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adjMatToElist converts adjacency matrix to edge list

Description

converts adjacency matrix to edge list

Usage

adjMatToElist(adj_mat)

Arguments

adj_mat adjacency matrix

Value

edge list

alpaca Main ALPACA function

Description
This function compares two networks and finds the sets of nodes that best characterize the change
in modular structure

Usage

alpaca(net.table, file.stem, verbose = FALSE)

Arguments
net.table A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.
file.stem The folder location and title under which all results will be stored.
verbose Indicates whether the full differential modularity matrix should also be written
to a file. Defaults to FALSE. modularity
Value

List where first element is the membership vector and second element is the contribution score of
each node to its module’s total differential modularity
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Examples

example_path <- system.file("extdata”, "Example_2comm.txt",
package = "netZooR"”, mustWork = TRUE)

simp.mat <- read.table(example_path,header=TRUE)

simp.alp <- alpaca(simp.mat,NULL,verbose=FALSE)

alpacaCommunityStructureRotation
Comparing node community membership between two networks

Description

This function uses the pseudo-inverse to find the optimal linear transformation mapping the com-
munity structures of two networks, then ranks nodes in the network by how much they deviate from
the linear mapping.

Usage

alpacaCommunityStructureRotation(net1.memb, net2.memb)

Arguments
net1.memb The community membership for Network 1.
net2.memb The community membership for Network 2.
Value

A ranked list of nodes.

Examples

a <- 1 #place holder

alpacaComputeDifferentialScoreFromDWBM
Compute Differential modularity score from differential modularity
matrix

Description
This functions takes the precomputed differential modularity matrix and the genLouvain member-
ship to compute the differential modularity score.

Usage

alpacaComputeDifferentialScoreFromDWBM(dwbm, louv.memb)

Arguments

dwbm differential modularity matrix

louv.memb louvain community membership
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Value

Vector of differntial modularity score

alpacaComputeDWBMmatmScale
Differential modularity matrix

Description

This function computes the differential modularity matrix for weighted bipartite networks. The
community structure of the healthy network is rescaled by the ratio of m (the total edge weight) of
each network.

Usage

alpacaComputeDWBMmatmScale(edge.mat, ctrl.memb)

Arguments
edge.mat A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.
ctrl.memb The community membership for the control (healthy) network.
Value

The differential modularity matrix, with rows representing "from" nodes and columns representing
"to" nodes.

Examples

a <- 1 # place holder

alpacaComputeWBMmat Compute modularity matrix for weighted bipartite network

Description

This function computes the modularity matrix for a weighted bipartite network.

Usage

alpacaComputeWBMmat (edge.mat)

Arguments

edge.mat A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the network of interest.
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Value

Modularity matrix with rows representing TFs ("from" nodes) and columns repesenting targets ("to"
nodes)

Examples

a <- 1 # example place holder

alpacaCrane Find the robust nodes in ALPACA community using CRANE

Description

Find the robust nodes in ALPACA community using CRANE

Usage

alpacaCrane(input, alp, alpha = 0.1, beta = @, iteration = 30, isParallel = F)

Arguments
input same input for alpaca: first column TF, second column Genes, third column
edge weights from baseline condition, fourth column edge weights from disease
condition.
alp alpca object in list format (output from alpaca package)
alpha alpha paramter perturbs each edge weights
beta beta parameter perturbs the strength of each node. Set this to 0 if you want nodes
to have node strength identical to the orignal network.
iteration Number of CRANE distributions to create. Higher value leads to better ranking
but longer runtime.
isParallel TRUE = use Multithread / FALSE = do not use Multithread
Value

list of data frames

Examples

## Not run:
input=cbind(nonAng,ang[,3])

alp=alpaca(input,NULL,verbose = F)
alpListObject=alpacaCrane(input, alp, isParallel = T)

## End(Not run)
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alpacaDeltaZAnalysis  Edge subtraction method (CONDOR optimizaton)

Description
Takes two networks, subtracts edges individually, and then clusters the subtracted network using
CONDOR.

Usage

alpacaDeltaZAnalysis(net.table, file.stem)

Arguments
net.table A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.
file.stem The folder location and title under which all results will be stored.
Value

List where first element is the membership vector and second element is the contribution score of
each node to its community’s modularity in the final edge-subtracted network

Examples

a <- 1 # example place holder

alpacaDeltaZAnalysislLouvain
Edge subtraction method (Louvain optimizaton)

Description

Takes two networks, subtracts edges individually, and then clusters the subtracted network using
Louvain method.

Usage

alpacaDeltaZAnalysislLouvain(net.table, file.stem)

Arguments

net.table A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.

file.stem The folder location and title under which all results will be stored.
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Value

List where first element is the membership vector and second element is the contribution score of
each node to its community’s modularity in the final edge-subtracted network

Examples

a <- 1 # example place holder

alpacaExtractTopGenes Extract core target genes in differential modules

Description

This function outputs the top target genes in each module, ranked by their contribution to the dif-
ferential modularity of the particular module in which they belong.

Usage

alpacaExtractTopGenes(module.result, set.lengths)

Arguments

module.result A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.

set.lengths The desired lengths of the top gene lists.

Value

List with two elements. First element is a list of the top target genes in each cluster. Second element
is a vector with the names of the gene sets. The names are in the format "number_length", where
number is the module number label and length is the length of the gene set.

Examples

example_path <- system.file("extdata”, "Example_2comm.txt",
package = "netZooR"”, mustWork = TRUE)

simp.mat <- read.table(example_path,header=TRUE)

simp.alp <- alpaca(simp.mat,NULL,verbose=FALSE)
alpacaExtractTopGenes(simp.alp, set.lengths=c(2,2))
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alpacaGetMember

alpacaGenLouvain Generalized Louvain optimization

Description

This function implements the Louvain optimization scheme on a general symmetric matrix. First,
nodes are all placed in separate communities, and merged iteratively according to which merge
moves result in the greatest increase in the modularity sum. Note that nodes are iterated in the order
of the input matrix (not randomly) so that all results are reproducible. Second, the final community
membership is used to form a alpacaMetaNetwork whose nodes represent communities from the
prevous step, and which are connected by effective edge weights. The merging process is then
repeated on the alpacaMetaNetwork. These two steps are repeated until the modularity sum does

not increase more than a very small tolerance factor. New

Usage

alpacaGenLouvain(B)
Arguments

B Symmetric modularity matrix
Value

The community membership vector

Examples

a <- 1 # example place holder

alpacaGetMember get the member vector from alpaca object

Description

get the member vector from alpaca object

Usage
alpacaGetMember (alp, target = "all")

Arguments
alp alpaca object
target tf, gene, or all
Value

member vector
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alpacaGOtabtogenes The top GO term associated genes in each module

Description

Get all the genes in the top-scoring lists which are annotated with the enriched GO terms. Only GO
terms with at least 3 genes in the overlap are included.

Usage

alpacaGOtabtogenes(go.result, dm.top)

Arguments

go.result The result of the GO term analysis (alpacaListToGo)

dm. top The result of extracting the top genes of the differential modules (dm.top)
Value

A vector with strings representing gene lists, each element of the vector has the genes in that GO
term and community pasted together with spaces in between.

Examples

a <- 1 # example place holder

alpacaGoToGenes Map GO terms to gene symbols

Description

This function extracts all the gene symbols associated with a GO term and its descendants. (v1)

Usage

alpacaGoToGenes(go.term)

Arguments

go.term The GO Biological Process ID (string).

Value

A vector of all gene symbols associated with the GO term.

Examples

a <- 1 # example place holder
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alpacalistToGo GO term enrichment for a list of gene sets

Description
GO term enrichment is run using the GOstats package, and corrected for multiple testing using the
Benjamini-Hochberg method.

Usage

alpacalistToGo(gene.list, univ.vec, comm.nums)

Arguments
gene.list A list consisting of vectors of genes; genes must be identified by their official
gene symbols.
univ.vec A vector of all gene symbols that were present in the original network. This set
is used as the universe for running the hypergeometric test in GOstats.
comm. nums A vector of names for the gene sets in the input parameter "gene.list". These are
used to create the table of final results.
Value

A table whose rows represent enriched GO terms (p_adj<0.05) and columns describe useful prop-
erties, like the name of the GO term, the label of the gene set which is enriched in that GO term, the
adjusted p-value and Odds Ratio.

Examples

a <- 1 # example place holder

alpacaMetaNetwork Create alpacaMetaNetwork for Louvain optimization

Description
Computes the "effective" adjacency matrix of a alpacaMetaNetwork whose nodes represent com-
munities in the larger input matrix.

Usage

alpacaMetaNetwork(J, S)

Arguments

J The modularity matrix

S The community membership vector from the previous round of agglomeration.
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Value
The differential modularity matrix, with rows representing "from" nodes and columns representing
"to" nodes.

Examples

a <- 1 # example place holder

alpacaNodeToGene Remove tags from gene names

Description

In gene regulatory networks, transcription factors can act as both "from" nodes (regulators) and
"to" nodes (target genes), so the network analysis functions automatically tag the two columns to
differentiate them. This function removes those tags from the gene identifiers.

Usage

alpacaNodeToGene (x)
Arguments

X Tagged node identifier
Value

Untagged node name

Examples

a <- 1 # example place holder

alpacaObjectToDfList  Converts alpaca output into list of data frames

Description

Converts alpaca output into list of data frames

Usage

alpacaObjectToDfList(alp)

Arguments

alp alpaca object

Value

list of data frames
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alpacaRotationAnalysis
Community comparison method (CONDOR optimizaton)

Description
Takes two networks, finds community structure of each one individually using CONDOR, and then
ranks the nodes that show the biggest difference in their community membership.

Usage

alpacaRotationAnalysis(net.table)

Arguments
net.table A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.
Value

Vector of nodes ordered by how much they change their community membership between the two
networks.

Examples

a <- 1 # example place holder

alpacaRotationAnalysislLouvain
Community comparison method (CONDOR optimizaton)

Description

Takes two networks, finds community structure of each one individually using a generalization of
the Louvain method, and then ranks the nodes that show the biggest difference in their community
membership.

Usage

alpacaRotationAnalysisLouvain(net.table)

Arguments

net.table A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the control or healthy network, and
the fourth column contains the edge weights for the disease network or network
of interest.
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Value
Vector of nodes ordered by how much they change their community membership between the two
networks.

Examples

a <- 1 # example place holder

alpacaSimulateNetwork Simulated networks

Description

This function creates a pair of networks given user-defined parameters for the modular structure of
the first (healthy) network and the type of added module in the second (disease) network.

Usage

alpacaSimulateNetwork(
comm.sizes,
edge.mat,
num.module,
size.module,
dens.module

)
Arguments
comm.sizes A two-column matrix indicating the number of "from" nodes (left column) and
number of "to" nodes (right column) in each community (row).
edge.mat A matrix indicating the number of edges from the TFs in community i (rows) to
target genes in community j (columns).
num.module The number of modules that will be added to simulate the disease network.
size.module A two-column matrix indicating the number of "from" and "to" nodes in each
new module (row) that will be added to simulate the disease network.
dens.module A vector of length num.module, indicating the edge density of each added mod-
ule.
Value

A list with two elements. The first element is a four-column edge table of the same form that is
input into the differential modularity function. The second element is a list of all the new nodes in
the modules that were added to create the disease network.

Examples

a <- 1 # example place holder
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alpacaTestNodeRank Enrichment in ranked list

Description

This function computes the enrichment of selected nodes in a ranked list, using Wilcoxon, Kolmogorov-
Smirnov, and Fisher exact tests.

Usage

alpacaTestNodeRank(node.ordered, true.pos)

Arguments

node.ordered  An ordered list of nodes (high-scoring to low-scoring).

true.pos The selected set of nodes being tested for enrichment among the ranked list.

Value

A vector of 4 values. 1) Wilcoxon p-value, 2) KS p-value, 3) Fisher p-value, 4) Fisher odds ratio.

Examples

a <- 1 # example place holder

alpacaTidyConfig Renumbering community membership vector

Description

This is a helper function alpacaGenLouvain. It re-numbers the communities so that they run from 1
to N increasing through the vector.

Usage
alpacaTidyConfig(S)
Arguments
S The community membership vector derived from the previous round of agglom-
eration.
Value

The renumbered membership vector.

Examples

a <- 1 # example place holder
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alpacaTopEnsembltoTopSym
Translating gene identifiers to gene symbols

Description
Takes a list of gene sets named using gene identifiers and converts them to a list of symbols given a
user-defined annotation table.

Usage

alpacaTopEnsembltoTopSym(mod. top, annot.vec)

Arguments
mod. top A list of gene sets (gene identifiers)
annot.vec A vector of gene symbols with gene identifiers as the names of the vector, that
defines the translation between annotations.
Value

A list of sets of gene symbols.

Examples

a <- 1 # example place holder

alpacaWBMlouvain Generalized Louvain method for bipartite networks

Description
This function implements a generalized form of the Louvain method for weighted bipartite net-
works.

Usage

alpacaWBMlouvain(net.frame)

Arguments
net.frame A table of edges, with the first column representing the TFs ("from" nodes)
and the second column representing the targets ("to" nodes). The third column
contains the edge weights corresponding to the network of interest.
Value

List where first element is the community membership vector and second element is the contribution
score of each node to its community’s portion of the bipartite modularity.
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Examples

condorCluster

a <- 1 # example place holder

condorCluster

Main clustering function for condor.

Description

This function performs community structure clustering using the bipartite modularity described in
condorModularityMax. This function uses a standard (non-bipartite) community structure cluster-
ing of the uni-partite, weighted projection of the original bipartite graph as an initial guess for the
bipartite modularity.

Usage

condorCluster(

condor.object,
cs.method = "LCS",
project = TRUE,
low.memory = FALSE,
deltaQmin = "default”

Arguments

condor.object

cs.method

project

low.memory

deltaQmin

Value

Output of make.condor.object. This function uses condor.object$edges

is a string to specify which unipartite community structure algorithm should be
used for the seed clustering. Options are LCS (multilevel.community), LEC
(leading.eigenvector.community), FG (fastgreedy.community).

Provides options for initial seeding of the bipartite modularity maximization. If
TRUE, the nodes in the first column of condor.object$edges are projected
and clustered using cs.method. If FALSE, the complete bipartite network is
clustered using the unipartite clustering methods listed in cs.method.

If TRUE, uses condorModularityMax instead of condorMatrixModularity.
This is a slower implementation of the modularity maximization, which does not
store any matrices in memory. Useful on a machine with low RAM. However,
runtimes are (much) longer.

convergence parameter determining the minimum required increase in the mod-
ularity for each iteration. Default is min(10”-4,1/(number of edges)), with num-
ber of edges determined by nrow(condor.object$edges). User can set this
parameter by passing a numeric value to deltaQmin.

condor.object with condorModularityMax output included.
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Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);

b =c(1,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice"”,"Sue","Janine"”,"Mary")
blues <- c("Bob","John","Ed", "Hank")

elist <- data.frame(red=reds[r],blue=blues[b])
condor.object <- createCondorObject(elist)
condor.object <- condorCluster(condor.object)

condorCoreEnrich Compare gscore distribution of a subset of nodes to all other nodes.

Description

Compute one-sided KS and wilcox tests to determine if a subset of nodes has a stochastically larger
gscore distribution.

Usage

condorCoreEnrich(test_nodes, g, perm = FALSE, plot.hist = FALSE, nsamp = 1000)

Arguments
test_nodes is a list containing the subset of nodes (of one node class —blue or red—only) to
be tested
q is a two column data frame containing the node names in the first column and
the g-scores in the second column.
perm if TRUE, run permutation tests. Else, run ks. test and wilcox. test only.
plot.hist if TRUE, produces two histograms of test statistics from permutation tests, one
for KS and one for wilcoxon and a red dot for true labeling. Only works if
perm=TRUE.
nsamp Number of permutation tests to run
Value

if perm=FALSE, the analytical p-values from ks. test and wilcox. test

if perm=TRUE, the permutation p-values are provided in addition to the analytical values.

Note

ks.test and wilcox.test will throw warnings due to the presence of ties, so the p-values will be
approximate. See those functions for further details.
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Examples

r=c(,1,1,2,2,2,3,3,3,4,4);

b=c(,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice","Sue”,"Janine","Mary")

blues <- c("Bob"”,"John","Ed","Hank")

elist <- data.frame(red=reds[r],blue=blues[b])

condor.object <- createCondorObject(elist)

condor.object <- condorCluster(condor.object)

condor.object <- condorQscore(condor.object)

g_in <- condor.object$gscores$red.qscore

out <- condorCoreEnrich(c("Alice","Mary"),q=q_in,perm=TRUE,plot.hist=TRUE)

condorCreateObject creates condor object

Description

creates condor object

Usage

condorCreateObject(elist)

Arguments

elist edge list

Value

condor object

condorMatrixModularity
Iteratively maximize bipartite modularity.

Description

This function is based on the bipartite modularity as defined in "Modularity and community detec-
tion in bipartite networks" by Michael J. Barber, Phys. Rev. E 76, 066102 (2007) This function uses
a slightly different implementation from the paper. It does not use the "adaptive BRIM" method for
identifying the number of modules. Rather, it simply continues to iterate until the difference in
modularity between iterations is less that 102-4. Starting from a random initial condition, this could
take some time. Use condorCluster for quicker runtimes and likely better clustering, it initializes
the blue node memberships by projecting the blue nodes into a unipartite "blue" network and then
identify communities in that network using a standard unipartite community detection algorithm
run on the projected network. See condorCluster for more details on that. This function loads the
entire adjacency matrix in memory, so if your network has more than ~50,000 nodes, you may want
to use condorModularityMax, which is slower, but does not store the matrices in memory. Or, of
course, you could move to a larger machine.



condorModularityMax 21

Usage

condorMatrixModularity(
condor.object,
T0 = cbind(seq_len(q), rep(1, q)),
weights = 1,
deltaQmin = "default”

)

Arguments

condor.object isalist created by createCondorObject. condor.object$edges must contain
the edges in the giant connected component of a bipartite network

To is a two column data.frame with the initial community assignment for each
"blue" node, assuming there are more reds than blues, though this is not strictly
necessary. The first column contains the node name, the second column the
community assignment.

weights edgeweights for each edge in edgelist.

deltaQmin convergence parameter determining the minimum required increase in the mod-
ularity for each iteration. Default is min(10”-4,1/(number of edges)), with num-
ber of edges determined by nrow(condor.object$edges). User can set this
parameter by passing a numeric value to deltaQmin.

Value

Qcoms data.frame with modularity of each community.
modularity modularity value after each iteration.
red.memb community membership of the red nodes

blue.memb community membership of the blue.nodes

Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);

b =c(1,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice"”,"Sue","Janine","Mary")

blues <- c("Bob"”,"John","Ed","Hank")

elist <- data.frame(red=reds[r],blue=blues[b])

condor.object <- createCondorObject(elist)

#randomly assign blues to their own community

T0O <- data.frame(nodes=blues,coms=seq_len(4))

condor.object <- condorMatrixModularity(condor.object,TO=T0Q)

condorModularityMax Iteratively maximize bipartite modularity.
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Description

condorModularityMax

This function is based on the bipartite modularity as defined in "Modularity and community detec-
tion in bipartite networks" by Michael J. Barber, Phys. Rev. E 76, 066102 (2007) This function uses
a slightly different implementation from the paper. It does not use the "adaptive BRIM" method for
identifying the number of modules. Rather, it simply continues to iterate until the difference in
modularity between iterations is less that 10”-4. Starting from a random initial condition, this could
take some time. Use condorCluster for quicker runtimes and likely better clustering, it initializes
the blue node memberships by projecting the blue nodes into a unipartite "blue" network and then
identify communities in that network using a standard unipartite community detection algorithm
run on the projected network. See condorCluster for more details that.

Usage

condorModularityMax(
condor.object,
To = cbind(seq_len(q), rep(1, q)),

weights = 1,

deltaQmin = "default”

Arguments

condor.object

TO

weights
deltaQmin

Value

is a list created by createCondorObject. condor.object$edges must contain
the edges in the giant connected component of a bipartite network

is a two column data.frame with the initial community assignment for each
"blue" node, assuming there are more reds than blues, though this is not strictly
necessary. The first column contains the node name, the second column the
community assignment.

edgeweights for each edge in edgelist.

convergence parameter determining the minimum required increase in the mod-
ularity for each iteration. Default is min(10”-4,1/(number of edges)), with num-

ber of edges determined by nrow(condor.object$edges). User can set this
parameter by passing a numeric value to deltaQmin.

Qcoms data.frame with modularity of each community.

modularity modularity value after each iteration.

red.memb community membership of the red nodes

blue.memb community membership of the blue.nodes

Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);

b =c(1,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice”,"Sue”,"Janine","Mary")

blues <- c("Bob"”,"John","Ed","Hank")

elist <- data.frame(red=reds[r],blue=blues[b])
condor.object <- createCondorObject(elist)

#randomly assign blues to their own community

TO <- data.frame(nodes=blues,coms=1)

condor.object <- condorModularityMax(condor.object,TO=T0)
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condorPlotCommunities Plot adjacency matrix with links grouped and colored by community

Description

This function will generate the network link “heatmap’ with colored dots representing within-
community links and black dots between-community links

Usage

condorPlotCommunities(
condor.object,
color_list,
point.size = 0.01,
xlab = "SNP,
ylab = "Gene"

Arguments

condor.object output of either condorCluster or condorModularityMax

color_list vector of colors accepted by col inside the plot function. There must be as
many colors as communities.
point.size passed to cex in the plot
xlab x axis label
ylab y axis label
Value

produces a plot output.

Note

For the condor paper http://arxiv.org/abs/1509.02816, I used 35 colors from the "Tarnish"
palette with "hard" clustering

References

http://tools.medialab.sciences-po.fr/iwanthue/ for a nice color generator at

Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);

b =c(1,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice"”,"Sue","Janine","Mary")

blues <- c("Bob"”,"John","Ed","Hank")

elist <- data.frame(red=reds[r],blue=blues[b])
condor.object <- createCondorObject(elist)
condor.object <- condorCluster(condor.object)
condorPlotCommunities(condor.object,
color_list=c("darkgreen”, "darkorange”),point.size=2,
xlab="Women",fylab="Men")


http://arxiv.org/abs/1509.02816
http://tools.medialab.sciences-po.fr/iwanthue/
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condorPlotHeatmap Plot weighted adjacency matrix with links grouped by community

Description

This function will generate the network link "heatmap’ for a weighted network

Usage

condorPlotHeatmap(condor.object, main = "", xlab = "blues”, ylab = "reds")

Arguments

condor.object output of either condorCluster or condorModularityMax

main plot title

xlab x axis label

ylab y axis label
Value

produces a plot output.

Examples

data(small1976)

condor.object <- createCondorObject(small1976)
condor.object <- condorCluster(condor.object, project=FALSE)
condorPlotHeatmap(condor.object)

condorQscore Calculate Qscore for all nodes

Description

Qscore is designed to calculate the fraction of the modularity contributed by each node to its com-
munity’s modularity

Usage

condorQscore(condor.object)

Arguments

condor.object output of condorCluster or condorModularityMax

Value

condor.object list has condor . object$gscores added to it. this includes two data.frames, blue.qgscore

and red.gscore which have the gscore for each red and blue node.
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Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);
b=c(,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice”,"Sue","Janine","Mary")

blues <- c("Bob","John","Ed", "Hank")

elist <- data.frame(red=reds[r],blue=blues[b])
condor.object <- createCondorObject(elist)
condor.object <- condorCluster(condor.object)
condor.object <- condorQscore(condor.object)

condorRun Run CONDOR clustering

Description

Run CONDOR clustering

Usage

condorRun(elist, gscore = F)

Arguments

elist edge list

gscore TRUE = output gscore / FALSE = do not output gscore
Value

condor object

craneBipartite Pertrubs the bipartite network with fixed node strength

Description

Pertrubs the bipartite network with fixed node strength

Usage
craneBipartite(df, alpha = 0.1, beta = @, getAdj = F, randomStart = F)

Arguments
df Adjacency Matrix or Edge list
alpha alpha paramter perturbs each edge weights
beta beta parameter perturbs the strength of each node. Set this to 0 if you want nodes
to have node strength identical to the orignal network.
getAdj TRUE = this will return adjacency matrix instead of edge list

randomStart FALSE = initialize the first row with completely random edge weights.
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Value

edge list

Examples

## Not run:

# Using Edge list as input
elist=craneBipartite(nonAng)
elist=craneBipartite(nonAng,alpha=0.3)

# Using Edge list as input and Adjcency Matrix as output
adjMatrix=craneBipartite(nonAng,alpha=0.1,getAdj=T)

# Using Edge list as input and Adjcency Matrix as output

A=elistToAdjMat (nonAng)
elist=craneBipartite(A)

## End(Not run)

craneUnipartite Pertrubs the unipartite network with fixed node strength from adja-
cency matrix

Description

Pertrubs the unipartite network with fixed node strength from adjacency matrix

Usage

craneUnipartite(A, alpha = 0.1, isSelflLoop = F)

Arguments
A Adjacency Matrix
alpha alpha paramter perturbs each edge weights
isSelfLoop TRUE/FALSE if self loop exists. co-expression matrix will have a self-loop of
1. Thus TRUE
Value

adjacency matrix



createCondorObject 27

createCondorObject Create list amenable to analysis using condor package.

Description

Converts an edge list into a 1ist which is then an input for other functions in the condor package.

Usage

createCondorObject(edgelist, return.gcc = TRUE)

Arguments
edgelist a data.frame with ‘red’ nodes in the first column and ’blue’ nodes in the sec-
ond column, representing links from the node in the first column to the node in
the second column. There must be more unique 'red’ nodes than ’blue’ nodes.
Optionally, a third column may be provided to create a weighted network.
return.gcc if TRUE, returns the giant connected component
Value

G is an igraph graph object with a *color’ attribute based on the colnames of edgelist. This can be ac-
cessed via V(g)$color, which returns a vector indicating red/blue. Use V(g)$name with V(g)$color
to identify red/blue node names

edges corresponding to graph G. If return.gcc=TRUE, includes only those edges in the giant con-
nected component.

Qcoms output from condorCluster or condorModularityMax
modularity NULL output from condorCluster or condorModularityMax
red.memb NULL output from condorCluster or condorModularityMax
blue.memb NULL output from condorCluster or condorModularityMax

gscores NULL output from condorQscore

Examples

r=c(1,1,1,2,2,2,3,3,3,4,4);

b =c(1,2,3,1,2,4,2,3,4,3,4);

reds <- c("Alice"”,"Sue”,"Janine","Mary")
blues <- c("Bob"”,"John","Ed","Hank")

elist <- data.frame(red=reds[r],blue=blues[b])
condor.object <- createCondorObject(elist)
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createPandaStyle Create a Cytoscape visual style for PANDA network

Description

This function is able to create a Cytoscape visual style for any PANDA network output.

Usage

createPandaStyle(style_name = "PandaStyle")

Arguments

style_name Character string indicating the style name. Defaults to "PandaStyle"

Value

A visual style in Cytoscape Control Panel under "Style" button.

Examples

# Here we will load a customized visual style for our network, in which TF
# nodes are orange circles, target gene nodes are blue squares, and edges
# shade and width are the edge weight (likelyhood of regulatory interaction
# between the TF and gene). You can further customize the network style

# directly from Cytoscape.

createPandaStyle(style_name="PandaStyle")

degreeAdjust Function to adjust the degree so that the hub nodes are not penalized
in z-score transformation

Description

Function to adjust the degree so that the hub nodes are not penalized in z-score transformation

Usage

degreeAdjust(A)

Arguments

A Input adjacency matrix
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dragon

Run DRAGON in R.

Description

Description: Estimates a multi-omic Gaussian graphical model for two input layers of paired omic

data.
Usage
dragon(
layert,
layer2,
pval = FALSE,
gradient = "finite_difference”,
verbose = FALSE
)
Arguments
layeri : first layer of omics data; rows: samples (order must match layer2), columns:
variables
layer2 : second layer of omics data; rows: samples (order must match layer1), columns:
variables.
pval : calculate p-values for network edges. Not yet implemented in R; available in
netZooPy.
gradient : method for estimating parameters of p-value distribution, applies only if p-val
== TRUE. default = "finite_difference"; other option = "exact"
verbose : verbosity level (TRUE/FALSE)
Value

A list of model results. cov : the shrunken covariance matrix

cov the shrunken covariance matrix
prec the shrunken precision matrix

ggm the shrunken Gaussian graphical model; matrix of partial correlations. Self-edges (diago-
nal elements) are set to zero.

lambdas Vector of omics-specific tuning parameters (lambdal, lambda2) for layer1 and
layer2

gammas Reparameterized tuning parameters; gamma = 1 - lambda’2

risk_grid Risk grid, for assessing optimization. Grid boundaries are in terms of gamma.
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elistAddTags Adds "_A" to first column and "_B" to second column

Description

Adds "_A" to first column and "_B" to second column

Usage

elistAddTags(elist)

Arguments

elist edge list

Value

edge list

elistIsEdgeOrderEqual check if first two columns are identical

Description

check if first two columns are identical

Usage

elistIsEdgeOrderEqual(elistl, elist2)

Arguments
elist1 edge list
elist2 edge list
Value

boolean
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elistRemoveTags undo elistAddTags

Description

undo elistAddTags

Usage

elistRemoveTags(elist)

Arguments

elist edge list

Value

edge list

elistSort Sorts the edge list based on first two columns in alphabetical order

Description

Sorts the edge list based on first two columns in alphabetical order

Usage

elistSort(elist)
Arguments

elist edge list
Value

edge list
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elistToAdjMat Converts edge list to adjacency matrix

Description

Converts edge list to adjacency matrix

Usage
elistToAdjMat(elist, isBipartite = F)

Arguments

elist edge list
isBipartite TRUE = for bipartite / FALSE = for unipartite

Value

Adjcency Matrix

exon.size Gene length

Description

A vector of gene lengths. This will be used to normalize the gene mutation scores by the gene’s
length. This example is based on hg19 gene symbols. The gene length is based on the number of
non-overlapping exons. Data were downloaded and pre