
Package ‘AMOUNTAIN’
January 19, 2026

Type Package

Title Active modules for multilayer weighted gene co-expression
networks: a continuous optimization approach

Version 1.36.0

Date 2016-11-12

Author Dong Li, Shan He, Zhisong Pan and Guyu Hu

Maintainer Dong Li <dxl466@cs.bham.ac.uk>

Description
A pure data-driven gene network, weighted gene co-expression network (WGCN) could be con-
structed only from expression profile. Different layers in such networks may represent differ-
ent time points, multiple conditions or various species. AMOUNTAIN aims to search ac-
tive modules in multi-layer WGCN using a continuous optimization approach.

License GPL (>= 2)

Depends R (>= 3.3.0)

Imports stats

RoxygenNote 5.0.1

SystemRequirements gsl

biocViews GeneExpression, Microarray, DifferentialExpression, Network

Suggests BiocStyle, qgraph, knitr, rmarkdown

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/AMOUNTAIN

git_branch RELEASE_3_22

git_last_commit 5e47cdb

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-01-19

Contents
CGPFixSS . 2
CGPFixSSMultiLayer . 3
CGPFixSSTwolayer . 4
EuclideanProjectionENNORM . 5

1

2 CGPFixSS

moduleIdentificationGPFixSS . 6
moduleIdentificationGPFixSSMultilayer . 7
moduleIdentificationGPFixSSTwolayer . 8
multilayernetworkSimulation . 10
networkSimulation . 11
twolayernetworkSimulation . 11

Index 13

CGPFixSS Module Identification

Description

Call C version of moduleIdentificationGPFixSS

Usage

CGPFixSS(W, z, x0, a = 0.5, lambda = 1, maxiter = 50)

Arguments

W edge score matrix of the network, n x n matrix

z node score vector of the network, n-length vector

x0 initial solution, n-length vector

a parameter in elastic net the same as in EuclideanProjectionENNORM

lambda parameter in objective, coefficient of node score part

maxiter maximal interation of whole procedure

Value

a list containing function objective vector and the solution

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSS

CGPFixSSMultiLayer 3

Examples

n = 100
k = 20
theta = 0.5
pp <- networkSimulation(n,k,theta)
moduleid <- pp[[3]]
use default parameters here
x <- CGPFixSS(pp[[1]],pp[[2]],rep(1/n,n))
predictedid<-which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

CGPFixSSMultiLayer Module Identification for multi-layer network

Description

Call C version of moduleIdentificationGPFixSSMultilayer

Usage

CGPFixSSMultiLayer(W, listzs, x0, a = 0.5, lambda = 1, maxiter = 50)

Arguments

W edge score matrix of the network, n x n matrix

listzs a list of node score vectors, each layer has a n-length vector

x0 initial solution, n-length vector

a parameter in elastic net the same as in EuclideanProjectionENNORM

lambda parameter in objective, coefficient of node score of other layers

maxiter maximal interation of whole procedure

Value

a list containing solution for network 1 and network 2

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSSMultilayer

4 CGPFixSSTwolayer

Examples

n = 100
k = 20
L = 5
theta = 0.5
cpl <- multilayernetworkSimulation(n,k,theta,L)
listz <- list()
for (i in 1:L){
listz[[i]] <- cpl[[i+2]]
}
moduleid <- cpl[[2]]
use default parameters here
x <- CGPFixSSMultiLayer(cpl[[1]],listz,rep(1/n,n))
predictedid <- which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

CGPFixSSTwolayer Module Identification for two-layer network

Description

Call C version of moduleIdentificationGPFixSSTwolayer

Usage

CGPFixSSTwolayer(W1, z1, x0, W2, z2, y0, interlayerA, lambda1 = 1,
lambda2 = 1, lambda3 = 1, maxiter = 100, a1 = 0.5, a2 = 0.5)

Arguments

W1 edge score matrix of the network 1, n_1 x n_1 matrix

z1 node score vector of the network 1, n_1-length vector

x0 initial solution of network 1, n_1-length vector

W2 edge score matrix of the network 2, n_2 x n_2 matrix

z2 node score vector of the network 2, n_2-length vector

y0 initial solution of network 2, n_2-length vector

interlayerA inter-layer links weight, n_1 x n_2 matrix

lambda1 parameter in objective, coefficient of node score of network 1

lambda2 parameter in objective, coefficient of node score of network 2

lambda3 parameter in objective, coefficient of inter-layer links part

maxiter maximal interation of whole procedure

a1 parameter in elastic net the same as in EuclideanProjectionENNORM

a2 parameter in elastic net the same as in EuclideanProjectionENNORM

Value

a list containing solution for network 1 and network 2 and objective

EuclideanProjectionENNORM 5

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSSTwolayer

Examples

n1=100
k1=20
theta1 = 0.5
n2=80
k2=10
theta2 = 0.5
ppresult <- twolayernetworkSimulation(n1,k1,theta1,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]
netid <- 1:n1
restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]
use default parameters here
modres=CGPFixSSTwolayer(pp[[1]],pp[[2]],rep(1/n1,n1),
pp2[[1]],pp2[[2]],rep(1/n2,n2),A)
predictedid<-which(modres[[1]]!=0)
recall = length(intersect(predictedid,moduleid))/length(moduleid)
precise = length(intersect(predictedid,moduleid))/length(predictedid)
F1 = 2*precise*recall/(precise+recall)
predictedid2<-which(modres[[2]]!=0)
recall2 = length(intersect(predictedid2,moduleid2))/length(moduleid2)
precise2 = length(intersect(predictedid2,moduleid2))/length(predictedid2)
F2 = 2*precise2*recall2/(precise2+recall2)

EuclideanProjectionENNORM

Euclidean projection on elastic net

Description

Piecewise root finding algorithm for Euclidean projection on elastic net

Usage

EuclideanProjectionENNORM(y, t, alpha = 0.5)

6 moduleIdentificationGPFixSS

Arguments

y constant vector

t radius of elastic net ball

alpha parameter in elastic net: alpha x_1 + (1-alpha)*x_2^2=t

Value

a list containing network adjacency matrix, node score and module membership

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

Gong, Pinghua, Kun Gai, and Changshui Zhang. "Efficient euclidean projections via piecewise root
finding and its application in gradient projection." Neurocomputing 74.17 (2011): 2754-2766.

Examples

y=rnorm(100)
x=EuclideanProjectionENNORM(y,1,0.5)
sparistyx = sum(x==0)/100

moduleIdentificationGPFixSS

Module Identification

Description

Algorithm for Module Identification on single network

Usage

moduleIdentificationGPFixSS(W, z, x0, a = 0.5, lambda = 1, maxiter = 1000)

Arguments

W edge score matrix of the network, n x n matrix

z node score vector of the network, n-length vector

x0 initial solution, n-length vector

a parameter in elastic net the same as in EuclideanProjectionENNORM

lambda parameter in objective, coefficient of node score part

maxiter maximal interation of whole procedure

Value

a list containing function objective vector and the solution

moduleIdentificationGPFixSSMultilayer 7

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

EuclideanProjectionENNORM

Examples

n = 100
k = 20
theta = 0.5
pp <- networkSimulation(n,k,theta)
moduleid <- pp[[3]]
use default parameters here
x <- moduleIdentificationGPFixSS(pp[[1]],pp[[2]],rep(1/n,n))
predictedid<-which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

moduleIdentificationGPFixSSMultilayer

Module Identification for multi-layer network

Description

Algorithm for Module Identification on multi-layer network sharing the same set of genes

Usage

moduleIdentificationGPFixSSMultilayer(W, listz, x0, a = 0.5, lambda = 1,
maxiter = 1000)

Arguments

W edge score matrix of the network, n x n matrix

listz a list of node score vectors, each layer has a n-length vector

x0 initial solution, n-length vector

a parameter in elastic net the same as in EuclideanProjectionENNORM

lambda parameter in objective, coefficient of node score of other layers

maxiter maximal interation of whole procedure

Value

a list containing objective values and solution

8 moduleIdentificationGPFixSSTwolayer

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSSMultilayer

Examples

n = 100
k = 20
L = 5
theta = 0.5
cpl <- multilayernetworkSimulation(n,k,theta,L)
listz <- list()
for (i in 1:L){
listz[[i]] <- cpl[[i+2]]
}
moduleid <- cpl[[2]]
use default parameters here
x <- moduleIdentificationGPFixSSMultilayer(cpl[[1]],listz,rep(1/n,n))
predictedid <- which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))

moduleIdentificationGPFixSSTwolayer

Module Identification for two-layer network

Description

Algorithm for Module Identification on two-layer network

Usage

moduleIdentificationGPFixSSTwolayer(W1, z1, x0, W2, z2, y0, A, lambda1 = 1,
lambda2 = 1, lambda3 = 1, maxiter = 1000, a1 = 0.5, a2 = 0.5)

Arguments

W1 edge score matrix of the network 1, n_1 x n_1 matrix

z1 node score vector of the network 1, n_1-length vector

x0 initial solution of network 1, n_1-length vector

W2 edge score matrix of the network 2, n_2 x n_2 matrix

z2 node score vector of the network 2, n_2-length vector

y0 initial solution of network 2, n_2-length vector

moduleIdentificationGPFixSSTwolayer 9

A inter-layer links weight, n_1 x n_2 matrix

lambda1 parameter in objective, coefficient of node score of network 1

lambda2 parameter in objective, coefficient of node score of network 2

lambda3 parameter in objective, coefficient of inter-layer links part

maxiter maximal interation of whole procedure

a1 parameter in elastic net the same as in EuclideanProjectionENNORM

a2 parameter in elastic net the same as in EuclideanProjectionENNORM

Value

a list containing solution for network 1 and network 2 and objective

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

EuclideanProjectionENNORM

Examples

n1=100
k1=20
theta1 = 0.5
n2=80
k2=10
theta2 = 0.5
ppresult <- twolayernetworkSimulation(n1,k1,theta1,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]
netid <- 1:n1
restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]
use default parameters here
modres=moduleIdentificationGPFixSSTwolayer(pp[[1]],pp[[2]],rep(1/n1,n1),
pp2[[1]],pp2[[2]],rep(1/n2,n2),A)
predictedid<-which(modres[[1]]!=0)
recall = length(intersect(predictedid,moduleid))/length(moduleid)
precise = length(intersect(predictedid,moduleid))/length(predictedid)
F1 = 2*precise*recall/(precise+recall)
predictedid2<-which(modres[[2]]!=0)
recall2 = length(intersect(predictedid2,moduleid2))/length(moduleid2)
precise2 = length(intersect(predictedid2,moduleid2))/length(predictedid2)
F2 = 2*precise2*recall2/(precise2+recall2)

10 multilayernetworkSimulation

multilayernetworkSimulation

Illustration of multi-layer weighted network simulation

Description

Simulate a multi-layer weighted network with each layer sharing the same set of nodes but different
nodes scores

Usage

multilayernetworkSimulation(n, k, theta, L)

Arguments

n number of nodes in each layer of the network

k number of nodes in the conserved module

theta module node score follow the uniform distribution in range [theta,1]

L number of layers

Value

a list containing all the layers, each as result object of networkSimulation

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

See Also

networkSimulation

Examples

n = 100
k = 20
theta = 0.5
L = 5
cpl <- multilayernetworkSimulation(n,k,theta,L)
No proper way to visualize it yet

networkSimulation 11

networkSimulation Illustration of weighted network simulation

Description

Simulate a single weighted network

Usage

networkSimulation(n, k, theta)

Arguments

n number of nodes in the network

k number of nodes in the module, n < k

theta module node score follow the uniform distribution in range [theta,1]

Value

a list containing network adjacency matrix, node score and module membership

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

Examples

pp <- networkSimulation(100,20,0.5)
moduleid <- pp[[3]]
netid <- 1:100
restp<- netid[-moduleid]
groupdesign=list(moduleid,restp)
names(groupdesign)=c('module','background')
Not run: library(qgraph)
pg<-qgraph(pp[[1]],groups=groupdesign,legend=TRUE)
End(Not run)

twolayernetworkSimulation

Illustration of two-layer weighted network simulation

Description

Simulate a two-layer weighted network

Usage

twolayernetworkSimulation(n1, k1, theta1, n2, k2, theta2)

12 twolayernetworkSimulation

Arguments

n1 number of nodes in the network1

k1 number of nodes in the module1, n1 < k1

theta1 module1 node score follow the uniform distribution in range [theta1,1]

n2 number of nodes in the network2

k2 number of nodes in the module2, n2 < k2

theta2 module2 node score follow the uniform distribution in range [theta2,1]

Value

a list containing network1, network2 and a inter-layer links matrix

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

See Also

networkSimulation

Examples

n1=100
k1=20
theta1 = 0.5
n2=80
k2=10
theta2 = 0.5
ppresult <- twolayernetworkSimulation(n1,k1,theta1,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]
netid <- 1:n1
restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]
netid2 <- 1:n2
restp2<- netid2[-moduleid2]
labelling the groups
groupdesign=list(moduleid,restp,(moduleid2+n1),(restp2+n1))
names(groupdesign)=c('module1','background1','module2','background2')
twolayernet<-matrix(0,nrow=(n1+n2),ncol=(n1+n2))
twolayernet[1:n1,1:n1]<-pp[[1]]
twolayernet[(n1+1):(n1+n2),(n1+1):(n1+n2)]<-pp2[[1]]
twolayernet[1:n1,(n1+1):(n1+n2)] = A
twolayernet[(n1+1):(n1+n2),1:n1] = t(A)
Not run: library(qgraph)
g<-qgraph(twolayernet,groups=groupdesign,legend=TRUE)
End(Not run)

Index

∗ Euclidean
EuclideanProjectionENNORM, 5

∗ identification,
CGPFixSSMultiLayer, 3
CGPFixSSTwolayer, 4
moduleIdentificationGPFixSSMultilayer,

7
moduleIdentificationGPFixSSTwolayer,

8
∗ identification

CGPFixSS, 2
moduleIdentificationGPFixSS, 6

∗ module
CGPFixSS, 2
CGPFixSSMultiLayer, 3
CGPFixSSTwolayer, 4
moduleIdentificationGPFixSS, 6
moduleIdentificationGPFixSSMultilayer,

7
moduleIdentificationGPFixSSTwolayer,

8
∗ multi-layer

CGPFixSSMultiLayer, 3
moduleIdentificationGPFixSSMultilayer,

7
∗ projection

EuclideanProjectionENNORM, 5
∗ simulation

multilayernetworkSimulation, 10
networkSimulation, 11
twolayernetworkSimulation, 11

∗ two-layer
CGPFixSSTwolayer, 4
moduleIdentificationGPFixSSTwolayer,

8

CGPFixSS, 2
CGPFixSSMultiLayer, 3
CGPFixSSTwolayer, 4

EuclideanProjectionENNORM, 2–4, 5, 6, 7, 9

moduleIdentificationGPFixSS, 2, 6

moduleIdentificationGPFixSSMultilayer,
3, 7, 8

moduleIdentificationGPFixSSTwolayer, 5,
8

multilayernetworkSimulation, 10

networkSimulation, 10, 11, 12

twolayernetworkSimulation, 11

13

	CGPFixSS
	CGPFixSSMultiLayer
	CGPFixSSTwolayer
	EuclideanProjectionENNORM
	moduleIdentificationGPFixSS
	moduleIdentificationGPFixSSMultilayer
	moduleIdentificationGPFixSSTwolayer
	multilayernetworkSimulation
	networkSimulation
	twolayernetworkSimulation
	Index

