul A, Mandal S, Davidov O, Peddada SD (2017). “Analysis of microbiome data in the presence of excess zeros.” *Frontiers in microbiology*, **8**, 2114.

Lin H, Peddada SD (2020). “Analysis of compositions of microbiomes with bias correction.” *Nature communications*, **11**(1), 1–11.

See Also

[ancom](#) [ancombc2](#)

Examples

```
library(ANCOMBC)
if (requireNamespace("microbiome", quietly = TRUE)) {
  data(atlas1006, package = "microbiome")
  # subset to baseline
  pseq = phyloseq::subset_samples(atlas1006, time == 0)

  # run ancombc function
  set.seed(123)
  out = ancombc(data = pseq, tax_level = "Family",
                 formula = "age + nationality + bmi_group",
                 p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000,
                 group = "bmi_group", struc_zero = TRUE, neg_lb = FALSE,
                 tol = 1e-5, max_iter = 100, conserve = TRUE,
                 alpha = 0.05, global = TRUE, n_cl = 1, verbose = TRUE)
} else {
  message("The 'microbiome' package is not installed. Please install it to use this example.")
}
```

Description

Determine taxa whose absolute abundances, per unit volume, of the ecosystem (e.g., gut) are significantly different with changes in the covariate of interest (e.g., group). The current version of ancombc2 function implements Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC2) in cross-sectional and repeated measurements data. In addition to the two-group comparison, ANCOM-BC2 also supports testing for continuous covariates and multi-group comparisons, including the global test, pairwise directional test, Dunnett's type of test, and trend test.

Usage

```
ancombc2(
  data,
  taxa_are_rows = TRUE,
  assay.type = assay_name,
  assay_name = "counts",
  rank = tax_level,
  tax_level = NULL,
  aggregate_data = NULL,
  meta_data = NULL,
  fix_formula,
  rand_formula = NULL,
  p_adj_method = "holm",
  pseudo = 0,
  pseudo_sens = TRUE,
  prv_cut = 0.1,
  lib_cut = 0,
  s0_perc = 0.05,
  group = NULL,
  struc_zero = FALSE,
  neg_lb = FALSE,
  alpha = 0.05,
  n_cl = 1,
  verbose = TRUE,
  global = FALSE,
  pairwise = FALSE,
  dunnet = FALSE,
  trend = FALSE,
  iter_control = list(tol = 0.01, max_iter = 20, verbose = FALSE),
  em_control = list(tol = 1e-05, max_iter = 100),
  lme_control = lme4::lmerControl(),
  mdfdr_control = list(fwer_ctrl_method = "holm", B = 100),
  trend_control = list(contrast = NULL, node = NULL, solver = "ECOS", B = 100)
)
```

Arguments

data	the input data. The data parameter should be either a <code>matrix</code> , <code>data.frame</code> , <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> object. Both <code>phyloseq</code> and <code>TreeSummarizedExperiment</code> objects consist of a feature table (microbial count table), a sample metadata table, a taxonomy table (optional), and a phylogenetic tree (optional). If a <code>matrix</code> or <code>data.frame</code> is provided, ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names
------	--

	otherwise) in <code>data</code> . if a <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> is used, this standard has already been enforced. For detailed information, refer to <code>?phyloseq::phyloseq</code> or <code>?TreeSummarizedExperiment::TreeSummarizedExperiment</code> . It is recommended to use low taxonomic levels, such as OTU or species level, as the estimation of sampling fractions requires a large number of taxa.
<code>taxa_are_rows</code>	logical. Whether taxa are positioned in the rows of the feature table. Default is <code>TRUE</code> .
<code>assay.type</code>	alias for <code>assay_name</code> .
<code>assay_name</code>	character. Name of the count table in the data object (only applicable if data object is a <code>(Tree)SummarizedExperiment</code>). Default is "counts". See <code>?SummarizedExperiment::assay</code> for more details.
<code>rank</code>	alias for <code>tax_level</code> .
<code>tax_level</code>	character. The taxonomic or non taxonomic(<code>rowData</code>) level of interest. The input data can be analyzed at any taxonomic or <code>rowData</code> level without prior agglomeration. Note that <code>tax_level</code> must be a value from <code>taxonomyRanks</code> or <code>rowData</code> , which includes "Kingdom", "Phylum" "Class", "Order", "Family" "Genus" "Species" etc. See <code>?mia::taxonomyRanks</code> for more details. Default is <code>NULL</code> , i.e., do not perform agglomeration, and the ANCOM-BC2 analysis will be performed at the lowest taxonomic level of the input data.
<code>aggregate_data</code>	The abundance data that has been aggregated to the desired taxonomic level. This parameter is required only when the input data is in <code>matrix</code> or <code>data.frame</code> format. For <code>phyloseq</code> or <code>TreeSummarizedExperiment</code> data, aggregation is performed by specifying the <code>tax_level</code> parameter.
<code>meta_data</code>	a <code>data.frame</code> containing sample metadata. This parameter is mandatory when the input data is a generic <code>matrix</code> or <code>data.frame</code> . Ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names otherwise) in <code>data</code> .
<code>fix_formula</code>	the character string expresses how the microbial absolute abundances for each taxon depend on the fixed effects in metadata. When specifying the <code>fix_formula</code> , make sure to include the group variable in the formula if it is not <code>NULL</code> .
<code>rand_formula</code>	the character string expresses how the microbial absolute abundances for each taxon depend on the random effects in metadata. ANCOM-BC2 follows the <code>lmerTest</code> package in formulating the random effects. See <code>?lmerTest::lmer</code> for more details. Default is <code>NULL</code> .
<code>p_adj_method</code>	character. method to adjust p-values. Default is "holm". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See <code>?stats::p.adjust</code> for more details.
<code>pseudo</code>	A small positive value (default: 1) added to all counts before log transformation to avoid numerical issues caused by <code>log(0)</code> .
<code>pseudo_sens</code>	logical. Whether to perform the sensitivity analysis to the pseudo-count addition. Default is <code>TRUE</code> . While ANCOM-BC2 utilizes complete data (nonzero counts) by default for its analysis, a comprehensive evaluation of result robustness is performed by assessing how pseudo-count addition to zeros may affect the outcomes. For a detailed discussion on this sensitivity analysis, refer to the <code>Details</code> section.
<code>prv_cut</code>	a numerical fraction between 0 and 1. Taxa with prevalences (the proportion of samples in which the taxon is present) less than <code>prv_cut</code> will be excluded in the analysis. For example, if there are 100 samples, and a taxon has nonzero counts present in less than $100 * \text{prv_cut}$ samples, it will not be considered in the analysis. Default is 0.10.

lib_cut	a numerical threshold for filtering samples based on library sizes. Samples with library sizes less than lib_cut will be excluded in the analysis. Default is 0, i.e. do not discard any sample.
s0_perc	a numerical fraction between 0 and 1. Inspired by Significance Analysis of Microarrays (SAM) methodology, a small positive constant is added to the denominator of ANCOM-BC2 test statistic corresponding to each taxon to avoid the significance due to extremely small standard errors, especially for rare taxa. This small positive constant is chosen as s0_perc-th percentile of standard error values for each fixed effect. Default is 0.05 (5th percentile).
group	character. the name of the group variable in metadata. The group parameter should be a character string representing the name of the group variable in the metadata. The group variable should be discrete, meaning it consists of categorical values. Specifying the group variable is required if you are interested in detecting structural zeros and performing performing multi-group comparisons (global test, pairwise directional test, Dunnett's type of test, and trend test). However, if these analyses are not of interest to you, you can leave the group parameter as NULL. If the group variable of interest contains only two categories, you can also leave the group parameter as NULL. Default is NULL.
struc_zero	logical. Whether to detect structural zeros based on group. Default is FALSE. See Details for a more comprehensive discussion on structural zeros.
neg_lb	logical. Whether to classify a taxon as a structural zero using its asymptotic lower bound. Default is FALSE.
alpha	numeric. Level of significance. Default is 0.05.
n_cl	numeric. The number of nodes to be forked. For details, see ?parallel::makeCluster. Default is 1 (no parallel computing).
verbose	logical. Whether to generate verbose output during the ANCOM-BC2 fitting process. Default is FALSE.
global	logical. Whether to perform the global test. Default is FALSE.
pairwise	logical. Whether to perform the pairwise directional test. Default is FALSE.
dunnet	logical. Whether to perform the Dunnett's type of test. Default is FALSE.
trend	logical. Whether to perform trend test. Default is FALSE.
iter_control	a named list of control parameters for the iterative MLE or RMEL algorithm, including 1) tol: the iteration convergence tolerance (default is 1e-02), 2) max_iter: the maximum number of iterations (default is 20), and 3)verbose: whether to show the verbose output (default is FALSE).
em_control	a named list of control parameters for the E-M algorithm, including 1) tol: the iteration convergence tolerance (default is 1e-05) and 2) max_iter: the maximum number of iterations (default is 100).
lme_control	a list of control parameters for mixed model fitting. See ?lme4::lmerControl for details.
mdfdr_control	a named list of control parameters for mixed directional false discover rate (mdFDR), including 1) fwer_ctrl_method: family wise error (FWER) controlling procedure, such as "holm", "hochberg", "bonferroni", etc (default is "holm") and 2) B: the number of bootstrap samples (default is 100). Increase B will lead to a more accurate p-values. See Details for a more comprehensive discussion on mdFDR.

trend_control a named list of control parameters for the trend test, including 1) contrast: the list of contrast matrices for constructing inequalities, 2) node: the list of positions for the nodal parameter, 3) solver: a string indicating the solver to use (default is "ECOS"), and 4) B: the number of bootstrap samples (default is 100). Increase B will lead to a more accurate p-values. See vignette for the corresponding trend test examples.

Details

A taxon is considered to have structural zeros in some (≥ 1) groups if it is completely (or nearly completely) missing in these groups. For instance, suppose there are three groups: g1, g2, and g3. If the counts of taxon A in g1 are 0 but nonzero in g2 and g3, then taxon A will be considered to contain structural zeros in g1. In this example, taxon A is declared to be differentially abundant between g1 and g2, g1 and g3, and consequently, it is globally differentially abundant with respect to this group variable. Such taxa are not further analyzed using ANCOM-BC2, but the results are summarized in the overall summary. For more details about the structural zeros, please go to the [ANCOM-II](#) paper. Setting neg_1b = TRUE indicates that you are using both criteria stated in section 3.2 of [ANCOM-II](#) to detect structural zeros; otherwise, the algorithm will only use the equation 1 in section 3.2 for declaring structural zeros. Generally, it is recommended to set neg_1b = TRUE when the sample size per group is relatively large (e.g. > 30).

Like other differential abundance analysis methods, ANCOM-BC2 applies a log transformation to the observed counts. However, the presence of zero counts poses a challenge, and researchers often consider adding a pseudo-count before the log transformation. However, it has been shown that the choice of pseudo-count can impact the results and lead to an inflated false positive rate ([Costea et al. \(2014\)](#); [Paulson, Bravo, and Pop \(2014\)](#)). To address this issue, we conduct a sensitivity analysis to assess the impact of different pseudo-counts on zero counts for each taxon. This involves adding various pseudo-count values (0.1, 0.5, and 1) to the feature table and re-running the ANCOM-BC2 algorithm. The sensitivity score for each taxon is calculated as the proportion of times that the q-value exceeds the specified significance level (alpha). If all q-values consistently show significance or nonsignificance across different pseudo-counts and are consistent with the results obtained without adding pseudo-counts to zero counts (using the default settings), then the taxon is considered not sensitive to the pseudo-count addition.

When performing pairwise directional (or Dunnett's type of) test, the mixed directional false discover rate (mdFDR) should be taken into account. The mdFDR is the combination of false discovery rate due to multiple testing, multiple pairwise comparisons, and directional tests within each pairwise comparison. For example, suppose we have five taxa and three experimental groups: g1, g2, and g3. Thus, we are performing five tests corresponding to five taxa. For each taxon, we are also conducting three pairwise comparisons (g1 vs. g2, g2 vs. g3, and g1 vs. g3). Within each pairwise comparison, we wish to determine if the abundance has increased or decreased or did not change (direction of the effect size). Errors could occur in each step. The overall false discovery rate is controlled by the mdFDR methodology we adopted from [Guo, Sarkar, and Peddada \(2010\)](#) and [Grandhi, Guo, and Peddada \(2016\)](#).

Value

a list with components:

- **feature_table**, a `data.frame` of pre-processed (based on `prv_cut` and `lib_cut`) microbial count table.
- **bias_correct_log_table**, a `data.frame` of bias-corrected log abundance table.
- **ss_tab**, a `data.frame` of sensitivity scores for pseudo-count addition to 0s.

- `zero_ind`, a logical `data.frame` with TRUE indicating the taxon is detected to contain structural zeros in some specific groups.
- `samp_frac`, a numeric vector of estimated sampling fractions in log scale (natural log).
- `delta_em`, estimated sample-specific biases through E-M algorithm.
- `delta_wls`, estimated sample-specific biases through weighted least squares (WLS) algorithm.
- `res`, a `data.frame` containing ANCOM-BC2 primary result:
 - columns started with `lfc`: log fold changes obtained from the ANCOM-BC2 log-linear (natural log) model.
 - columns started with `se`: standard errors (SEs) of `lfc`.
 - columns started with `W`: test statistics. $W = lfc/se$.
 - columns started with `p`: p-values. P-values are obtained from two-sided Z-test using the test statistic `W`.
 - columns started with `q`: adjusted p-values. Adjusted p-values are obtained by applying `p_adj_method` to `p`.
 - columns started with `diff`: TRUE if the taxon is significant (has `q` less than `alpha`).
 - columns started with `passed_ss`: TRUE if the taxon passed the sensitivity analysis, i.e., adding different pseudo-counts to 0s would not change the results.
- columns started with `diff_robust`: TRUE if the taxon is significant (has `q` less than `alpha`) and robust in the sensitivity analysis (`passed_ss` is TRUE).
- `res_global`, a `data.frame` containing ANCOM-BC2 global test result for the variable specified in `group`, each column is:
 - `W`, test statistics.
 - `p_val`, p-values, which are obtained from two-sided Chi-square test using `W`.
 - `q_val`, adjusted p-values. Adjusted p-values are obtained by applying `p_adj_method` to `p_val`.
 - `diff_abn`, A logical vector. TRUE if the taxon has `q_val` less than `alpha`.
 - `passed_ss`, A logical vector. TRUE if the taxon has passed the sensitivity analysis.
- `res_pair`, a `data.frame` containing ANCOM-BC2 pairwise directional test result for the variable specified in `group`:
 - columns started with `lfc`: log fold changes.
 - columns started with `se`: standard errors (SEs).
 - columns started with `W`: test statistics.
 - columns started with `p`: p-values.
 - columns started with `q`: adjusted p-values.
 - columns started with `diff`: TRUE if the taxon is significant (has `q` less than `alpha`).
 - columns started with `passed_ss`: TRUE if the taxon has passed the sensitivity analysis.
- `res_dunn`, a `data.frame` containing ANCOM-BC2 Dunnett's type of test result for the variable specified in `group`:
 - columns started with `lfc`: log fold changes.
 - columns started with `se`: standard errors (SEs).
 - columns started with `W`: test statistics.
 - columns started with `p`: p-values.
 - columns started with `q`: adjusted p-values.
 - columns started with `diff`: TRUE if the taxon is significant (has `q` less than `alpha`).

- columns started with passed_ss: TRUE if the taxon has passed the sensitivity analysis.
- res_trend, a data.frame containing ANCOM-BC2 trend test result for the variable specified in group:
 - columns started with lfc: log fold changes.
 - columns started with se: standard errors (SEs).
 - W: test statistics.
 - p_val: p-values.
 - q_val: adjusted p-values.
 - diff_abn: TRUE if the taxon is significant (has q less than alpha).
 - passed_ss, A logical vector. TRUE if the taxon has passed the sensitivity analysis.

Author(s)

Huang Lin

References

Kaul A, Mandal S, Davidov O, Peddada SD (2017). “Analysis of microbiome data in the presence of excess zeros.” *Frontiers in microbiology*, **8**, 2114.

Lin H, Peddada SD (2020). “Analysis of compositions of microbiomes with bias correction.” *Nature communications*, **11**(1), 1–11.

Tusher VG, Tibshirani R, Chu G (2001). “Significance analysis of microarrays applied to the ionizing radiation response.” *Proceedings of the National Academy of Sciences*, **98**(9), 5116–5121.

Costea PI, Zeller G, Sunagawa S, Bork P (2014). “A fair comparison.” *Nature methods*, **11**(4), 359–359.

Paulson JN, Bravo HC, Pop M (2014). “Reply to: “a fair comparison”.” *Nature methods*, **11**(4), 359–360.

Guo W, Sarkar SK, Peddada SD (2010). “Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories.” *Biometrics*, **66**(2), 485–492.

Grandhi A, Guo W, Peddada SD (2016). “A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies.” *BMC bioinformatics*, **17**(1), 1–12.

See Also

[ancom](#) [ancombc](#)

Examples

```
library(ANCOMBC)
if (requireNamespace("microbiome", quietly = TRUE)) {
  data(dietswap, package = "microbiome")

  # run ancombc2 function
  set.seed(123)
  # Note that setting max_iter = 1 and B = 1 is only for the sake of speed
  # Use default or larger values for max_iter and B for better performance
  out = ancombc2(data = dietswap, tax_level = "Family",
                  fix_formula = "nationality + timepoint + bmi_group",
                  rand_formula = NULL,
                  p_adj_method = "holm", pseudo_sens = TRUE,
```

```

prv_cut = 0.10, lib_cut = 1000, s0_perc = 0.05,
group = "bmi_group", struc_zero = TRUE, neg_lb = TRUE,
alpha = 0.05, n_cl = 1, verbose = TRUE,
global = TRUE, pairwise = TRUE, dunnet = TRUE, trend = TRUE,
iter_control = list(tol = 1e-2, max_iter = 1, verbose = TRUE),
em_control = list(tol = 1e-5, max_iter = 1),
lme_control = lme4::lmerControl(),
mdfdr_control = list(fwer_ctrl_method = "holm", B = 1),
trend_control = list(contrast =
  list(matrix(c(1, 0, -1, 1),
  nrow = 2,
  byrow = TRUE)),
  node = list(2),
  solver = "ECOS",
  B = 1))
res_prim = out$res
res_global = out$res_global
res_pair = out$res_pair
res_dunn = out$res_dunn
res_trend = out$res_trend
} else {
  message("The 'microbiome' package is not installed. Please install it to use this example.")
}

```

data_sanity_check *Data Sanity and Integrity Check*

Description

Determine if the input data is in a correct format

Usage

```

data_sanity_check(
  data,
  taxa_are_rows = TRUE,
  assay.type = assay_name,
  assay_name = "counts",
  rank = tax_level,
  tax_level = NULL,
  aggregate_data = NULL,
  meta_data = NULL,
  fix_formula,
  group = NULL,
  struc_zero = FALSE,
  global = FALSE,
  pairwise = FALSE,
  dunnet = FALSE,
  mdfdr_control = list(fwer_ctrl_method = "holm", B = 100),
  trend = FALSE,
  trend_control = list(contrast = NULL, node = NULL, solver = "ECOS", B = 100),
  verbose = TRUE
)

```

Arguments

data	the input data. The data parameter should be either a <code>matrix</code> , <code>data.frame</code> , <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> object. Both <code>phyloseq</code> and <code>TreeSummarizedExperiment</code> objects consist of a feature table (microbial count table), a sample metadata table, a taxonomy table (optional), and a phylogenetic tree (optional). If a <code>matrix</code> or <code>data.frame</code> is provided, ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names otherwise) in <code>data</code> . If a <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> is used, this standard has already been enforced. For detailed information, refer to <code>?phyloseq::phyloseq</code> or <code>?TreeSummarizedExperiment::TreeSummarizedExperiment</code> . It is recommended to use low taxonomic levels, such as OTU or species level, as the estimation of sampling fractions requires a large number of taxa.
<code>taxa_are_rows</code>	logical. Whether taxa are positioned in the rows of the feature table. Default is <code>TRUE</code> .
<code>assay.type</code>	alias for <code>assay_name</code> .
<code>assay_name</code>	character. Name of the count table in the <code>data</code> object (only applicable if <code>data</code> object is a <code>(Tree)SummarizedExperiment</code>). Default is "counts". See <code>?SummarizedExperiment::assay</code> for more details.
<code>rank</code>	alias for <code>tax_level</code> .
<code>tax_level</code>	character. The taxonomic or non taxonomic(<code>rowData</code>) level of interest. The input data can be analyzed at any taxonomic or <code>rowData</code> level without prior agglomeration. Note that <code>tax_level</code> must be a value from <code>taxonomyRanks</code> or <code>rowData</code> , which includes "Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species" etc. See <code>?mia::taxonomyRanks</code> for more details. Default is <code>NULL</code> , i.e., do not perform agglomeration, and the ANCOM-BC2 analysis will be performed at the lowest taxonomic level of the input data.
<code>aggregate_data</code>	The abundance data that has been aggregated to the desired taxonomic level. This parameter is required only when the input data is in <code>matrix</code> or <code>data.frame</code> format. For <code>phyloseq</code> or <code>TreeSummarizedExperiment</code> data, aggregation is performed by specifying the <code>tax_level</code> parameter.
<code>meta_data</code>	a <code>data.frame</code> containing sample metadata. This parameter is mandatory when the input data is a generic <code>matrix</code> or <code>data.frame</code> . Ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names otherwise) in <code>data</code> .
<code>fix_formula</code>	the character string expresses how the microbial absolute abundances for each taxon depend on the fixed effects in metadata. When specifying the <code>fix_formula</code> , make sure to include the <code>group</code> variable in the formula if it is not <code>NULL</code> .
<code>group</code>	character. the name of the group variable in metadata. The <code>group</code> parameter should be a character string representing the name of the group variable in the metadata. The group variable should be discrete, meaning it consists of categorical values. Specifying the <code>group</code> variable is required if you are interested in detecting structural zeros and performing performing multi-group comparisons (global test, pairwise directional test, Dunnett's type of test, and trend test). However, if these analyses are not of interest to you, you can leave the <code>group</code> parameter as <code>NULL</code> . If the <code>group</code> variable of interest contains only two categories, you can also leave the <code>group</code> parameter as <code>NULL</code> . Default is <code>NULL</code> .
<code>struc_zero</code>	logical. Whether to detect structural zeros based on <code>group</code> . Default is <code>FALSE</code> . See <code>Details</code> for a more comprehensive discussion on structural zeros.
<code>global</code>	logical. Whether to perform the global test. Default is <code>FALSE</code> .

pairwise	logical. Whether to perform the pairwise directional test. Default is FALSE.
dunnet	logical. Whether to perform the Dunnett's type of test. Default is FALSE.
mdfdr_control	a named list of control parameters for mixed directional false discover rate (mdFDR), including 1) fwer_ctrl_method: family wise error (FWER) controlling procedure, such as "holm", "hochberg", "bonferroni", etc (default is "holm") and 2) B: the number of bootstrap samples (default is 100). Increase B will lead to a more accurate p-values. See Details for a more comprehensive discussion on mdFDR.
trend	logical. Whether to perform trend test. Default is FALSE.
trend_control	a named list of control parameters for the trend test, including 1) contrast: the list of contrast matrices for constructing inequalities, 2) node: the list of positions for the nodal parameter, 3) solver: a string indicating the solver to use (default is "ECOS"), and 4) B: the number of bootstrap samples (default is 100). Increase B will lead to a more accurate p-values. See vignette for the corresponding trend test examples.
verbose	logical. Whether to display detailed progress messages.

Value

a list containing the outputs formatted appropriately for downstream analysis.

Author(s)

Huang Lin

Examples

```
data(atlas1006, package = "microbiome")
check_results = data_sanity_check(data = atlas1006,
                                  tax_level = "Family",
                                  fix_formula = "age + sex + bmi_group",
                                  group = "bmi_group",
                                  struc_zero = TRUE,
                                  global = TRUE,
                                  verbose = TRUE)
```

Description

The data containing quantitative microbiome count data of dimension 106 samples/subjects (in rows) and 91 OTUs (in columns). The raw dataset is pruned the taxa present less than 30 final dataset contains only healthy subjects from two cohorts: Study cohort and Disease cohort. For details, see <https://doi.org/10.1038/nature24460>.

Usage

```
data(QMP)
```

Format

The dataset in `matrix` format.

Details

The dataset is also available via the SPRING R package <https://github.com/GraceYoon/SPRING> in `matrix` format.

Value

Loads the dataset in R.

Author(s)

Huang Lin <huanglinfrederick@gmail.com>

References

Vanderputte et al. Nature. 551: 507-511, 2017. <https://doi.org/10.1038/nature24460>

secom_dist

Sparse estimation of distance correlations among microbiomes

Description

Obtain the sparse correlation matrix for distance correlations between taxa.

Usage

```
secom_dist(  
  data,  
  taxa_are_rows = TRUE,  
  assay.type = assay_name,  
  assay_name = "counts",  
  rank = tax_level,  
  tax_level = NULL,  
  aggregate_data = NULL,  
  meta_data = NULL,  
  pseudo = 0,  
  prv_cut = 0.5,  
  lib_cut = 1000,  
  corr_cut = 0.5,  
  wins_quant = c(0.05, 0.95),  
  R = 1000,  
  thresh_hard = 0,  
  max_p = 0.005,  
  n_cl = 1,  
  verbose = TRUE  
)
```

Arguments

data	a list of the input data. The data parameter should be either a <code>matrix</code> , <code>data.frame</code> , <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> object. Both <code>phyloseq</code> and <code>TreeSummarizedExperiment</code> objects consist of a feature table (microbial count table), a sample metadata table, a taxonomy table (optional), and a phylogenetic tree (optional). If a <code>matrix</code> or <code>data.frame</code> is provided, ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names otherwise) in data. If a <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> is used, this standard has already been enforced. For detailed information, refer to <code>?phyloseq::phyloseq</code> or <code>?TreeSummarizedExperiment::TreeSummarizedExperiment</code> . It is recommended to use low taxonomic levels, such as OTU or species level, as the estimation of sampling fractions requires a large number of taxa. If working with multiple ecosystems, such as gut and tongue, stack the data by specifying the list of input data as <code>data = list(gut = pseq1, tongue = pseq2)</code> .
taxa_are_rows	logical. Whether taxa are positioned in the rows of the feature table. Default is <code>TRUE</code> .
assay.type	alias for <code>assay_name</code> .
assay_name	character. Name of the count table in the data object (only applicable if data object is a <code>(Tree)SummarizedExperiment</code>). Default is "counts". See <code>?SummarizedExperiment::assay</code> for more details.
rank	alias for <code>tax_level</code> .
tax_level	character. The taxonomic level of interest. The input data can be agglomerated at different taxonomic levels based on your research interest. Default is <code>NULL</code> , i.e., do not perform agglomeration, and the SECOM analysis will be performed at the lowest taxonomic level of the input data.
aggregate_data	The abundance data that has been aggregated to the desired taxonomic level. This parameter is required only when the input data is in <code>matrix</code> or <code>data.frame</code> format. For <code>phyloseq</code> or <code>TreeSummarizedExperiment</code> data, aggregation is performed by specifying the <code>tax_level</code> parameter.
meta_data	a <code>data.frame</code> containing sample metadata. This parameter is mandatory when the input data is a generic <code>matrix</code> or <code>data.frame</code> . Ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names otherwise) in data.
pseudo	numeric. Add pseudo-counts to the data. Default is 0 (no pseudo-counts).
prv_cut	a numerical fraction between 0 and 1. Taxa with prevalences (the proportion of samples in which the taxon is present) less than <code>prv_cut</code> will be excluded in the analysis. For example, if there are 100 samples, and a taxon has nonzero counts present in less than $100 * \text{prv_cut}$ samples, it will not be considered in the analysis. Default is 0.50.
lib_cut	a numerical threshold for filtering samples based on library sizes. Samples with library sizes less than <code>lib_cut</code> will be excluded in the analysis. Default is 1000.
corr_cut	numeric. To avoid false positives caused by taxa with small variances, taxa with Pearson correlation coefficients greater than <code>corr_cut</code> with the estimated sample-specific bias will be flagged. When taxa are flagged, the pairwise correlation coefficient between them will be set to 0s. Default is 0.5.
wins_quant	a numeric vector of probabilities with values between 0 and 1. Replace extreme values in the abundance data with less extreme values. Default is <code>c(0.05, 0.95)</code> . For details, see <code>?DescTools::Winsorize</code> .

R	numeric. The number of replicates in calculating the p-value for distance correlation. For details, see <code>?energy::dcor.test</code> . Default is 1000.
thresh_hard	Numeric. Pairwise correlation coefficients (in their absolute value) that are less than or equal to <code>thresh_hard</code> will be set to 0. Default is 0.3.
max_p	numeric. Obtain the sparse correlation matrix by p-value filtering. Pairwise correlation coefficients with p-value greater than <code>max_p</code> will be set to 0s. Default is 0.005.
n_cl	numeric. The number of nodes to be forked. For details, see <code>?parallel::makeCluster</code> . Default is 1 (no parallel computing).
verbose	logical. Whether to display detailed progress messages.

Details

The **distance correlation**, which is a measure of dependence between two random variables, can be used to quantify any dependence, whether linear, monotonic, non-monotonic or nonlinear relationships.

Value

a list with components:

- `s_diff_hat`, a numeric vector of estimated sample-specific biases.
- `y_hat`, a matrix of bias-corrected abundances
- `mat_cooccur`, a matrix of taxon-taxon co-occurrence pattern. The number in each cell represents the number of complete (nonzero) samples for the corresponding pair of taxa.
- `dcorr`, the sample distance correlation matrix computed using the bias-corrected abundances `y_hat`.
- `dcorr_p`, the p-value matrix corresponding to the sample distance correlation matrix `dcorr`.
- `dcorr_f1`, the sparse correlation matrix obtained by p-value filtering based on the cutoff specified in `max_p`.

Author(s)

Huang Lin

See Also

[secom_linear](#)

Examples

```
library(ANCOMBC)
if (requireNamespace("microbiome", quietly = TRUE)) {
  data(atlas1006, package = "microbiome")
  # subset to baseline
  pseq = phyloseq::subset_samples(atlas1006, time == 0)

  # run secom_linear function
  set.seed(123)
  res_dist = secom_dist(data = list(pseq), taxa_are_rows = TRUE,
                        tax_level = "Phylum",
                        aggregate_data = NULL, meta_data = NULL, pseudo = 0,
```

```

    prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
    wins_quant = c(0.05, 0.95), R = 1000,
    thresh_hard = 0.3, max_p = 0.005, n_cl = 2)

  dcorr_f1 = res_dist$dcorr_f1
} else {
  message("The 'microbiome' package is not installed. Please install it to use this example.")
}

```

secom_linear

Sparse estimation of linear correlations among microbiomes

Description

Obtain the sparse correlation matrix for linear correlations between taxa. The current version of `secom_linear` function supports either of the three correlation coefficients: Pearson, Spearman, and Kendall's τ .

Usage

```

secom_linear(
  data,
  taxa_are_rows = TRUE,
  assay.type = assay_name,
  assay_name = "counts",
  rank = tax_level,
  tax_level = NULL,
  aggregate_data = NULL,
  meta_data = NULL,
  pseudo = 0,
  prv_cut = 0.5,
  lib_cut = 1000,
  corr_cut = 0.5,
  wins_quant = c(0.05, 0.95),
  method = c("pearson", "spearman"),
  soft = FALSE,
  alpha_grid = 0,
  thresh_len = 100,
  n_cv = 10,
  thresh_hard = 0,
  max_p = 0.005,
  n_cl = 1,
  verbose = TRUE
)

```

Arguments

<code>data</code>	a list of the input data. The <code>data</code> parameter should be either a <code>matrix</code> , <code>data.frame</code> , <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> object. Both <code>phyloseq</code> and <code>TreeSummarizedExperiment</code> objects consist of a feature table (microbial count table), a sample metadata table, a taxonomy table (optional), and a phylogenetic tree (optional). If a <code>matrix</code>
-------------------	---

	or <code>data.frame</code> is provided, ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names otherwise) in <code>data</code> . If a <code>phyloseq</code> or a <code>TreeSummarizedExperiment</code> is used, this standard has already been enforced. For detailed information, refer to <code>?phyloseq::phyloseq</code> or <code>?TreeSummarizedExperiment::TreeSummarizedExperiment</code> . It is recommended to use low taxonomic levels, such as OTU or species level, as the estimation of sampling fractions requires a large number of taxa. If working with multiple ecosystems, such as gut and tongue, stack the data by specifying the list of input data as <code>data = list(gut = pseq1, tongue = pseq2)</code> .
<code>taxa_are_rows</code>	logical. Whether taxa are positioned in the rows of the feature table. Default is <code>TRUE</code> .
<code>assay.type</code>	alias for <code>assay_name</code> .
<code>assay_name</code>	character. Name of the feature table within the data object (only applicable if the data object is a <code>(Tree)SummarizedExperiment</code>). Default is "counts". See <code>?SummarizedExperiment::assay</code> for more details.
<code>rank</code>	alias for <code>tax_level</code> .
<code>tax_level</code>	character. The taxonomic level of interest. The input data can be agglomerated at different taxonomic levels based on your research interest. Default is <code>NULL</code> , i.e., do not perform agglomeration, and the SECOM analysis will be performed at the lowest taxonomic level of the input data.
<code>aggregate_data</code>	The abundance data that has been aggregated to the desired taxonomic level. This parameter is required only when the input data is in <code>matrix</code> or <code>data.frame</code> format. For <code>phyloseq</code> or <code>TreeSummarizedExperiment</code> data, aggregation is performed by specifying the <code>tax_level</code> parameter.
<code>meta_data</code>	a <code>data.frame</code> containing sample metadata. This parameter is mandatory when the input data is a generic <code>matrix</code> or <code>data.frame</code> . Ensure that the row names of the metadata match the sample names (column names if <code>taxa_are_rows</code> is <code>TRUE</code> , and row names otherwise) in <code>data</code> .
<code>pseudo</code>	numeric. Add pseudo-counts to the data. Default is 0 (no pseudo-counts).
<code>prv_cut</code>	a numerical fraction between 0 and 1. Taxa with prevalences (the proportion of samples in which the taxon is present) less than <code>prv_cut</code> will be excluded in the analysis. For example, if there are 100 samples, and a taxon has nonzero counts present in less than $100 * \text{prv_cut}$ samples, it will not be considered in the analysis. Default is 0.50.
<code>lib_cut</code>	a numerical threshold for filtering samples based on library sizes. Samples with library sizes less than <code>lib_cut</code> will be excluded in the analysis. Default is 1000.
<code>corr_cut</code>	numeric. To avoid false positives caused by taxa with small variances, taxa with Pearson correlation coefficients greater than <code>corr_cut</code> with the estimated sample-specific bias will be flagged. When taxa are flagged, the pairwise correlation coefficient between them will be set to 0s. Default is 0.5.
<code>wins_quant</code>	a numeric vector of probabilities with values between 0 and 1. Replace extreme values in the abundance data with less extreme values. Default is <code>c(0.05, 0.95)</code> . For details, see <code>?DescTools::Winsorize</code> .
<code>method</code>	character. It indicates which correlation coefficient is to be computed. It can be either "pearson" or "spearman".
<code>soft</code>	logical. <code>TRUE</code> indicates that soft thresholding is applied to achieve the sparsity of the correlation matrix. <code>FALSE</code> indicates that hard thresholding is applied to achieve the sparsity of the correlation matrix. Default is <code>FALSE</code> .

alpha_grid	a numeric vector of penalty parameters for the element-wise L1 norm to induce sparsity. Default is 0.
thresh_len	numeric. Grid-search is implemented to find the optimal values over thresh_len thresholds for the thresholding operator. Default is 100.
n_cv	numeric. The fold number in cross validation. Default is 10 (10-fold cross validation).
thresh_hard	Numeric. Pairwise correlation coefficients (in their absolute value) that are less than or equal to thresh_hard will be set to 0. Default is 0.3.
max_p	numeric. Obtain the sparse correlation matrix by p-value filtering. Pairwise correlation coefficients with p-value greater than max_p will be set to 0s. Default is 0.005.
n_cl	numeric. The number of nodes to be forked. For details, see <code>?parallel::makeCluster</code> . Default is 1 (no parallel computing).
verbose	logical. Whether to display detailed progress messages.

Value

a list with components:

- `s_diff_hat`, a numeric vector of estimated sample-specific biases.
- `y_hat`, a matrix of bias-corrected abundances
- `cv_error`, a numeric vector of cross-validation error estimates, which are the Frobenius norm differences between correlation matrices using training set and validation set, respectively.
- `thresh_grid`, a numeric vector of thresholds in the cross-validation.
- `thresh_opt`, numeric. The optimal threshold through cross-validation.
- `mat_cooccur`, a matrix of taxon-taxon co-occurrence pattern. The number in each cell represents the number of complete (nonzero) samples for the corresponding pair of taxa.
- `corr`, the sample correlation matrix (using the measure specified in `method`) computed using the bias-corrected abundances `y_hat`.
- `corr_p`, the p-value matrix corresponding to the sample correlation matrix `corr`.
- `corr_th`, the sparse correlation matrix obtained by thresholding based on the method specified in `soft`.
- `corr_f1`, the sparse correlation matrix obtained by p-value filtering based on the cutoff specified in `max_p`.
- `corr_reg`, the correlation matrix obtained by winsorizing small eigenvalues.

Author(s)

Huang Lin

See Also

[secom_dist](#)

Examples

```

library(ANCOMBC)
if (requireNamespace("microbiome", quietly = TRUE)) {
  data(atlas1006, package = "microbiome")
  # subset to baseline
  pseq = phyloseq::subset_samples(atlas1006, time == 0)

  # run secom_linear function
  set.seed(123)
  res_linear = secom_linear(data = list(pseq), taxa_are_rows = TRUE,
                             tax_level = "Phylum",
                             aggregate_data = NULL, meta_data = NULL, pseudo = 0,
                             prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
                             wins_quant = c(0.05, 0.95), method = "pearson",
                             soft = FALSE, alpha_grid = 0,
                             thresh_len = 20, n_cv = 10,
                             thresh_hard = 0.3, max_p = 0.005, n_cl = 2)

  corr_th = res_linear$corr_th
  corr_fl = res_linear$corr_fl
} else {
  message("The 'microbiome' package is not installed. Please install it to use this example.")
}

```

sim_plnm

Simulate Microbial Absolute Abundance Data by Poisson lognormal (PLN) model Based on a Real Dataset

Description

Generate microbial absolute abundances using the Poisson lognormal (PLN) model based on the mechanism described in the [LDM](#) paper (supplementary text S2).

Usage

```
sim_plnm(abn_table, taxa_are_rows = TRUE, prv_cut = 0.1, n, lib_mean, disp)
```

Arguments

abn_table	the input microbial count table. It is used to obtain the estimated variance-covariance matrix, can be in either <code>matrix</code> or <code>data.frame</code> format.
taxa_are_rows	logical. TRUE if the input dataset has rows represent taxa. Default is TRUE.
prv_cut	a numerical fraction between 0 and 1. Taxa with prevalences less than <code>prv_cut</code> will be excluded in the analysis. For instance, suppose there are 100 samples, if a taxon has nonzero counts presented in less than 10 samples, it will not be further analyzed. Default is 0.10.
n	numeric. The desired sample size for the simulated data.
lib_mean	numeric. Mean of the library size. Library sizes are generated from the negative binomial distribution with parameters <code>lib_mean</code> and <code>disp</code> . For details, see <code>?rnbinom</code> .
disp	numeric. The dispersion parameter for the library size. For details, see <code>?rnbinom</code> .

Details

The PLN model relates the abundance vector with a Gaussian latent vector. Because of the presence of a latent layer, the PLN model displays a larger variance than the Poisson model (over-dispersion). Also, the covariance (correlation) between abundances has the same sign as the covariance (correlation) between the corresponding latent variables. This property gives enormous flexibility in modeling the variance-covariance structure of microbial abundances since it is easy to specify different variance-covariance matrices in the multivariate Gaussian distribution.

However, instead of manually specifying the variance-covariance matrix, we choose to estimate the variance-covariance matrix from a real dataset, which will make the simulated data more resemble real data.

Value

a matrix of microbial absolute abundances, where taxa are in rows and samples are in columns.

Author(s)

Huang Lin

References

Hu Y, Satten GA (2020). “Testing hypotheses about the microbiome using the linear decomposition model (LDM).” *Bioinformatics*, **36**(14), 4106–4115.

Examples

```
library(ANCOMBC)
data(QMP)
abn_data = sim_plnm(abn_table = QMP, taxa_are_rows = FALSE, prv_cut = 0.05,
                     n = 100, lib_mean = 1e8, disp = 0.5)
rownames(abn_data) = paste0("Taxon", seq_len(nrow(abn_data)))
colnames(abn_data) = paste0("Sample", seq_len(ncol(abn_data)))
```

Index

* **data**

QMP, [18](#)

ancom, [2, 9, 15](#)

ancombc, [5, 6, 15](#)

ancombc2, [5, 9, 9](#)

data_sanity_check, [16](#)

QMP, [18](#)

secom_dist, [19, 24](#)

secom_linear, [21, 22](#)

sim_plnm, [25](#)