Package 'idr2d'

April 9, 2025

Title Irreproducible Discovery Rate for Genomic Interactions Data

Version 1.21.0

Description A tool to measure reproducibility between genomic experiments that produce two-dimensional peaks (interactions between peaks), such as ChIA-PET, HiChIP, and HiC. idr2d is an extension of the original idr package, which is intended for (one-dimensional) ChIP-seq peaks.

License MIT + file LICENSE

URL https://idr2d.mit.edu

Depends R (>= 3.6)

- **Imports** dplyr (>= 0.7.6), futile.logger (>= 1.4.3), GenomeInfoDb (>= 1.14.0), GenomicRanges (>= 1.30), ggplot2 (>= 3.1.1), grDevices, grid, idr (>= 1.2), IRanges (>= 2.18.0), magrittr (>= 1.5), methods, reticulate (>= 1.13), scales (>= 1.0.0), stats, stringr (>= 1.3.1), utils
- Suggests DT (>= 0.4), htmltools (>= 0.3.6), knitr (>= 1.20), rmarkdown (>= 1.10), roxygen2 (>= 6.1.0), testthat (>= 2.1.0)

VignetteBuilder knitr

biocViews DNA3DStructure, GeneRegulation, PeakDetection, Epigenetics, FunctionalGenomics, Classification, HiC

Encoding UTF-8

RoxygenNote 7.1.0

SystemRequirements Python (>= 3.5.0), hic-straw

git_url https://git.bioconductor.org/packages/idr2d

git_branch devel

git_last_commit 43c8e8a

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2025-04-09

```
Author Konstantin Krismer [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-8994-3416>),
David Gifford [ths, cph] (ORCID:
<https://orcid.org/0000-0003-1709-4034>)
```

Maintainer Konstantin Krismer <krismer@mit.edu>

Contents

calculate_midpoint_distance1d	2
calculate_midpoint_distance2d	3
calculate_relative_overlap1d	5
calculate_relative_overlap2d	6
chiapet	8
chipseq	8
determine_anchor_overlap	9
draw_hic_contact_map	0
draw_idr_distribution_histogram	1
draw_rank_idr_scatterplot	2
draw_value_idr_scatterplot	3
establish_bijection	4
establish_bijection1d	6
establish_bijection2d	17
establish_overlap1d	9
	21
estimate_idr	22
estimate_idr1d	25
	27
	30
	32
parse_hic_pro_matrix	32
FJ	33
F-F	34
	36
remove_nonstandard_chromosomes2d	36
3	38

calculate_midpoint_distance1d

Distance between Midpoints of two Peaks

Description

Index

Calculates the distance in nucleotides between the midpoints of two peaks.

Note: peaks must be on the same chromosome; start coordinate is always less than end coordinate

Usage

```
calculate_midpoint_distance1d(peak1_start, peak1_end, peak2_start, peak2_end)
```

Arguments

peak1_start	integer vector; genomic start coordinate(s) of peak in replicate 1
peak1_end	integer vector; genomic end coordinate(s) of peak in replicate 1
peak2_start	integer vector; genomic start coordinate(s) of peak in replicate 2
peak2_end	integer vector; genomic end coordinate(s) of peak in replicate 2

Value

positive integer vector; distances between peak pairs

Examples

calculate_midpoint_distance2d

Distance between Anchor Midpoints of two Interactions

Description

Calculates the distance in nucleotides between the anchor midpoints of two interactions, which is the sum of the distance between midpoints of anchor A in interaction 1 and anchor A in interaction 2, and the distance between midpoints of anchor B in interaction 1 and anchor B in interaction 2.

Note: all anchors must be on the same chromosome; start coordinate is always less than end coordinate

Usage

```
calculate_midpoint_distance2d(
    int1_anchor_a_start,
    int1_anchor_a_end,
    int1_anchor_b_start,
    int1_anchor_b_end,
    int2_anchor_a_start,
    int2_anchor_b_start,
    int2_anchor_b_start,
    int2_anchor_b_end
```

)

Arguments

int1_anchor_a_start integer vector; genomic start coordinate(s) of anchor A in replicate 1 interaction int1_anchor_a_end integer vector; genomic end coordinate(s) of anchor A in replicate 1 interaction int1_anchor_b_start integer vector; genomic start coordinate(s) of anchor B in replicate 1 interaction int1_anchor_b_end integer vector; genomic end coordinate(s) of anchor B in replicate 1 interaction int2_anchor_a_start integer vector; genomic start coordinate(s) of anchor A in replicate 2 interaction int2_anchor_a_end integer vector; genomic end coordinate(s) of anchor A in replicate 2 interaction int2_anchor_b_start integer vector; genomic start coordinate(s) of anchor B in replicate 2 interaction int2_anchor_b_end integer vector; genomic end coordinate(s) of anchor B in replicate 2 interaction

Value

positive integer vector; distances between interaction pairs

Examples

4

calculate_relative_overlap1d Relative Anchor Overlap of two Peaks

Description

Calculates the overlap between anchor A of interaction 1 and anchor A of interaction 2, as well as anchor B of interaction 1 and anchor B of interaction 2. The overlap (in nucleotides) is then normalized by the length of the anchors.

Usage

```
calculate_relative_overlap1d(peak1_start, peak1_end, peak2_start, peak2_end)
```

Arguments

peak1_start	integer vector; genomic start coordinate(s) of peak in replicate 1
peak1_end	integer vector; genomic end coordinate(s) of peak in replicate 1
peak2_start	integer vector; genomic start coordinate(s) of peak in replicate 2
peak2_end	integer vector; genomic end coordinate(s) of peak in replicate 2

Value

numeric vector; relative overlaps between peak pairs

Examples

50% overlap

calculate_relative_overlap2d

Relative Anchor Overlap of two Interactions

Description

Calculates the overlap between anchor A of interaction 1 and anchor A of interaction 2, as well as anchor B of interaction 1 and anchor B of interaction 2. The overlap (in nucleotides) is then normalized by the length of the anchors.

Note: anchors A and B of the same interaction have to be on the same chromosome; start coordinate is always less than end coordinate

Usage

```
calculate_relative_overlap2d(
    int1_anchor_a_start,
    int1_anchor_b_start,
    int1_anchor_b_start,
    int1_anchor_b_end,
    int2_anchor_a_start,
    int2_anchor_a_end,
    int2_anchor_b_start,
    int2_anchor_b_end
)
```


Arguments

```
int1_anchor_a_start
```

 $integer \ vector; \ genomic \ start \ coordinate(s) \ of \ anchor \ A \ in \ replicate \ 1 \ interaction \\ int1_anchor_a_end$

integer vector; genomic end coordinate(s) of anchor A in replicate 1 interaction

int1_anchor_b_	start
	integer vector; genomic start coordinate(s) of anchor B in replicate 1 interaction
int1_anchor_b_	end
	integer vector; genomic end coordinate(s) of anchor B in replicate 1 interaction
int2_anchor_a_	start
	integer vector; genomic start coordinate(s) of anchor A in replicate 2 interaction
int2_anchor_a_	end
	integer vector; genomic end coordinate(s) of anchor A in replicate 2 interaction
int2_anchor_b_	start
	integer vector; genomic start coordinate(s) of anchor B in replicate 2 interaction
int2_anchor_b_	end
	integer vector; genomic end coordinate(s) of anchor B in replicate 2 interaction

Value

numeric vector; relative overlaps between interaction pairs

Examples

# 100% overlap	
<pre>calculate_relative_overlap2d(100,</pre>	120, 240, 260,
100,	120, 240, 260)
# 50% overlap	
calculate_relative_overlap2d(100,	
100,	110, 240, 260)
<pre># negative overlap</pre>	
calculate_relative_overlap2d(100,	120, 240, 250,
130,	140, 260, 280)
<pre># larger negative overlap</pre>	
<pre>calculate_relative_overlap2d(100,</pre>	120, 240, 250,
200,	220, 340, 350)
<pre># vectorized example</pre>	
calculate_relative_overlap2d(c(100	0, 100, 100, 100),
c(120	0, 120, 120, 120),
c(240	0, 240, 240, 240),
c(266	0, 250, 250, 250),
c(100	0, 100, 130, 200),
c(120	0, 110, 140, 220),
c(246	0, 240, 260, 340),
c(260	0, 260, 280, 350))

chiapet

Description

This object contains genomic interactions on chromosomes 1 to 5, which could be the results of Hi-C or ChIA-PET experiments, done in duplicates.

Usage

chiapet

Format

A list with two components, the data frames rep1_df and rep2_df, which have the following seven columns:

column 1:	chr_a	character; genomic location of anchor A - chromosome (e.g., "chr3")
column 2:	start_a	integer; genomic location of anchor A - start coordinate
column 3:	end_a	integer; genomic location of anchor A - end coordinate
column 4:	chr_b	character; genomic location of anchor B - chromosome (e.g., "chr3")
column 5:	start_b	integer; genomic location of anchor B - start coordinate
column 6:	end_b	integer; genomic location of anchor B - end coordinate
column 7:	fdr	numeric; False Discovery Rate - significance of interaction

chipseq

Example Genomic Peak Data Set

Description

This object contains genomic peaks from two replicate ChIP-seq experiments.

Usage

chipseq

Format

A list with two components, the data frames rep1_df and rep2_df, which have the following four columns:

column 1:	chr	character; genomic location of peak - chromosome (e.g., "chr3")
column 2:	start	integer; genomic location of peak - start coordinate
column 3:	end	integer; genomic location of peak - end coordinate
column 4:	value	numeric; heuristic used to rank the peaks

determine_anchor_overlap

Identifies Overlapping Anchors

Description

Identifies all overlapping anchor pairs (m:n mapping).

Usage

```
determine_anchor_overlap(rep1_anchor, rep2_anchor, max_gap = -1L)
```

Arguments

rep1_anchor		data frame with the following columns:		
column 1: column 2: column 3:	chr start end	character; genomic location of anchor in replicate 1 - chromosome (e.g., "chr3" integer; genomic location of anchor in replicate 1 - start coordinate integer; genomic location of anchor in replicate 1 - end coordinate		
rep2_anchor		data frame with the following columns:		
column 1: column 2: column 3:	chr start end	character; genomic location of anchor in replicate 2 - chromosome (e.g., "chr3") integer; genomic location of anchor in replicate 2 - start coordinate integer; genomic location of anchor in replicate 2 - end coordinate		
max_gap		integer; maximum gap in nucleotides allowed between two anchors for them to be considered as overlapping (defaults to -1, i.e., overlapping anchors)		

Value

A data frame containing overlapping anchor pairs with the following columns:

column 1:	rep1_idx	anchor index in data frame rep1_anchor
column 2:	rep2_idx	anchor index in data frame rep2_anchor

Examples

start = rep2_df[, 2], end = rep2_df[, 3])

anchor_a_overlap <- determine_anchor_overlap(rep1_anchor_a, rep2_anchor_a)</pre>

draw_hic_contact_map Create Hi-C contact map

Description

Creates Hi-C contact maps to visualize the results of estimate_idr2d_hic.

Usage

```
draw_hic_contact_map(
    df,
    idr_cutoff = NULL,
    chromosome = NULL,
    start_coordinate = NULL,
    end_coordinate = NULL,
    title = NULL,
    values_normalized = FALSE,
    log_values = TRUE
)
```

```
df
                    output of estimate_idr2d_hic, a data frame with the following columns:
column 1:
            interaction
                           character; genomic location of interaction block (e.g., "chr1:204940000-204940000")
column 2:
            value
                           numeric; p-value, FDR, or heuristic used to rank the interactions
column 3:
            "rep_value"
                           numeric; value of corresponding replicate interaction
column 4:
            "rank"
                           integer; rank of the interaction, established by value column, ascending order
column 5:
            "rep_rank"
                           integer; rank of corresponding replicate interaction
column 6:
            "idr"
                           integer; IDR of the block and the corresponding block in the other replicate
  idr_cutoff
                    numeric; only show blocks with IDR < idr_cutoff, shows all blocks by default
                    character; chromsome name or list of chromosome names to be analyzed, e.g.,
  chromosome
                    UCSC chromosome 1, "chr1", defaults to all chromosomes (chromosome =
                    NULL)
  start_coordinate
                    integer; only show contact map window between "start_coordinate" and
                    "end_coordinate", by default shows entire chromosome
  end_coordinate integer; only show contact map window between "start_coordinate" and
                    "end_coordinate", by default shows entire chromosome
```

title	character; plot title		
values_normaliz	zed		
	logical; are read counts in value column raw or normalized? Defaults to FALSE		
log_values	logical; log-transform value column? Defaults to TRUE		

Value

ggplot2 object; Hi-C contact map

Examples

draw_idr_distribution_histogram

Create histogram of IDR values

Description

Creates diagnostic plots to visualize the results of estimate_idr.

Usage

```
draw_idr_distribution_histogram(
  df,
  remove_na = TRUE,
  xlab = "IDR",
  ylab = "density",
  title = "IDR value distribution"
)
```

df		part of output of estimate_idr, a data frame with at least the following named columns:
	idr	IDR of the peak and the corresponding peak in the other replicate.

remove_na	logical; should NA values be removed?
xlab	character; x axis label
ylab	character; y axis label
title	character; plot title

Value

ggplot2 object; IDR distribution histogram

Examples

draw_rank_idr_scatterplot

Create scatterplot of IDR values

Description

Creates diagnostic plots to visualize the results of estimate_idr.

Usage

```
draw_rank_idr_scatterplot(
    df,
    remove_na = TRUE,
    xlab = "rank in replicate 1",
    ylab = "rank in replicate 2",
    log_idr = FALSE,
    title = "rank - IDR dependence",
    color_gradient = c("rainbow", "default"),
    alpha = 1,
    max_points_shown = 2500
)
```

df	part of output of estimate_idr, a data frame with at least the following named columns:
rank rep_rank	integer; rank of the peak, established by value column, ascending order integer; rank of corresponding replicate peak.
idr	IDR of the peak and the corresponding peak in the other replicate.
remove_na	logical; should NA values be removed?
xlab	character; x axis label
ylab	character; y axis label
log_idr	logical; use logarithmized IDRs for colors to better distinguish highly significant IDRs

draw_value_idr_scatterplot

title	character; plot title	
color_gradient	character; either "rainbow" or "default"	
alpha	numeric; transparency of dots, from $0.0 - 1.0$, where 1.0 is completely opaque; default is 1.0	
max_points_shown		
	integer; default is 2500	

Value

ggplot2 object; IDR rank scatterplot

Examples

draw_value_idr_scatterplot

Create scatterplot of IDR values

Description

Creates diagnostic plots to visualize the results of estimate_idr.

Usage

```
draw_value_idr_scatterplot(
    df,
    remove_na = TRUE,
    remove_outliers = TRUE,
    xlab = "transformed value in replicate 1",
    ylab = "transformed value in replicate 2",
    log_axes = FALSE,
    log_idr = FALSE,
    title = "value - IDR dependence",
    color_gradient = c("rainbow", "default"),
    alpha = 1,
    max_points_shown = 2500
)
```

Arguments

df	part of output of estimate_idr, a data frame with at least the following named columns:	
value rep_value idr	numeric; value of corresponding replicate peak	
remove_na	logical; should NA values be removed?	
remove_outliers		
	logical; removes extreme data points	
xlab	character; x axis label	
ylab	character; y axis label	
log_axes	logical; show logarithmized values from replicate 1 and 2 (default value is FALSE)	
log_idr	logical; use logarithmized IDRs for colors to better distinguish highly significant IDRs (default value is FALSE)	
title	character; plot title	
color_gradient	character; either "rainbow" or "default"	
alpha	numeric; transparency of dots, from 0.0 - 1.0, where 1.0 is completely opaque; default is 1.0	
max_points_shown		
	integer; default is 2500	

Value

ggplot2 object; IDR value scatterplot

Examples

establish_bijection Finds One-to-One Correspondence between Peaks or interactions from Replicate 1 and 2

Description

This method establishes a bijective assignment between observations (genomic peaks in case of ChIP-seq, genomic interactions in case of ChIA-PET, HiChIP, and Hi-C) from replicate 1 and 2. An observation in replicate 1 is assigned to an observation in replicate 2 if and only if (1) the observation loci in both replicates overlap (or the gap between them is less than or equal to max_gap), and (2) there is no other observation in replicate 2 that overlaps with the observation in replicate 1 and has a lower *ambiguity resolution value*.

Usage

```
establish_bijection(
  rep1_df,
  rep2_df,
  analysis_type = c("IDR1D", "IDR2D"),
  ambiguity_resolution_method = c("overlap", "midpoint", "value"),
  max_gap = -1L
)
```

Arguments

rep1_df	data frame of observations (i.e., genomic peaks or genomic interactions) of repli- cate 1. If analysis_type is IDR1D, the columns of rep1_df are described in establish_bijection1d, otherwise in establish_bijection2d	
rep2_df	data frame of observations (i.e., genomic peaks or genomic interactions) of repli- cate 2. Same columns as rep1_df.	
analysis_type	"IDR2D" for genomic interaction data sets, "IDR1D" for genomic peak data sets	
ambiguity_resolution_method		
	defines how ambiguous assignments (when one interaction or peak in replicate 1 overlaps with multiple interactions or peaks in replicate 2 or vice versa) are re- solved. For available methods, see establish_overlap1d or establish_overlap2d, respectively.	
max_gap	integer; maximum gap in nucleotides allowed between two anchors for them to be considered as overlapping (defaults to -1, i.e., overlapping anchors)	

Value

See establish_bijection1d or establish_bijection2d, respectively.

Examples

```
rep1_df <- idr2d:::chipseq$rep1_df
rep1_df$value <- preprocess(rep1_df$value, "log")
rep2_df <- idr2d:::chipseq$rep2_df
rep2_df$value <- preprocess(rep2_df$value, "log")
mapping <- establish_bijection(rep1_df, rep2_df, analysis_type = "IDR1D")</pre>
```

establish_bijection1d Finds One-to-One Correspondence between Peaks from Replicate 1 and 2

Description

This method establishes a bijective assignment between peaks from replicate 1 and 2. A peak in replicate 1 is assigned to a peak in replicate 2 if and only if (1) they overlap (or the gap between the peaks is less than or equal to max_gap), and (2) there is no other peak in replicate 2 that overlaps with the peak in replicate 1 and has a lower *ambiguity resolution value*.

Usage

```
establish_bijection1d(
  rep1_df,
  rep2_df,
  ambiguity_resolution_method = c("overlap", "midpoint", "value"),
  max_gap = -1L
)
```

rep1_df	f data frame of observations (i.e., genomic peaks) of replicate 1, with at least the following columns (position of columns matter, column names are irrelevant):			
column column column column	2: start 3: end	character; genomic location of peak - chromosome (e.g., "chr3") integer; genomic location of peak - start coordinate integer; genomic location of peak - end coordinate numeric; p-value, FDR, or heuristic used to rank the interactions		
rep2_df		frame of observations (i.e., genomic peaks) of replicate 2, with the follow- columns (position of columns matter, column names are irrelevant):		
column column column column	2: start 3: end	character; genomic location of peak - chromosome (e.g., "chr3") integer; genomic location of peak - start coordinate integer; genomic location of peak - end coordinate numeric; p-value, FDR, or heuristic used to rank the interactions		
ambiguity_	defir laps	n_method nes how ambiguous assignments (when one interaction in replicate 1 over- with multiple interactions in replicate 2 or vice versa) are resolved. Avail- methods:		
"value" "overlap" "midpoint"	the interact	s are prioritized by ascending or descending value column (see sorting_direction), e.g., if two in tion pair is chosen which has the highest relative overlap, i.e., overlap in nucleotides of replicate 1 in tion pair is chosen which has the smallest distance between their anchor midpoints, i.e., distance from		
max_gap integer; maximum gap in nucleotides allowed between two anchors for them to be considered as overlapping (defaults to -1, i.e., overlapping anchors)				

establish_bijection2d

Value

Data frames rep1_df and rep2_df with the following columns:

chr	character; genomic location of peak - chromosome (e.g., "chr3")
start	integer; genomic location of peak - start coordinate
end	integer; genomic location of peak - end coordinate
value	numeric; p-value, FDR, or heuristic used to rank the peaks
rep_value	numeric; value of corresponding replicate peak. If no corresponding peak was found, rep_value is
rank	integer; rank of the peak, established by value column, ascending order
rep_rank	integer; rank of corresponding replicate peak. If no corresponding peak was found, rep_rank is set
idx	integer; peak index, primary key
rep_idx	integer; specifies the index of the corresponding peak in the other replicate (foreign key). If no corr
	end value rep_value rank rep_rank idx

Examples

```
rep1_df <- idr2d:::chipseq$rep1_df
rep1_df$value <- preprocess(rep1_df$value, "log")
rep2_df <- idr2d:::chipseq$rep2_df
rep2_df$value <- preprocess(rep2_df$value, "log")
mapping <- establish_bijection1d(rep1_df, rep2_df)</pre>
```

establish_bijection2d Finds One-to-One Correspondence between Interactions from Replicate 1 and 2

Description

This method establishes a bijective assignment between interactions from replicate 1 and 2. An interaction in replicate 1 is assigned to an interaction in replicate 2 if and only if (1) both anchors of the interactions overlap (or the gap between anchor A/B in replicate 1 and 2 is less than or equal to max_gap), and (2) there is no other interaction in replicate 2 that overlaps with the interaction in replicate 1 and has a lower *ambiguity resolution value*.

Usage

```
establish_bijection2d(
   rep1_df,
   rep2_df,
   ambiguity_resolution_method = c("overlap", "midpoint", "value"),
   max_gap = -1L
)
```

Arguments

rep1_df	least	a frame of observations (i.e., genomic interactions) of replicate 1, with at at the following columns (position of columns matter, column names are ir- avant):
column 1:	chr_a	character; genomic location of anchor A - chromosome (e.g., "chr3")
column 2:	start_a	integer; genomic location of anchor A - start coordinate
column 3:	end_a	integer; genomic location of anchor A - end coordinate
column 4:	chr_b	character; genomic location of anchor B - chromosome (e.g., "chr3")
column 5:	start_b	integer; genomic location of anchor B - start coordinate
column 6:	end_b	integer; genomic location of anchor B - end coordinate
column 7:	value	numeric; p-value, FDR, or heuristic used to rank the interactions
rep2_df	data	a frame of observations (i.e., genomic interactions) of replicate 2, with the
, ob		owing columns (position of columns matter, column names are irrelevant):
column 1:	chr_a	character; genomic location of anchor A - chromosome (e.g., "chr3")
column 2:	start_a	integer; genomic location of anchor A - start coordinate
column 3:	end_a	integer; genomic location of anchor A - end coordinate
column 4:	chr_b	character; genomic location of anchor B - chromosome (e.g., "chr3")
column 5:	start_b	integer; genomic location of anchor B - start coordinate
column 6:	end_b	integer; genomic location of anchor B - end coordinate
column 7:	value	numeric; p-value, FDR, or heuristic used to rank the interactions
ambiguity_	_resoluti	on_method
		nes how ambiguous assignments (when one interaction in replicate 1 over-
		s with multiple interactions in replicate 2 or vice versa) are resolved. Avail-
	-	e methods:
"value"	interactior	ns are prioritized by ascending or descending value column (see sorting_direction), e.g., if two in
"overlap"	the interac	ction pair is chosen which has the highest relative overlap, i.e., overlap in nucleotides of replicate 1 in
"midpoint"	the interac	ction pair is chosen which has the smallest distance between their anchor midpoints, i.e., distance from
max_gap		ger; maximum gap in nucleotides allowed between two anchors for them to considered as overlapping (defaults to -1, i.e., overlapping anchors)
alue		

Value

Data frames rep1_df and rep2_df with the following columns:

chr_a	character; genomic location of anchor A - chromosome (e.g., "chr3")
start_a	integer; genomic location of anchor A - start coordinate
end_a	integer; genomic location of anchor A - end coordinate
chr_b	character; genomic location of anchor B - chromosome (e.g., "chr3")
start_b	integer; genomic location of anchor B - start coordinate
end_b	integer; genomic location of anchor B - end coordinate
value	numeric; p-value, FDR, or heuristic used to rank the interactions
"rep_value"	numeric; value of corresponding replicate interaction. If no corresponding interaction was foun
	start_a end_a chr_b start_b end_b value

establish_overlap1d

column 9:	"rank"	integer; rank of the interaction, established by value column, ascending order
column 10:	"rep_rank"	integer; rank of corresponding replicate interaction. If no corresponding interaction was found,
column 11:	"idx"	integer; interaction index, primary key
column 12:	"rep_idx"	integer; specifies the index of the corresponding interaction in the other replicate (foreign key).

Examples

```
rep1_df <- idr2d:::chiapet$rep1_df
rep1_df$fdr <- preprocess(rep1_df$fdr, "log_additive_inverse")
rep2_df <- idr2d:::chiapet$rep2_df
rep2_df$fdr <- preprocess(rep2_df$fdr, "log_additive_inverse")
mapping <- establish_bijection2d(rep1_df, rep2_df)</pre>
```

establish_overlap1d Establish m:n Mapping Between Peaks from Replicate 1 and 2

Description

This method returns all overlapping interactions between two replicates. For each pair of overlapping interactions, the *ambiguity resolution value* (ARV) is calculated, which helps to reduce the m:n mapping to a 1:1 mapping. The semantics of the ARV depend on the specified ambiguity_resolution_method, but in general interaction pairs with lower ARVs have priority over interaction pairs with higher ARVs when the bijective mapping is established.

Usage

```
establish_overlap1d(
  rep1_df,
  rep2_df,
  ambiguity_resolution_method = c("overlap", "midpoint", "value"),
  max_gap = -1L
)
```

rep1_df		frame of observations (i.e., genomic peaks) of replicate 1, with at least the wing columns (position of columns matter, column names are irrelevant):
column 1: column 2: column 3: column 4:	start end	character; genomic location of peak - chromosome (e.g., "chr3") integer; genomic location of peak - start coordinate integer; genomic location of peak - end coordinate numeric; p-value, FDR, or heuristic used to rank the interactions

rep2_df	data frame of observations (i.e., genomic peaks) of replicate 2, with the follow- ing columns (position of columns matter, column names are irrelevant):	
column 2 column 2 column 2	 2: start integer; genomic location of peak - start coordinate 3: end integer; genomic location of peak - end coordinate 	
ambiguity_	resolution_method defines how ambiguous assignments (when one interaction in replicate 1 over- laps with multiple interactions in replicate 2 or vice versa) are resolved. Avail- able methods:	
"value" "overlap" "midpoint"	p" the interaction pair is chosen which has the highest relative overlap, i.e., overlap in nucleotides of replicate	
max_gap	integer; maximum gap in nucleotides allowed between two anchors for them to be considered as overlapping (defaults to -1, i.e., overlapping anchors)	

Value

data frame with the following columns:

column 1:	rep1_idx	index of interaction in replicate 1 (i.e., row index in rep1_df)
column 2:	rep2_idx	index of interaction in replicate 2 (i.e., row index in rep2_df)
column 3:	arv	ambiguity resolution value used turn m:n mapping into 1:1 mapping. Interaction pairs with lower ar

Examples

```
rep1_df <- idr2d:::chipseq$rep1_df
rep1_df$value <- preprocess(rep1_df$value, "log_additive_inverse")
rep2_df <- idr2d:::chipseq$rep2_df
rep2_df$value <- preprocess(rep2_df$value, "log_additive_inverse")
# shuffle to break preexisting order
rep1_df <- rep1_df[sample.int(nrow(rep1_df)), ]
rep2_df <- rep2_df[sample.int(nrow(rep2_df)), ]
# sort by value column
rep1_df <- dplyr::arrange(rep1_df, value)
rep2_df <- establish_overlap1d(rep1_df, rep2_df)</pre>
```

establish_overlap2d Establish m:n mapping between interactions from replicate 1 and 2

Description

This method returns all overlapping interactions between two replicates. For each pair of overlapping interactions, the *ambiguity resolution value* (ARV) is calculated, which helps to reduce the m:n mapping to a 1:1 mapping. The semantics of the ARV depend on the specified ambiguity_resolution_method, but in general interaction pairs with lower ARVs have priority over interaction pairs with higher ARVs when the bijective mapping is established.

Usage

```
establish_overlap2d(
  rep1_df,
  rep2_df,
  ambiguity_resolution_method = c("overlap", "midpoint", "value"),
  max_gap = -1L
)
```

rep1_df data frame of observations (i.e., genomic interactions) of replicate 1, with at least the following columns (position of columns matter, column names are irrelevant):		
column 1:	chr_a	character; genomic location of anchor A - chromosome (e.g., "chr3")
column 2:	start_a	integer; genomic location of anchor A - start coordinate
column 3:	end_a	integer; genomic location of anchor A - end coordinate
column 4:	chr_b	character; genomic location of anchor B - chromosome (e.g., "chr3")
column 5:	start_b	integer; genomic location of anchor B - start coordinate
column 6:	end_b	integer; genomic location of anchor B - end coordinate
column 7:	value	numeric; p-value, FDR, or heuristic used to rank the interactions
rep2_df		a frame of observations (i.e., genomic interactions) of replicate 2, with the owing columns (position of columns matter, column names are irrelevant):
column 1:	chr_a	character; genomic location of anchor A - chromosome (e.g., "chr3")
column 2:	start_a	integer; genomic location of anchor A - start coordinate
column 3:	end_a	integer; genomic location of anchor A - end coordinate
column 4:	chr_b	character; genomic location of anchor B - chromosome (e.g., "chr3")
column 5:	start_b	integer; genomic location of anchor B - start coordinate
column 6:	end_b	integer; genomic location of anchor B - end coordinate
column 7:	value	numeric; p-value, FDR, or heuristic used to rank the interactions

ambiguity	_resolution_method defines how ambiguous assignments (when one interaction in replicate 1 over- laps with multiple interactions in replicate 2 or vice versa) are resolved. Avail- able methods:
"value" "overlap" "midpoint"	interactions are prioritized by ascending or descending value column (see sorting_direction), e.g., if two in the interaction pair is chosen which has the highest relative overlap, i.e., overlap in nucleotides of replicate 1 in the interaction pair is chosen which has the smallest distance between their anchor midpoints, i.e., distance from
max_gap	integer; maximum gap in nucleotides allowed between two anchors for them to be considered as overlapping (defaults to -1, i.e., overlapping anchors)

Value

data frame with the following columns:

column 1:	rep1_idx	index of interaction in replicate 1 (i.e., row index in rep1_df)
column 2:	rep2_idx	index of interaction in replicate 2 (i.e., row index in rep2_df)
column 3:	arv	ambiguity resolution value used turn m:n mapping into 1:1 mapping. Interaction pairs with lower ar

Examples

```
rep1_df <- idr2d:::chiapet$rep1_df
rep1_df$fdr <- preprocess(rep1_df$fdr, "log_additive_inverse")
rep2_df <- idr2d:::chiapet$rep2_df
rep2_df$fdr <- preprocess(rep2_df$fdr, "log_additive_inverse")
# shuffle to break preexisting order
rep1_df <- rep1_df[sample.int(nrow(rep1_df)), ]
rep2_df <- rep2_df[sample.int(nrow(rep2_df)), ]
# sort by value column
rep1_df <- dplyr::arrange(rep1_df, rep1_df$fdr)
rep2_df <- dplyr::arrange(rep2_df, rep2_df$fdr)
pairs_df <- establish_overlap2d(rep1_df, rep2_df)</pre>
```

estimate_idr

Estimates IDR for Genomic Peaks or Genomic Interactions

Description

Estimates IDR for Genomic Peaks or Genomic Interactions

estimate_idr

Usage

```
estimate_idr(
 rep1_df,
 rep2_df,
 analysis_type = "IDR2D",
 value_transformation = c("identity", "additive_inverse", "multiplicative_inverse",
    "log", "log_additive_inverse"),
 ambiguity_resolution_method = c("overlap", "midpoint", "value"),
 remove_nonstandard_chromosomes = TRUE,
 max_factor = 1.5,
 jitter_factor = 1e-04,
 max_gap = -1L,
 mu = 0.1,
 sigma = 1,
 rho = 0.2,
 p = 0.5,
 eps = 0.001,
 max_iteration = 30,
 local_idr = TRUE
)
```

rep1_df	data frame of observations (i.e., genomic peaks or genomic interactions) of repli- cate 1. If analysis_type is IDR1D, the columns of rep1_df are described in establish_bijection1d, otherwise in establish_bijection2d	
rep2_df	data frame of observations (i.e., genomic peaks or genomic interactions) of repli- cate 2. Same columns as rep1_df.	
analysis_type	"IDR2D" for genomic interaction data sets, "IDR1D" for genomic peak data sets	
value_transform	nation	
	the values in x have to be transformed in a way such that when ordered in de- scending order, more significant interactions end up on top of the list. If the values in x are p-values, "log_additive_inverse" is recommended. The fol- lowing transformations are supported:	
	dentity" no transformation is performed on x	
	nverse" x. = -x	
"multiplicative_i	nverse'' x = 1 / x	
	"log" x. = log(x). Note: zeros are replaced by .Machine\$double.xmin	
"log_additive_i	nverse" x. = -log(x), recommended if x are p-values. Note: zeros are replaced by .Machine\$doub1	
	either "ascending" (more significant interactions have lower value in value column) or "descending" (more significant interactions have higher value in value column)	
ambiguity_resol	ution_method	
	defines how ambiguous assignments (when one interaction or peak in replicate	
	1 overlaps with multiple interactions or peaks in replicate 2 or vice versa) are re-	

	solved. For available methods, see <pre>establish_overlap1d</pre> or <pre>establish_overlap2d, respectively.</pre>	
remove_nonstandard_chromosomes removes peaks and interactions containing genomic locations on non-standard		
	chromosomes using keepStandardChromosomes (default is TRUE)	
max_factor	numeric; controls the replacement values for Inf and $-Inf$. Inf are replaced by $max(x) * max_factor$ and $-Inf$ are replaced by $min(x) / max_factor$.	
jitter_factor	numeric; controls the magnitude of the noise that is added to x. This is done to break ties in x. Set jitter_factor = NULL for no jitter.	
max_gap	integer; maximum gap in nucleotides allowed between two anchors for them to be considered as overlapping (defaults to -1, i.e., overlapping anchors)	
mu	a starting value for the mean of the reproducible component.	
sigma	a starting value for the standard deviation of the reproducible component.	
rho	a starting value for the correlation coefficient of the reproducible component.	
р	a starting value for the proportion of reproducible component.	
eps	Stopping criterion. Iterations stop when the increment of log-likelihood is < eps*log-likelihood, Default=0.001.	
<pre>max_iteration</pre>	integer; maximum number of iterations for IDR estimation (defaults to 30)	
local_idr	see est.IDR	

Value

See estimate_idr1d or estimate_idr2d, respectively.

References

Q. Li, J. B. Brown, H. Huang and P. J. Bickel. (2011) Measuring reproducibility of high-throughput experiments. Annals of Applied Statistics, Vol. 5, No. 3, 1752-1779.

Examples

```
idr_results <- estimate_idr(idr2d:::chiapet$rep1_df,</pre>
                             idr2d:::chiapet$rep2_df,
                             analysis_type = "IDR2D",
                             value_transformation = "log_additive_inverse")
```

summary(idr_results)

Description

This method estimates Irreproducible Discovery Rates (IDR) for peaks in replicated ChIP-seq experiments.

Usage

```
estimate_idr1d(
  rep1_df,
  rep2_df,
 value_transformation = c("identity", "additive_inverse", "multiplicative_inverse",
    "log", "log_additive_inverse"),
 ambiguity_resolution_method = c("overlap", "midpoint", "value"),
 remove_nonstandard_chromosomes = TRUE,
 max_factor = 1.5,
  jitter_factor = 1e-04,
 max_gap = -1L,
 mu = 0.1,
  sigma = 1,
  rho = 0.2,
  p = 0.5,
  eps = 0.001,
 max_iteration = 30,
  local_idr = TRUE
)
```

rep1_df		frame of observations (i.e., genomic peaks) of replicate 1, with at least the wing columns (position of columns matter, column names are irrelevant):
column 1:	chr	character; genomic location of peak - chromosome (e.g., "chr3")
column 2:	start	integer; genomic location of peak - start coordinate
column 3:	end	integer; genomic location of peak - end coordinate
column 4:	value	numeric; p-value, FDR, or heuristic used to rank the interactions
rep2_df		frame of observations (i.e., genomic peaks) of replicate 2, with the follow- olumns (position of columns matter, column names are irrelevant):
column 1:	chr	character; genomic location of peak - chromosome (e.g., "chr3")
column 2:	start	integer; genomic location of peak - start coordinate
column 3:	end	integer; genomic location of peak - end coordinate
column 4:	value	numeric; p-value, FDR, or heuristic used to rank the interactions

value_transformation

the values in x have to be transformed in a way such that when ordered in descending order, more significant interactions end up on top of the list. If the values in x are p-values, "log_additive_inverse" is recommended. The following transformations are supported:

"identity"	no transformation is performed on x
"additive_inverse"	x. = -x
"multiplicative_inverse"	x. = 1 / x
"log"	x. = log(x). Note: zeros are replaced by .Machine\$double.xmin
"log_additive_inverse"	x. = $-\log(x)$, recommended if x are p-values. Note: zeros are replaced by .Machine\$double

either "ascending" (more significant interactions have lower value in value column) or "descending" (more significant interactions have higher value in value column)

ambiguity_resolution_method

defines how ambiguous assignments (when one interaction in replicate 1 overlaps with multiple interactions in replicate 2 or vice versa) are resolved. Available methods:

"value" interactions are prioritized by ascending or descending value column (see sorting_direction), e.g., if two in "overlap" the interaction pair is chosen which has the highest relative overlap, i.e., overlap in nucleotides of replicate 1 in "midpoint" the interaction pair is chosen which has the smallest distance between their anchor midpoints, i.e., distance from

remove_nonstandard_chromosomes

	removes peaks containing genomic locations on non-standard chromosomes us- ing keepStandardChromosomes (default is TRUE)
max_factor	numeric; controls the replacement values for Inf and -Inf. Inf are replaced by max(x) * max_factor and -Inf are replaced by min(x) / max_factor.
jitter_factor	numeric; controls the magnitude of the noise that is added to x. This is done to break ties in x. Set jitter_factor = NULL for no jitter.
max_gap	integer; maximum gap in nucleotides allowed between two anchors for them to be considered as overlapping (defaults to -1, i.e., overlapping anchors)
mu	a starting value for the mean of the reproducible component.
sigma	a starting value for the standard deviation of the reproducible component.
rho	a starting value for the correlation coefficient of the reproducible component.
р	a starting value for the proportion of reproducible component.
eps	Stopping criterion. Iterations stop when the increment of log-likelihood is < eps*log-likelihood, Default=0.001.
<pre>max_iteration</pre>	integer; maximum number of iterations for IDR estimation (defaults to 30)
local_idr	see est.IDR

estimate_idr2d

Value

List with three components, (rep1_df, rep2_df, and analysis_type) containing the interactions from input data frames rep1_df and rep2_df with the following additional columns:

column 1:	chr	character; genomic location of peak - chromosome (e.g., "chr3")
column 2:	start	integer; genomic location of peak - start coordinate
column 3:	end	integer; genomic location of peak - end coordinate
column 4:	value	numeric; p-value, FDR, or heuristic used to rank the peaks
column 5:	rep_value	numeric; value of corresponding replicate peak. If no corresponding peak was found, rep_value
column 6:	rank	integer; rank of the peak, established by value column, ascending order
column 7:	rep_rank	integer; rank of corresponding replicate peak. If no corresponding peak was found, rep_rank is s
column 8:	idx	integer; peak index, primary key
column 9:	rep_idx	integer; specifies the index of the corresponding peak in the other replicate (foreign key). If no co
column 10:	idr	IDR of the peak and the corresponding peak in the other replicate. If no corresponding peak was f

References

Q. Li, J. B. Brown, H. Huang and P. J. Bickel. (2011) Measuring reproducibility of high-throughput experiments. Annals of Applied Statistics, Vol. 5, No. 3, 1752-1779.

Examples

estimate_idr2d Estimates IDR for Genomic Interaction Data

Description

This method estimates Irreproducible Discovery Rates (IDR) between two replicates of experiments identifying genomic interactions, such as Hi-C, ChIA-PET, and HiChIP.

Usage

```
estimate_idr2d(
  rep1_df,
  rep2_df,
  value_transformation = c("identity", "additive_inverse", "multiplicative_inverse",
      "log", "log_additive_inverse"),
      ambiguity_resolution_method = c("overlap", "midpoint", "value"),
      remove_nonstandard_chromosomes = TRUE,
      max_factor = 1.5,
      jitter_factor = 1e-04,
```

```
max_gap = -1L,
mu = 0.1,
sigma = 1,
rho = 0.2,
p = 0.5,
eps = 0.001,
max_iteration = 30,
local_idr = TRUE
```

Arguments

```
rep1_df
                    data frame of observations (i.e., genomic interactions) of replicate 1, with at
                    least the following columns (position of columns matter, column names are ir-
                    relevant):
  column 1:
              chr_a
                         character; genomic location of anchor A - chromosome (e.g., "chr3")
  column 2:
              start_a
                         integer; genomic location of anchor A - start coordinate
 column 3:
                         integer; genomic location of anchor A - end coordinate
              end_a
  column 4:
                         character; genomic location of anchor B - chromosome (e.g., "chr3")
              chr_b
  column 5:
              start_b
                         integer; genomic location of anchor B - start coordinate
                         integer; genomic location of anchor B - end coordinate
  column 6:
              end b
  column 7:
              value
                         numeric; p-value, FDR, or heuristic used to rank the interactions
  rep2_df
                    data frame of observations (i.e., genomic interactions) of replicate 2, with the
                    following columns (position of columns matter, column names are irrelevant):
  column 1:
                         character; genomic location of anchor A - chromosome (e.g., "chr3")
              chr_a
  column 2:
              start_a
                         integer; genomic location of anchor A - start coordinate
  column 3: end_a
                         integer; genomic location of anchor A - end coordinate
                         character; genomic location of anchor B - chromosome (e.g., "chr3")
  column 4:
             chr b
  column 5: start_b
                         integer; genomic location of anchor B - start coordinate
  column 6:
              end b
                         integer; genomic location of anchor B - end coordinate
  column 7:
              value
                         numeric; p-value, FDR, or heuristic used to rank the interactions
  value_transformation
                    the values in x have to be transformed in a way such that when ordered in de-
                    scending order, more significant interactions end up on top of the list. If the
                    values in x are p-values, "log_additive_inverse" is recommended. The fol-
                    lowing transformations are supported:
                              no transformation is performed on x
                "identity"
       "additive_inverse"
                              x = -x
"multiplicative_inverse"
                              x_{.} = 1 / x
                      "log"
                              x = \log(x). Note: zeros are replaced by .Machine$double.xmin
                              x. = -log(x), recommended if x are p-values. Note: zeros are replaced by .Machine$doubl
  "log_additive_inverse"
                    either "ascending" (more significant interactions have lower value in value
                    column) or "descending" (more significant interactions have higher value in
                    value column)
```

28

ambiguity_resolution_method defines how ambiguous assignments (when one interaction in replicate 1 overlaps with multiple interactions in replicate 2 or vice versa) are resolved. Available methods:

"value" interactions are prioritized by ascending or descending value column (see sorting_direction), e.g., if two in "overlap" the interaction pair is chosen which has the highest relative overlap, i.e., overlap in nucleotides of replicate 1 in "midpoint" the interaction pair is chosen which has the smallest distance between their anchor midpoints, i.e., distance from

```
remove_nonstandard_chromosomes
                  removes interactions containing genomic locations on non-standard chromo-
                  somes using keepStandardChromosomes (default is TRUE)
                  numeric; controls the replacement values for Inf and -Inf. Inf are replaced by
max_factor
                  max(x) * max_factor and -Inf are replaced by min(x) / max_factor.
jitter_factor
                  numeric; controls the magnitude of the noise that is added to x. This is done to
                  break ties in x. Set jitter_factor = NULL for no jitter.
                  integer; maximum gap in nucleotides allowed between two anchors for them to
max_gap
                  be considered as overlapping (defaults to -1, i.e., overlapping anchors)
                  a starting value for the mean of the reproducible component.
mu
                  a starting value for the standard deviation of the reproducible component.
sigma
                  a starting value for the correlation coefficient of the reproducible component.
rho
                  a starting value for the proportion of reproducible component.
р
                  Stopping criterion. Iterations stop when the increment of log-likelihood is <
eps
                  eps*log-likelihood, Default=0.001.
                  integer; maximum number of iterations for IDR estimation (defaults to 30)
max_iteration
local idr
                  see est. IDR
```

Value

List with three components, (rep1_df, rep2_df, and analysis_type) containing the interactions from input data frames rep1_df and rep2_df with the following additional columns:

column 1:	chr_a
column 2:	start_a
column 3:	end_a
column 4:	chr_b
column 5:	start_b
column 6:	end_b
column 7:	value
column 8:	"rep_value"
column 9:	"rank"
column 10:	"rep_rank"
column 11:	"idx"
column 12:	"rep_idx"
idr	IDR of the interaction and the corresponding interaction in the other replicate. If no corresponding interaction w

References

Q. Li, J. B. Brown, H. Huang and P. J. Bickel. (2011) Measuring reproducibility of high-throughput experiments. Annals of Applied Statistics, Vol. 5, No. 3, 1752-1779.

Examples

estimate_idr2d_hic Estimates IDR for Genomic Interactions measured by Hi-C experiments

Description

This method estimates Irreproducible Discovery Rates (IDR) of genomic interactions between two replicates of Hi-C experiments.

Before calling this method, call Juicer .hic contact matrix c

The contact matrix is subdivided into blocks, where the block size is determined by resolution. The reads per block are used to rank blocks and replicate blocks are easily matched by genomic location.

Usage

```
estimate_idr2d_hic(
  rep1_df,
  rep2_df,
  combined_min_value = 30,
  combined_max_value = Inf,
 min_value = -Inf,
 max_value = Inf,
 max_factor = 1.5,
  jitter_factor = 1e-04,
  mu = 0.1,
  sigma = 1,
  rho = 0.2,
  p = 0.5,
  eps = 0.001,
 max_iteration = 30,
  local_idr = TRUE
)
```

Arguments

rep1_df	data frame of either parsed .hic file from Juicer (output of parse_juicer_matrix) or parsed .matrix and .bed files from HiC-Pro (output of parse_hic_pro_matrix) for replicate 1	
rep2_df	data frame of either parsed .hic file from Juicer (output of parse_juicer_matrix) or parsed .matrix and .bed files from HiC-Pro (output of parse_hic_pro_matrix) for replicate 2	
combined_min_va	alue	
	exclude blocks with a combined (replicate 1 + replicate 2) read count or nor- malized read count of less than combined_min_value (default is 20 reads, set combined_min_value = -Inf to disable)	
combined_max_va	alue	
	exclude blocks with a combined (replicate 1 + replicate 2) read count or nor- malized read count of more than combined_max_value (disabled by default, set combined_max_value = Inf to disable)	
min_value	exclude blocks with a read count or normalized read count of less than min_value in one replicate (disabled by default, set min_value = -Inf to disable)	
<pre>max_value</pre>	exclude blocks with a read count or normalized read count of more than max_value in one replicate (disabled by default, set max_value = Inf to disable)	
max_factor	numeric; controls the replacement values for Inf and -Inf. Inf are replaced by max(x) * max_factor and -Inf are replaced by min(x) / max_factor.	
jitter_factor	numeric; controls the magnitude of the noise that is added to x. This is done to break ties in x. Set jitter_factor = NULL for no jitter.	
mu	a starting value for the mean of the reproducible component.	
sigma	a starting value for the standard deviation of the reproducible component.	
rho	a starting value for the correlation coefficient of the reproducible component.	
р	a starting value for the proportion of reproducible component.	
eps	Stopping criterion. Iterations stop when the increment of log-likelihood is < eps*log-likelihood, Default=0.001.	
<pre>max_iteration</pre>	integer; maximum number of iterations for IDR estimation (defaults to 30)	
local_idr	see est.IDR	

Value

Data frame with the following columns:

column 1:	interaction	character; genomic location of interaction block (e.g., "chr1:204940000-204940000")
column 2:	value	numeric; p-value, FDR, or heuristic used to rank the interactions
column 3:	"rep_value"	numeric; value of corresponding replicate interaction
column 4:	"rank"	integer; rank of the interaction, established by value column, ascending order
column 5:	"rep_rank"	integer; rank of corresponding replicate interaction
column 6:	"idr"	integer; IDR of the block and the corresponding block in the other replicate

References

Q. Li, J. B. Brown, H. Huang and P. J. Bickel. (2011) Measuring reproducibility of high-throughput experiments. Annals of Applied Statistics, Vol. 5, No. 3, 1752-1779.

Examples

hic

Example Hi-C data set

Description

This object contains data from a Hi-C contact map of human chromosome 1 and a resolution of 2.5 * 10^6, extracted from GEO series GSE71831.

Usage

hic

Format

A list with two components, the data frames rep1_df and rep2_df, which have the following four columns:

column 1:	chr	character; genomic location of block - chromosome (e.g., "chr3")
column 2:	region1	integer; genomic location of block - coordinate A
column 3:	region2	integer; genomic location of block - coordinate B
column 4:	value	numeric; heuristic used to rank blocks, in this case: number of reads

parse_hic_pro_matrix Parse .matrix and .bed files from HiC-Pro for IDR2D analysis

Description

This function is used to convert the contact matrix from a HiC-Pro pipeline analysis run into an IDR2D compatible format. It takes one .matrix and one .bed file per replicate from HiC-Pro and returns the contact matrix for a specific chromosome for IDR2D analysis (see estimate_idr2d_hic)

Usage

```
parse_hic_pro_matrix(matrix_file, bed_file, chromosome = "chr1")
```

Arguments

<pre>matrix_file</pre>	path to .matrix file from HiC-Pro analysis run
bed_file	path to .bed file from HiC-Pro analysis run
chromosome	chromsome name to be analyzed, defaults to UCSC chromosome 1 ("chr1")

Value

Data frame with the following columns:

column 1:	chr	character; chromosome of block (e.g., "chr3")
column 2:	region1	integer; genomic location of side A of block in Hi-C contact matrix
column 3:	region2	integer; genomic location of side B of block in Hi-C contact matrix
column 4:	value	numeric; (normalized) read count in block

References

Servant, N., Varoquaux, N., Lajoie, B.R. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16, 259 (2015) doi:10.1186/s13059-015-0831-x

parse_juicer_matrix Parse .hic files from Juicer for IDR2D analysis

Description

parse_juicer_matrix uses the Python package hic-straw internally to read .hic contact matrix files (see hic-straw on PyPI or the Aiden lab GitHub repository for more information).

The contact matrix is subdivided into blocks, where the block size is determined by resolution. The reads per block are used to rank blocks and replicate blocks are easily matched by genomic location.

Usage

```
parse_juicer_matrix(
    hic_file,
    resolution = 1e+06,
    normalization = c("NONE", "VC", "VC_SQRT", "KR"),
    chromosome = "chr1",
    use_python = NULL,
    use_virtualenv = NULL,
    use_condaenv = NULL
)
```

Arguments

hic_file	path to .hic file (either local file path or URL).
resolution	block resolution of Hi-C contact matrix in base pairs, defaults to 1,000,000 bp (usually one of the following: 250000, 1000000, 500000, 250000, 100000, 50000, 250000, 100000, 50000)
normalization	normalization step performed by Python package hic-straw, one of the follow- ing: "NONE", "VC", "VC_SQRT", "KR".
chromosome	chromsome name to be analyzed, defaults to UCSC chromosome 1 ("chr1")
use_python	if Python is not on PATH, specify path to Python binary here (see use_python)
use_virtualenv	if Python package hic-straw is not in base virtualenv environment, specify environment here (see use_virtualenv)
use_condaenv	if Python package hic-straw is not in base conda environment, specify environment here (see use_condaenv)

Value

Data frame with the following columns:

column 1:	chr	character; chromosome of block (e.g., "chr3")
column 2:	region1	integer; genomic location of side A of block in Hi-C contact matrix
column 3:	region2	integer; genomic location of side B of block in Hi-C contact matrix
column 4:	value	numeric; (normalized) read count in block

References

Neva C. Durand, James T. Robinson, Muhammad S. Shamim, Ido Machol, Jill P. Mesirov, Eric S. Lander, and Erez Lieberman Aiden. "Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom." Cell Systems 3(1), 2016.

preprocess

Prepares Data for IDR Analysis

Description

This method removes invalid values, establishes the correct ranking, and breaks ties prior to IDR analysis.

Inf and -Inf are replaced by max(x) * max_factor and min(x) / max_factor, respectively.

NA values in x are replaced by mean(x).

All values in x are transformed using the transformation specified in value_transformation.

Lastly, a small amount of noise is added to x to break ties. The magnitude of the noise is controlled by jitter_factor.

preprocess

Usage

```
preprocess(
    x,
    value_transformation = c("identity", "additive_inverse", "multiplicative_inverse",
        "log", "log_additive_inverse"),
    max_factor = 1.5,
    jitter_factor = 1e-04
)
```

Arguments

х

numeric vector of values

value_transformation

the values in x have to be transformed in a way such that when ordered in descending order, more significant interactions end up on top of the list. If the values in x are p-values, "log_additive_inverse" is recommended. The following transformations are supported:

"identity"	no transformation is performed on x
"additive_inverse"	x. = -x
"multiplicative_inverse"	x. = 1 / x
"log"	<pre>x. = log(x). Note: zeros are replaced by .Machine\$double.xmin</pre>
"log_additive_inverse"	x. = -log(x), recommended if x are p-values. Note: zeros are replaced by .Machine\$doubl

either "ascending" (more significant interactions have lower value in value column) or "descending" (more significant interactions have higher value in value column)

max_factor	numeric; controls the replacement values for Inf and -Inf. Inf are replaced by
	<pre>max(x) * max_factor and -Inf are replaced by min(x) / max_factor.</pre>
jitter_factor	numeric; controls the magnitude of the noise that is added to x. This is done to

break ties in x. Set jitter_factor = NULL for no jitter.

Value

numeric vector; transformed and stripped values of x, ready for IDR analysis

Examples

```
rep1_df <- idr2d:::chiapet$rep1_df
rep1_df$fdr <- preprocess(rep1_df$fdr, "log_additive_inverse")</pre>
```

remove_nonstandard_chromosomes1d

Removes Peaks on Non-standard Chromosomes

Description

Removes Peaks on Non-standard Chromosomes

Usage

remove_nonstandard_chromosomes1d(x)

Arguments

x			frame of genomic peaks, with the following columns (position of columns er, column names are irrelevant):
	column 1:	chr	character; genomic location of peak - chromosome (e.g., "chr3")
	column 2:	start	integer; genomic location of peak - start coordinate
	column 3:	end	integer; genomic location of peak - end coordinate
	column 4:	value	numeric; p-value, FDR, or heuristic used to rank the peaks

Value

x without non-standard chromosomes.

Examples

rep1_df <- remove_nonstandard_chromosomes1d(idr2d:::chipseq\$rep1_df)</pre>

Description

Removes Interactions on Non-standard Chromosomes

Usage

remove_nonstandard_chromosomes2d(x)

Arguments

x		a frame of genomic interactions, with the following columns (position of imms matter, column names are irrelevant):
column 1:	chr_a	character; genomic location of anchor A - chromosome (e.g., "chr3")
column 2:	start_a	integer; genomic location of anchor A - start coordinate
column 3:	end_a	integer; genomic location of anchor A - end coordinate
column 4:	chr_b	character; genomic location of anchor B - chromosome (e.g., "chr3")
column 5:	start_b	integer; genomic location of anchor B - start coordinate
column 6:	end_b	integer; genomic location of anchor B - end coordinate
column 7:	value	numeric; p-value, FDR, or heuristic used to rank the interactions

Value

x without non-standard chromosomes.

Examples

rep1_df <- remove_nonstandard_chromosomes2d(idr2d:::chiapet\$rep1_df)</pre>

Index

* datasets chiapet, 8 chipseq, 8 hic, 32 calculate_midpoint_distance1d, 2 calculate_midpoint_distance2d, 3 calculate_relative_overlap1d, 5 calculate_relative_overlap2d, 6 chiapet, 8 chipseq, 8 determine_anchor_overlap, 9 draw_hic_contact_map, 10 draw_idr_distribution_histogram, 11 draw_rank_idr_scatterplot, 12 draw_value_idr_scatterplot, 13 est.IDR, 24, 26, 29, 31 establish_bijection, 14 establish_bijection1d, 15, 16, 23 establish_bijection2d, 15, 17, 23 establish_overlap1d, 15, 19, 24 establish_overlap2d, 15, 21, 24 estimate_idr, *11–14*, 22 estimate_idr1d, 24, 25 estimate_idr2d, 24, 27 estimate_idr2d_hic, *10*, 30, *32* hic, 32 keepStandardChromosomes, 24, 26, 29

parse_hic_pro_matrix, 31, 32

parse_juicer_matrix, 31, 33
preprocess, 34

remove_nonstandard_chromosomes1d, 36
remove_nonstandard_chromosomes2d, 36

use_condaenv, 34
use_python, 34
use_virtualenv, 34