Package ‘AMOUNTAIN’

January 19, 2026
Type Package

Title Active modules for multilayer weighted gene co-expression
networks: a continuous optimization approach

Version 1.36.0

Date 2016-11-12

Author Dong Li, Shan He, Zhisong Pan and Guyu Hu
Maintainer Dong Li <dx1466@cs.bham.ac.uk>

Description
A pure data-driven gene network, weighted gene co-expression network (WGCN) could be con-
structed only from expression profile. Different layers in such networks may represent differ-
ent time points, multiple conditions or various species. AMOUNTAIN aims to search ac-
tive modules in multi-layer WGCN using a continuous optimization approach.

License GPL (>=2)

Depends R (>=3.3.0)

Imports stats

RoxygenNote 5.0.1

SystemRequirements gsl

biocViews GeneExpression, Microarray, DifferentialExpression, Network
Suggests BiocStyle, qgraph, knitr, rmarkdown
VignetteBuilder knitr

git_url https://git.bioconductor.org/packagess/ AMOUNTAIN
git_branch RELEASE_3_22

git_last_commit 5e47cdb

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents
CGPFixSS . . . o 2
CGPFixSSMultiLayer. o e 3
CGPFixSSTwolayer e 4
EuclideanProjectionENNORM 5

Index

CGPFixSS

moduleldentificationGPFixSS oo 6
moduleldentificationGPFixSSMultilayer oL 7
moduleldentificationGPFixSSTwolayer 8
multilayernetworkSimulation L L 10
networkSimulation 11
twolayernetworkSimulation 11

CGPFixSS Module Identification

Description

Call C version of moduleldentificationGPFixSS

Usage

CGPFixSS(W, z, x0, a = 0.5, lambda = 1, maxiter = 50)

Arguments

W
z
X0

a

edge score matrix of the network, n X n matrix
node score vector of the network, n-length vector
initial solution, n-length vector

parameter in elastic net the same as in EuclideanProjectionENNORM

lambda parameter in objective, coefficient of node score part

maxiter maximal interation of whole procedure

Value

a list containing function objective vector and the solution

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSS

CGPFixSSMultiLayer

Examples

n =100

k = 20

theta = 0.5

pp <- networkSimulation(n,k,theta)

moduleid <- pp[[3]1]

use default parameters here

X <= CGPFixSS(ppLL1]1]1,ppL[2]1],rep(1/n,n))
predictedid<-which(x[[2]]!=0)

recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precisex*recall/(precisetrecall))

CGPFixSSMultilLayer Module Identification for multi-layer network

Description

Call C version of moduleldentificationGPFixSSMultilayer

Usage

CGPFixSSMultilLayer(W, listzs, x@, a = 0.5, lambda = 1, maxiter = 50)

Arguments
W edge score matrix of the network, n x n matrix
listzs a list of node score vectors, each layer has a n-length vector
X0 initial solution, n-length vector
a parameter in elastic net the same as in EuclideanProjectionENNORM
lambda parameter in objective, coefficient of node score of other layers
maxiter maximal interation of whole procedure

Value

a list containing solution for network 1 and network 2

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

References

AMOUNTAIN

See Also

moduleldentificationGPFixSSMultilayer

4 CGPFixSSTwolayer

Examples

n = 100

k = 20

L=5

theta = 0.5

cpl <- multilayernetworkSimulation(n,k,theta,L)

listz <- 1list()

for (i in 1:L){

listz[[i]] <- cpl[[i+2]]

3

moduleid <- cpl[[2]1]

use default parameters here

X <- CGPFixSSMultilLayer(cpl[[1]1],listz,rep(1/n,n))

predictedid <- which(x[[2]]!=0)

recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2xprecisexrecall/(precise+recall))

CGPFixSSTwolayer Module Identification for two-layer network

Description

Call C version of moduleldentificationGPFixSSTwolayer

Usage

CGPFixSSTwolayer (W1, z1, x@, W2, z2, y@, interlayerA, lambdal = 1,
lambda2 = 1, lambda3 = 1, maxiter = 100, al = 0.5, a2 = 0.5)

Arguments
W1 edge score matrix of the network 1, n_1 x n_1 matrix
z1 node score vector of the network 1, n_1-length vector
X0 initial solution of network 1, n_1-length vector
W2 edge score matrix of the network 2, n_2 x n_2 matrix
z2 node score vector of the network 2, n_2-length vector
yo initial solution of network 2, n_2-length vector
interlayerA inter-layer links weight, n_1 x n_2 matrix
lambda1l parameter in objective, coefficient of node score of network 1
lambda?2 parameter in objective, coefficient of node score of network 2
lambda3 parameter in objective, coefficient of inter-layer links part
maxiter maximal interation of whole procedure
al parameter in elastic net the same as in EuclideanProjectionENNORM
a2 parameter in elastic net the same as in EuclideanProjectionENNORM
Value

a list containing solution for network 1 and network 2 and objective

EuclideanProjection ENNORM

Author(s)

Dong Li, <dx1466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

moduleldentificationGPFixSSTwolayer

Examples

n1=100

k1=20

thetal = 0.5

n2=80

k2=10

theta2 = 0.5

ppresult <- twolayernetworkSimulation(n1,k1,thetal,n2,k2,theta2)

A <- ppresult[[3]]

pp <- ppresult[[1]]

moduleid <- pp[[31]

netid <- 1:n1

restp<- netid[-moduleid]

pp2 <- ppresult[[2]]

moduleid2 <- pp2[[3]]

use default parameters here

modres=CGPFixSSTwolayer (pp[[1]1],ppL[2]1],rep(1/n1,n1),
pp2L[11],pp2L[2]1],rep(1/n2,n2),A)

predictedid<-which(modres[[1]]!=0)

recall = length(intersect(predictedid,moduleid))/length(moduleid)
precise = length(intersect(predictedid,moduleid))/length(predictedid)
F1 = 2xprecise*recall/(precise+recall)
predictedid2<-which(modres[[2]]!=0)

recall?2 = length(intersect(predictedid2,moduleid?2))/length(moduleid?2)
precise?2 = length(intersect(predictedid2,moduleid2))/length(predictedid2)
F2 = 2xprecise2*recall2/(precise2+recall?)

EuclideanProjectionENNORM
Euclidean projection on elastic net

Description

Piecewise root finding algorithm for Euclidean projection on elastic net

Usage

EuclideanProjectionENNORM(y, t, alpha = 0.5)

moduleldentificationGPFixSS

Arguments

y constant vector

t radius of elastic net ball

alpha parameter in elastic net: alpha x_1 + (1-alpha)*x_2/2=t
Value

a list containing network adjacency matrix, node score and module membership

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

References

Gong, Pinghua, Kun Gai, and Changshui Zhang. "Efficient euclidean

projections via piecewise root

finding and its application in gradient projection." Neurocomputing 74.17 (2011): 2754-2766.

Examples

y=rnorm(100)
x=EuclideanProjectionENNORM(y,1,0.5)
sparistyx = sum(x==0)/100

moduleIdentificationGPFixSS
Module Identification

Description

Algorithm for Module Identification on single network

Usage

moduleldentificationGPFixSS(W, z, x@, a = 0.5, lambda =

1, maxiter = 1000)

Arguments
W edge score matrix of the network, n x n matrix
z node score vector of the network, n-length vector
X0 initial solution, n-length vector
a parameter in elastic net the same as in EuclideanProjectionENNORM
lambda parameter in objective, coefficient of node score part
maxiter maximal interation of whole procedure
Value

a list containing function objective vector and the solution

moduleldentificationGPFixSSMultilayer

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

References

AMOUNTAIN

See Also

EuclideanProjectionENNORM

Examples

n = 100

k = 20

theta = 9.5

pp <- networkSimulation(n,k,theta)

moduleid <- pp[[3]1]

use default parameters here

x <- moduleldentificationGPFixSS(pp[[1]1],ppL[2]],rep(1/n,n))
predictedid<-which(x[[2]]!=0)

recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precisex*recall/(precisetrecall))

moduleldentificationGPFixSSMultilayer
Module Identification for multi-layer network

Description

Algorithm for Module Identification on multi-layer network sharing the same set of genes

Usage

moduleldentificationGPFixSSMultilayer(W, listz, x0, a = 0.5, lambda = 1,
maxiter = 1000)

Arguments
W edge score matrix of the network, n x n matrix
listz a list of node score vectors, each layer has a n-length vector
X0 initial solution, n-length vector
a parameter in elastic net the same as in EuclideanProjectionENNORM
lambda parameter in objective, coefficient of node score of other layers
maxiter maximal interation of whole procedure

Value

a list containing objective values and solution

8 moduleldentificationGPFixSSTwolayer

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

References

AMOUNTAIN

See Also

moduleldentificationGPFixSSMultilayer

Examples

n =100

k = 20

L=5

theta = 0.5

cpl <- multilayernetworkSimulation(n,k,theta,L)

listz <- list()

for (i in 1:L){

listz[[i]] <- cpl[[i+2]]

3

moduleid <- cpl[[2]]

use default parameters here

x <- moduleldentificationGPFixSSMultilayer(cpl[[1]1],1listz,rep(1/n,n))
predictedid <- which(x[[2]]!=0)

recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precisex*recall/(precisetrecall))

moduleldentificationGPFixSSTwolayer
Module Identification for two-layer network

Description

Algorithm for Module Identification on two-layer network

Usage

moduleldentificationGPFixSSTwolayer(W1, z1, x@, W2, z2, yo, A, lambdal =1,
lambda2 = 1, lambda3 = 1, maxiter = 1000, al = 0.5, a2 = 0.5)

Arguments
W1 edge score matrix of the network 1, n_1 x n_1 matrix
z1 node score vector of the network 1, n_1-length vector
X0 initial solution of network 1, n_1-length vector
w2 edge score matrix of the network 2, n_2 x n_2 matrix
z2 node score vector of the network 2, n_2-length vector

L initial solution of network 2, n_2-length vector

moduleldentificationGPFixSSTwolayer

A
lambda1l
lambda?2
lambda3
maxiter
al

a2

Value

inter-layer links weight, n_1 x n_2 matrix

parameter in objective, coefficient of node score of network 1
parameter in objective, coefficient of node score of network 2
parameter in objective, coefficient of inter-layer links part

maximal interation of whole procedure

parameter in elastic net the same as in EuclideanProjectionENNORM

parameter in elastic net the same as in EuclideanProjectionENNORM

a list containing solution for network 1 and network 2 and objective

Author(s)

Dong Li, <dx1466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

EuclideanProjectionENNORM

Examples

n1=100
k1=20

thetal =

n2=80
k2=10

theta2 =

ppresult <- twolayernetworkSimulation(n1,k1,thetal,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]1]

netid <- 1:n1

restp<- netid[-moduleid]

pp2 <- ppresult[[2]1]

moduleid2 <- pp2[[3]]

use default parameters here
modres=moduleIdentificationGPFixSSTwolayer (pp[[1]11,pplL[2]1],rep(1/n1,n1),
pp2[[11],pp2[[2]1],rep(1/n2,n2),A)

predictedid<-which(modres[[1]]!=0)

recall = length(intersect(predictedid,moduleid))/length(moduleid)
precise = length(intersect(predictedid,moduleid))/length(predictedid)

F1 = 2*precise*recall/(precise+recall)
predictedid2<-which(modres[[2]]!=0)

recall?2 = length(intersect(predictedid2,moduleid?2))/length(moduleid?2)
precise2 = length(intersect(predictedid2,moduleid2))/length(predictedid2)
F2 = 2*precise2*recall2/(precise2+recall?)

10 multilayernetworkSimulation

multilayernetworkSimulation
Lllustration of multi-layer weighted network simulation

Description

Simulate a multi-layer weighted network with each layer sharing the same set of nodes but different
nodes scores

Usage

multilayernetworkSimulation(n, k, theta, L)

Arguments
n number of nodes in each layer of the network
k number of nodes in the conserved module
theta module node score follow the uniform distribution in range [theta,1]
L number of layers
Value

a list containing all the layers, each as result object of networkSimulation

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

See Also

networkSimulation

Examples

n = 100

k = 20

theta = 0.5

L=5

cpl <- multilayernetworkSimulation(n,k,theta,L)
No proper way to visualize it yet

networkSimulation

11

networkSimulation Lllustration of weighted network simulation

Description

Simulate a single weighted network

Usage

networkSimulation(n, k, theta)

Arguments

n number of nodes in the network

k number of nodes in the module, n <k

theta module node score follow the uniform distribution in range [theta, 1]
Value

a list containing network adjacency matrix, node score and module membership

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

Examples

pp <- networkSimulation(100,20,0.5)

moduleid <- pp[[3]]

netid <- 1:100

restp<- netid[-moduleid]
groupdesign=list(moduleid, restp)
names(groupdesign)=c('module', 'background')

Not run: library(qgraph)

pg<-ggraph(ppl[[1]], groups=groupdesign, legend=TRUE)
End(Not run)

twolayernetworkSimulation
Lllustration of two-layer weighted network simulation

Description

Simulate a two-layer weighted network

Usage

twolayernetworkSimulation(n1, k1, thetal, n2, k2, theta2)

12

Arguments

nl
k1
thetal
n2
k2
theta2

Value

twolayernetworkSimulation

number of nodes in the network1

number of nodes in the modulel, nl < k1

modulel node score follow the uniform distribution in range [thetal,1]
number of nodes in the network2

number of nodes in the module2, n2 < k2

module2 node score follow the uniform distribution in range [theta2,1]

a list containing network1, network2 and a inter-layer links matrix

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

See Also

networkSimulation

Examples

n1=100
k1=20
thetal = 0.5
n2=80
k2=10
theta2 = 0.5

ppresult <- twolayernetworkSimulation(n1,k1,thetal,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]

netid <- 1:n1

restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]

netid2 <- 1:n2

restp2<- netid2[-moduleid2]

labelling the groups
groupdesign=list(moduleid,restp, (moduleid2+n1), (restp2+ni))
names (groupdesign)=c('modulel’, 'backgroundl', 'module2', 'background2"')
twolayernet<-matrix(@,nrow=(n1+n2),ncol=(n1+n2))
twolayernet[1:n1,1:n11<-pp[[1]]
twolayernet[(n1+1):(n1+n2), (n1+1): (n1+n2)1<-pp2[[1]]
twolayernet[1:n1,(n1+1):(n1+n2)] = A
twolayernet[(n1+1):(n1+n2),1:n1] = t(A)

Not run: library(qgraph)

g<-ggraph(twolayernet, groups=groupdesign, legend=TRUE)

End(Not run)

Index

+ Euclidean
EuclideanProjectionENNORM, 5
x identification,
CGPFixSSMultiLayer, 3
CGPFixSSTwolayer, 4
moduleldentificationGPFixSSMultilayer,
7
moduleldentificationGPFixSSTwolayer,
8
x identification
CGPFixSS, 2
moduleldentificationGPFixSS, 6
+ module
CGPFixSS, 2
CGPFixSSMultilLayer, 3
CGPFixSSTwolayer, 4
moduleldentificationGPFixSS, 6
moduleldentificationGPFixSSMultilayer,
7
moduleldentificationGPFixSSTwolayer,
8
+ multi-layer
CGPFixSSMultiLayer, 3
moduleldentificationGPFixSSMultilayer,
7
* projection
EuclideanProjectionENNORM, 5
+ simulation
multilayernetworkSimulation, 10
networkSimulation, 11
twolayernetworkSimulation, 11
* two-layer
CGPFixSSTwolayer, 4
moduleldentificationGPFixSSTwolayer,
8

CGPFixSS, 2

CGPFixSSMultilLayer, 3

CGPFixSSTwolayer, 4
EuclideanProjectionENNORM, 24, 5,6, 7, 9

moduleIdentificationGPFixSS, 2, 6

13

moduleldentificationGPFixSSMultilayer,
3,7,8

moduleldentificationGPFixSSTwolayer, 5,
8

multilayernetworkSimulation, 10

networkSimulation, 10, 11, 12

twolayernetworkSimulation, 11

	CGPFixSS
	CGPFixSSMultiLayer
	CGPFixSSTwolayer
	EuclideanProjectionENNORM
	moduleIdentificationGPFixSS
	moduleIdentificationGPFixSSMultilayer
	moduleIdentificationGPFixSSTwolayer
	multilayernetworkSimulation
	networkSimulation
	twolayernetworkSimulation
	Index

