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CGPFixSS Module Identification

Description

Call C version of moduleldentificationGPFixSS

Usage

CGPFixSS(W, z, x0, a = 0.5, lambda = 1, maxiter = 50)

Arguments

W
z
X0

a

edge score matrix of the network, n X n matrix
node score vector of the network, n-length vector
initial solution, n-length vector

parameter in elastic net the same as in EuclideanProjectionENNORM

lambda parameter in objective, coefficient of node score part

maxiter maximal interation of whole procedure

Value

a list containing function objective vector and the solution

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

References

AMOUNTAIN

See Also

moduleIdentificationGPFixSS



CGPFixSSMultiLayer

Examples

n =100

k = 20

theta = 0.5

pp <- networkSimulation(n,k,theta)

moduleid <- pp[[3]1]

## use default parameters here

X <= CGPFixSS(ppLL1]1]1,ppL[2]1],rep(1/n,n))
predictedid<-which(x[[2]]!=0)

recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precisex*recall/(precisetrecall))

CGPFixSSMultilLayer Module Identification for multi-layer network

Description

Call C version of moduleldentificationGPFixSSMultilayer

Usage

CGPFixSSMultilLayer(W, listzs, x@, a = 0.5, lambda = 1, maxiter = 50)

Arguments
W edge score matrix of the network, n x n matrix
listzs a list of node score vectors, each layer has a n-length vector
X0 initial solution, n-length vector
a parameter in elastic net the same as in EuclideanProjectionENNORM
lambda parameter in objective, coefficient of node score of other layers
maxiter maximal interation of whole procedure

Value

a list containing solution for network 1 and network 2

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

References

AMOUNTAIN

See Also

moduleldentificationGPFixSSMultilayer



4 CGPFixSSTwolayer

Examples

n = 100

k = 20

L=5

theta = 0.5

cpl <- multilayernetworkSimulation(n,k,theta,L)

listz <- 1list()

for (i in 1:L){

listz[[i]] <- cpl[[i+2]]

3

moduleid <- cpl[[2]1]

## use default parameters here

X <- CGPFixSSMultilLayer(cpl[[1]1],listz,rep(1/n,n))

predictedid <- which(x[[2]]!=0)

recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2xprecisexrecall/(precise+recall))

CGPFixSSTwolayer Module Identification for two-layer network

Description

Call C version of moduleldentificationGPFixSSTwolayer

Usage

CGPFixSSTwolayer (W1, z1, x@, W2, z2, y@, interlayerA, lambdal = 1,
lambda2 = 1, lambda3 = 1, maxiter = 100, al = 0.5, a2 = 0.5)

Arguments
W1 edge score matrix of the network 1, n_1 x n_1 matrix
z1 node score vector of the network 1, n_1-length vector
X0 initial solution of network 1, n_1-length vector
W2 edge score matrix of the network 2, n_2 x n_2 matrix
z2 node score vector of the network 2, n_2-length vector
yo initial solution of network 2, n_2-length vector
interlayerA inter-layer links weight, n_1 x n_2 matrix
lambda1l parameter in objective, coefficient of node score of network 1
lambda?2 parameter in objective, coefficient of node score of network 2
lambda3 parameter in objective, coefficient of inter-layer links part
maxiter maximal interation of whole procedure
al parameter in elastic net the same as in EuclideanProjectionENNORM
a2 parameter in elastic net the same as in EuclideanProjectionENNORM
Value

a list containing solution for network 1 and network 2 and objective



EuclideanProjection ENNORM

Author(s)

Dong Li, <dx1466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

moduleldentificationGPFixSSTwolayer

Examples

n1=100

k1=20

thetal = 0.5

n2=80

k2=10

theta2 = 0.5

ppresult <- twolayernetworkSimulation(n1,k1,thetal,n2,k2,theta2)

A <- ppresult[[3]]

pp <- ppresult[[1]]

moduleid <- pp[[31]

netid <- 1:n1

restp<- netid[-moduleid]

pp2 <- ppresult[[2]]

moduleid2 <- pp2[[3]]

## use default parameters here

modres=CGPFixSSTwolayer (pp[[1]1],ppL[2]1],rep(1/n1,n1),
pp2L[11],pp2L[2]1],rep(1/n2,n2),A)

predictedid<-which(modres[[1]]!=0)

recall = length(intersect(predictedid,moduleid))/length(moduleid)
precise = length(intersect(predictedid,moduleid))/length(predictedid)
F1 = 2xprecise*recall/(precise+recall)
predictedid2<-which(modres[[2]]!=0)

recall?2 = length(intersect(predictedid2,moduleid?2))/length(moduleid?2)
precise?2 = length(intersect(predictedid2,moduleid2))/length(predictedid2)
F2 = 2xprecise2*recall2/(precise2+recall?)

EuclideanProjectionENNORM
Euclidean projection on elastic net

Description

Piecewise root finding algorithm for Euclidean projection on elastic net

Usage

EuclideanProjectionENNORM(y, t, alpha = 0.5)



moduleldentificationGPFixSS

Arguments

y constant vector

t radius of elastic net ball

alpha parameter in elastic net: alpha x_1 + (1-alpha)*x_2/2=t
Value

a list containing network adjacency matrix, node score and module membership

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

References

Gong, Pinghua, Kun Gai, and Changshui Zhang. "Efficient euclidean

projections via piecewise root

finding and its application in gradient projection." Neurocomputing 74.17 (2011): 2754-2766.

Examples

y=rnorm(100)
x=EuclideanProjectionENNORM(y,1,0.5)
sparistyx = sum(x==0)/100

moduleIdentificationGPFixSS
Module Identification

Description

Algorithm for Module Identification on single network

Usage

moduleldentificationGPFixSS(W, z, x@, a = 0.5, lambda =

1, maxiter = 1000)

Arguments
W edge score matrix of the network, n x n matrix
z node score vector of the network, n-length vector
X0 initial solution, n-length vector
a parameter in elastic net the same as in EuclideanProjectionENNORM
lambda parameter in objective, coefficient of node score part
maxiter maximal interation of whole procedure
Value

a list containing function objective vector and the solution



moduleldentificationGPFixSSMultilayer

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

References

AMOUNTAIN

See Also

EuclideanProjectionENNORM

Examples

n = 100

k = 20

theta = 9.5

pp <- networkSimulation(n,k,theta)

moduleid <- pp[[3]1]

## use default parameters here

x <- moduleldentificationGPFixSS(pp[[1]1],ppL[2]],rep(1/n,n))
predictedid<-which(x[[2]]!=0)

recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precisex*recall/(precisetrecall))

moduleldentificationGPFixSSMultilayer
Module Identification for multi-layer network

Description

Algorithm for Module Identification on multi-layer network sharing the same set of genes

Usage

moduleldentificationGPFixSSMultilayer(W, listz, x0, a = 0.5, lambda = 1,
maxiter = 1000)

Arguments
W edge score matrix of the network, n x n matrix
listz a list of node score vectors, each layer has a n-length vector
X0 initial solution, n-length vector
a parameter in elastic net the same as in EuclideanProjectionENNORM
lambda parameter in objective, coefficient of node score of other layers
maxiter maximal interation of whole procedure

Value

a list containing objective values and solution
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Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

References

AMOUNTAIN

See Also

moduleldentificationGPFixSSMultilayer

Examples

n =100

k = 20

L=5

theta = 0.5

cpl <- multilayernetworkSimulation(n,k,theta,L)

listz <- list()

for (i in 1:L){

listz[[i]] <- cpl[[i+2]]

3

moduleid <- cpl[[2]]

## use default parameters here

x <- moduleldentificationGPFixSSMultilayer(cpl[[1]1],1listz,rep(1/n,n))
predictedid <- which(x[[2]]!=0)

recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precisex*recall/(precisetrecall))

moduleldentificationGPFixSSTwolayer
Module Identification for two-layer network

Description

Algorithm for Module Identification on two-layer network

Usage

moduleldentificationGPFixSSTwolayer(W1, z1, x@, W2, z2, yo, A, lambdal =1,
lambda2 = 1, lambda3 = 1, maxiter = 1000, al = 0.5, a2 = 0.5)

Arguments
W1 edge score matrix of the network 1, n_1 x n_1 matrix
z1 node score vector of the network 1, n_1-length vector
X0 initial solution of network 1, n_1-length vector
w2 edge score matrix of the network 2, n_2 x n_2 matrix
z2 node score vector of the network 2, n_2-length vector

L initial solution of network 2, n_2-length vector



moduleldentificationGPFixSSTwolayer

A
lambda1l
lambda?2
lambda3
maxiter
al

a2

Value

inter-layer links weight, n_1 x n_2 matrix

parameter in objective, coefficient of node score of network 1
parameter in objective, coefficient of node score of network 2
parameter in objective, coefficient of inter-layer links part

maximal interation of whole procedure

parameter in elastic net the same as in EuclideanProjectionENNORM

parameter in elastic net the same as in EuclideanProjectionENNORM

a list containing solution for network 1 and network 2 and objective

Author(s)

Dong Li, <dx1466@cs.bham.ac.uk>

References

AMOUNTAIN

See Also

EuclideanProjectionENNORM

Examples

n1=100
k1=20

thetal =

n2=80
k2=10

theta2 =

ppresult <- twolayernetworkSimulation(n1,k1,thetal,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]1]

netid <- 1:n1

restp<- netid[-moduleid]

pp2 <- ppresult[[2]1]

moduleid2 <- pp2[[3]]

## use default parameters here
modres=moduleIdentificationGPFixSSTwolayer (pp[[1]11,pplL[2]1],rep(1/n1,n1),
pp2[[11],pp2[[2]1],rep(1/n2,n2),A)

predictedid<-which(modres[[1]]!=0)

recall = length(intersect(predictedid,moduleid))/length(moduleid)
precise = length(intersect(predictedid,moduleid))/length(predictedid)

F1 = 2*precise*recall/(precise+recall)
predictedid2<-which(modres[[2]]!=0)

recall?2 = length(intersect(predictedid2,moduleid?2))/length(moduleid?2)
precise2 = length(intersect(predictedid2,moduleid2))/length(predictedid2)
F2 = 2*precise2*recall2/(precise2+recall?)
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multilayernetworkSimulation
Lllustration of multi-layer weighted network simulation

Description

Simulate a multi-layer weighted network with each layer sharing the same set of nodes but different
nodes scores

Usage

multilayernetworkSimulation(n, k, theta, L)

Arguments
n number of nodes in each layer of the network
k number of nodes in the conserved module
theta module node score follow the uniform distribution in range [theta,1]
L number of layers
Value

a list containing all the layers, each as result object of networkSimulation

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

See Also

networkSimulation

Examples

n = 100

k = 20

theta = 0.5

L=5

cpl <- multilayernetworkSimulation(n,k,theta,L)
## No proper way to visualize it yet



networkSimulation
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networkSimulation Lllustration of weighted network simulation

Description

Simulate a single weighted network

Usage

networkSimulation(n, k, theta)

Arguments

n number of nodes in the network

k number of nodes in the module, n <k

theta module node score follow the uniform distribution in range [theta, 1]
Value

a list containing network adjacency matrix, node score and module membership

Author(s)
Dong Li, <dx1466@cs.bham.ac. uk>

Examples

pp <- networkSimulation(100,20,0.5)

moduleid <- pp[[3]]

netid <- 1:100

restp<- netid[-moduleid]
groupdesign=list(moduleid, restp)
names(groupdesign)=c('module', 'background')

## Not run: library(qgraph)

pg<-ggraph(ppl[[1]], groups=groupdesign, legend=TRUE)
## End(Not run)

twolayernetworkSimulation
Lllustration of two-layer weighted network simulation

Description

Simulate a two-layer weighted network

Usage

twolayernetworkSimulation(n1, k1, thetal, n2, k2, theta2)
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Arguments

nl
k1
thetal
n2
k2
theta2

Value

twolayernetworkSimulation

number of nodes in the network1

number of nodes in the modulel, nl < k1

modulel node score follow the uniform distribution in range [thetal,1]
number of nodes in the network2

number of nodes in the module2, n2 < k2

module2 node score follow the uniform distribution in range [theta2,1]

a list containing network1, network2 and a inter-layer links matrix

Author(s)

Dong Li, <dx1466@cs.bham.ac. uk>

See Also

networkSimulation

Examples

n1=100
k1=20
thetal = 0.5
n2=80
k2=10
theta2 = 0.5

ppresult <- twolayernetworkSimulation(n1,k1,thetal,n2,k2,theta2)
A <- ppresult[[3]]
pp <- ppresult[[1]]
moduleid <- pp[[3]]

netid <- 1:n1

restp<- netid[-moduleid]
pp2 <- ppresult[[2]]
moduleid2 <- pp2[[3]]

netid2 <- 1:n2

restp2<- netid2[-moduleid2]

## labelling the groups
groupdesign=list(moduleid,restp, (moduleid2+n1), (restp2+ni))
names (groupdesign)=c('modulel’, 'backgroundl', 'module2', 'background2"')
twolayernet<-matrix(@,nrow=(n1+n2),ncol=(n1+n2))
twolayernet[1:n1,1:n11<-pp[[1]]
twolayernet[(n1+1):(n1+n2), (n1+1): (n1+n2)1<-pp2[[1]]
twolayernet[1:n1,(n1+1):(n1+n2)] = A
twolayernet[(n1+1):(n1+n2),1:n1] = t(A)

## Not run: library(qgraph)

g<-ggraph(twolayernet, groups=groupdesign, legend=TRUE)

## End(Not run)
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