
Package ‘ClustIRR’
January 9, 2025

Type Package

Title Clustering of immune receptor repertoires

Version 1.4.0

Description ClustIRR analyzes repertoires of B- and T-cell receptors. It
starts by identifying communities of immune receptors with similar
specificities, based on the sequences of their complementarity-determining
regions (CDRs). Next, it employs a Bayesian probabilistic models to
quantify differential community occupancy (DCO) between repertoires,
allowing the identification of expanding or contracting communities
in response to e.g. infection or cancer treatment.

License GPL-3 + file LICENSE

LazyData false

Depends R (>= 4.4.0)

Imports blaster, future, future.apply, grDevices, igraph, methods,
pwalign, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), reshape2,
rstan (>= 2.18.1), rstantools (>= 2.4.0), stats, stringdist,
utils, visNetwork

Suggests BiocStyle, knitr, testthat, ggplot2, ggrepel, patchwork

Encoding UTF-8

NeedsCompilation no

biocViews Clustering, ImmunoOncology, SingleCell, Software,
Classification

RoxygenNote 7.2.3

VignetteBuilder knitr

URL https://github.com/snaketron/ClustIRR

BugReports https://github.com/snaketron/ClustIRR/issues

Biarch true

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>=
2.18.0)

SystemRequirements GNU make

git_url https://git.bioconductor.org/packages/ClustIRR

git_branch RELEASE_3_20

1

https://github.com/snaketron/ClustIRR
https://github.com/snaketron/ClustIRR/issues

2 CDR3ab

git_last_commit ef4afb4

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-01-09

Author Simo Kitanovski [aut, cre] (<https://orcid.org/0000-0003-2909-5376>),
Kai Wollek [aut] (<https://orcid.org/0009-0008-5941-9160>)

Maintainer Simo Kitanovski <simokitanovski@gmail.com>

Contents
CDR3ab . 2
cluster_irr . 3
clust_irr-class . 5
dco . 6
detect_communities . 8
get_graph . 10
get_joint_graph . 11
mcpas . 12
plot_graph . 13
tcr3d . 14
vdjdb . 15

Index 16

CDR3ab Mock data set of complementarity determining region 3 (CDR3) se-
quences from the α and β chains of 10,000 T cell receptors

Description

Mock data set containing amino acid sequences of paired CDR3s from the α and β chains of 10,000
T cell receptors. All CDR3 sequences were drawn from a larger set of CDR3β sequences from
human naive CD8+ T cells.

Usage

data(CDR3ab)

Format

data.frame with 10,000 rows and 2 columns CDR3a and CDR3b.

Value

data(CDR3ab) loads the object CDR3ab, which is a data.frame with two columns and 10,000 rows.

Source

GLIPH version 2

https://orcid.org/0000-0003-2909-5376
https://orcid.org/0009-0008-5941-9160
http://50.255.35.37:8080/

cluster_irr 3

Examples

data("CDR3ab")

cluster_irr Clustering of immune receptor repertoires (IRRs)

Description

cluster_irr computes similarities between immune receptors (IRs = T-cell and B-cell receptors)
based on their CDR3 sequences.

Usage

cluster_irr(s,
control = list(gmi = 0.7,

trim_flank_aa = 3,
db_dist = 0,
db_custom = NULL))

Arguments

s a data.frame with complementarity determining region 3 (CDR3) amino acid
sequences observed in IRR clones (data.frame rows). The data.frame has the
following columns (IR clone features):

• sample: name of the IRR (e.g. ’A’)
• clone_size: cell count in the clone (=clonal expansion)
• CDR3?: amino acid CDR3 sequence. Replace ’?’ with the appropriate name

of the IR chain (e.g. CDR3a for CDR3s from TCRα chain; or CDR3d for
CDR3s from TCRδ chain. Meanwhile, if paired CDR3s from both chains
are available, then you can provide both in separate columns e.g.:

– CDR3b and CDR3a [for αβ TCRs]
– CDR3g and CDR3d [for γδ TCRs]
– CDR3h and CDR3l [for heavy/light chain BCRs]

control auxiliary parameters to control the algorithm’s behavior. See the details below:
• gmi: the minimum sequence identity between a pair of CDR3 sequences

for them to even be considered for alignment and scoring (default = 0.7; 70
percent identity).

• trim_flank_aa: how many amino acids should be trimmed from the flanks
of all CDR3 sequences to isolate the CDR3 cores. trim_flank_aa = 3
(default).

• db_custom: additional database (data.frame) which allows us to annotate
CDR3 sequences from the input (s) with their cognate antigens. The struc-
ture of db_custom must be identical to that in data(vdjdb, package =
"ClustIRR"). ClustIRR will use the internal databases if db_custom=NULL
(default). Three databases (data only from human CDR3) are integrated
in ClustIRR: VDJdb, TCR3d and McPAS-TCR.

• db_dist: we compute edit distances between CDR3 sequences from s and
from a database (e.g. VDJdb). If a particular distance is smaller than or
equal to edit_dist (default = 0), then we annotate the CDR3 from s with
the specificity of the database CDR3 sequence.

4 cluster_irr

Details

IRRs, such as T-cell receptor repertoires, are made up of T-cells which are distributed over T-cell
clones. TCR clones with identical pairs of CDR3α and CDR3β sequences most likely recognize
the same sets of antigens. Meanwhile, TCR clones with similar pairs of CDR3α and CDR3β
sequences may also share common specificity. ClustIRR aims to quantify the similarity between
pairs of TCR clones based on the similarities of their CDR3s sequences.

How to compute a similarity score between a pair of CDR3 sequences?

Pair of sequences, a and b, are aligned with the Needleman-Wunsch algorithm (BLOSUM62 sub-
stitution matrix is used for scoring). The output is an alignment score (ω). Identical or similar
CDR3 sequence pairs get a large positive ω, and dissimilar CDR3 sequence pairs get a low (or even
negative) ω.

To make sure that ω is comparable across pairs of CDR3s with different lengths, ClustIRR divides
(normalizes) ω by the length of the longest CDR3 sequences in each pair:

ω̄ =
ω

max(|a|, |b|)
where |a| and |b| are the lengths of CDR3 sequences a and b; and ω̄ is the normalized alignment
score.

The CDR3 cores, which represent the central parts of the CDR3 loop and tend to have high prob-
ability of making a contact with the antigen, are compared with the same procedure. ClustIRR
constructs the CDR3 cores by trimming few residues (defined by control$trim_flanks) from ei-
ther end of each CDR3 sequences. These are then aligned and scored based on the same algorithm,
yielding for each pair of CDR3 cores a normalized alignment scores ω̄c.

This strategy is computationally very expensive!

For large IRRs with n > 106 this algorithm requires significant computational resources. To mit-
igate this challenge, we employ a screening step in which dissimilar sequences pairs are flagged.
In short, each CDR3 is used as a query in a fast protein-BLAST search as implemented in the R-
package blaster, while the remaining CDR3s are considered as a database of amino acid sequences
against which the query is compared. CDR3 sequences which share at least 70% sequence identity
(user parameter control$gmi) with the query are selected, and only these are aligned with query
CDR3. For the remaining CDR3 pairs we assume ω̄ = 0.

Value

The output is an S4 object of class clust_irr. This object contains two sublists:

• clust, list, contains clustering results for each IR chain. The results are stored as data.frame
in separate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.). Each row in the
data.frames contains a pair of CDR3s.
The remaining columns contain similarity scores for the complete CDR3 sequences (column
weight) or their cores (column cweight). The columns max_len and max_clen store the
length of the longer CDR3 sequence and core in the pair, and these used to normalize the
scores weight and cweight: the normalized scores are shown in the columns nweight and
ncweight

• inputs, list, contains all user provided inputs (see Arguments)

Examples

load package input data
data("CDR3ab", package = "ClustIRR")
s <- data.frame(CDR3b = CDR3ab[1:100, "CDR3b"], sample = "A", clone_size = 1)

clust_irr-class 5

run analysis
c <- cluster_irr(s = s)

output class
class(c)

output structure
str(c)

inspect which CDR3bs are similar
knitr::kable(head(slot(c, "clust")$CDR3b))

clust_irr-class clust_irr class

Description

Objects of the class clust_irr are generated by the function cluster_irr. These objects are used
to store the clustering results in a structured way, such that they may be used as inputs of other
ClustIRR functions (e.g. get_graph, plot_graph, etc.).

The output is an S4 object of class clust_irr. This object contains two sublists:

• clust, list, contains clustering results for each IR chain. The results are stored as data.frame
in separate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.). Each row in the
data.frames contains a pair of CDR3s.
The remaining columns contain similarity scores for the complete CDR3 sequences (column
weight) or their cores (column cweight). The columns max_len and max_clen store the
length of the longer CDR3 and CDR3 core sequence in the pair, and these used to normalize
the scores weight and cweight: the normalized scores are shown in the columns nweight
and ncweight

• inputs, list, contains all user provided inputs (see Arguments)

Arguments

clust list, contains clustering results for each TCR/BCR chain. The results are stored
in separate sub-list named appropriately (e.g. CDR3a, CDR3b, CDR3g, etc.)

inputs list, contains all user provided inputs

Value

The output is an S4 object of class clust_irr

Accessors

To access the slots of clust_irr object we have two accessor functions. In the description below,
x is a clust_irr object.

get_clustirr_clust get_clustirr_clust(x): Extract the clustering results (slot clust)

get_clustirr_inputs get_clustirr_inputs(x): Extract the processed inputs (slot inputs)

6 dco

Examples

load package input data
data("CDR3ab", package = "ClustIRR")
s <- data.frame(CDR3b = CDR3ab[1:100, "CDR3b"], sample = "A", clone_size = 1)

run analysis
c <- cluster_irr(s = s)

output class
class(c)

output structure
str(c)

inspect which CDR3bs are globally similar
knitr::kable(head(slot(c, "clust")$CDR3b))

clust_irr S4 object generated 'manually' from the individual results
new_clust_irr <- new("clust_irr",

clust = slot(object = c, name = "clust"),
inputs = slot(object = c, name = "inputs"))

we should get identical outputs
identical(x = new_clust_irr, y = c)

dco Model-based differential community occupancy (DCO) analysis

Description

This algorithm takes as input a community matrix, and quantifies the relative enrichment/depletion
of individual communities in each sample using a Bayesian hierarchical model.

Usage

dco(community_occupancy_matrix, mcmc_control)

Arguments

community_occupancy_matrix

matrix, rows are communities, columns are repertoires, matrix entries are num-
bers of cells in each community and repertoire.

mcmc_control list, configurations for the Markov Chain Monte Carlo (MCMC) simulation.

• mcmc_warmup = 750; number of MCMC warmups
• mcmc_iter = 1500; number of MCMC iterations
• mcmc_chains = 4; number of MCMC chains
• mcmc_chains = 1; number of computer cores
• mcmc_algorithm = "NUTS"; which MCMC algorithm to use
• adapt_delta = 0.95; MCMC step size
• max_treedepth = 12; the max value, in exponents of 2, of what the binary tree size in NUTS

should have.

dco 7

Value

The output is a list with the folling elements:

fit stan object, model fit
posterior_summary

nested list with data.frames, summary of model parameters, including their means,
medians, 95% credible intervals, etc. Predicted observations (y_hat), which are
useful for posterior predictive checks are also provided.

community_occupancy_matrix

matrix, rows are communities, columns are repertoires, matrix entries are num-
bers of cells in each community and repertoire.

mcmc_control list, mcmc configuration inputs provided as list.

Examples

load package input data
data("CDR3ab", package = "ClustIRR")
a <- data.frame(CDR3a = CDR3ab[1:500, "CDR3a"],

CDR3b = CDR3ab[1:500, "CDR3b"],
clone_size = 1,
sample = "a")

b <- data.frame(CDR3a = CDR3ab[401:900, "CDR3a"],
CDR3b = CDR3ab[401:900, "CDR3b"],
clone_size = 1,
sample = "b")

b$clone_size[1] <- 20

run ClustIRR analysis
c <- c(cluster_irr(s = a), cluster_irr(s = b))

get joint graph
jg <- get_joint_graph(clust_irrs = c)

detect communities
gcd <- detect_communities(graph = jg$graph,

algorithm = "leiden",
resolution = 1,
weight = "ncweight",
metric = "average",
chains = c("CDR3a", "CDR3b"))

look at outputs
names(gcd)

look at the community matrix
head(gcd$community_occupancy_matrix)

look at the community summary
head(gcd$community_summary)

look at the node summary
head(gcd$node_summary)

differential community occupancy analysis

8 detect_communities

dco <- dco(community_occupancy_matrix = gcd$community_occupancy_matrix)

names(dco)

detect_communities Graph-based community detection (GCD)

Description

Performs graph-based community detection to find densely connected groups of nodes in graph
constructed by get_graph or get_joint_graph.

Usage

detect_communities(graph,
algorithm = "leiden",
resolution = 1,
weight = "ncweight",
metric = "average",
chains)

Arguments

graph igraph object

algorithm graph-based community detection (GCD) method: leiden (default) or louvain.

resolution clustering resolution (default = 1) for the GCD.

weight which edge weight metric (default = ncweight) should be used for GCD

metric possible metrics: "average" (default), "strict" or "loose".

chains which chains should be used for clustering? For instance: chains = "CDR3a";
or chains = CDR3b; or chains = c("CDR3a", "CDR3b").

Details

ClustIRR employs graph-based community detection (GCD) algorithms, such as Louvain or Leiden,
to identify densely connected nodes. But first, we must decide how to compute a similarity between
two nodes, i and j, (e.g. TCR clones) based on the similarity scores between their CDR3 sequences
(computed in clust_irr) and use this metric as edge weight ω(i, j).

Scenario 1

If our IRR data data contains CDR3 sequences from only one chain, such as CDR3β, then ω(i, j)
is defined as

ω(i, j) = ω̄β or ω(i, j) = ω̄β
c

The user can decide among the two definitions by specifying

• weight = "ncweight" → ω(i, j) = ω̄c (default)

• weight = "nweight" → ω(i, j) = ω̄

detect_communities 9

Scenario 2
If our IRR data contains CDR3 sequences from both chains (paired data) To compute the similarity
score between TCR clones, i and j, we compute the average alignment score (metric=average)
from their CDR3α and CDR3β alignment scores (in the next, I will use TCRαβ as an example,
however, this approach can also be used to compare TCRγδ or BCRIgH-IgL clones):

ω(i, j) =
ω̄α + ω̄β

2
or ω(i, j) =

ω̄α
c + ω̄β

c

2
,

where ω̄α and ω̄β are the alignment scores for the CDR3α and CDR3β sequences, respectively;
and ω̄α

c and ω̄β
c are the alignment scores for the CDR3α and CDR3β cores, respectively. Based on

this metric, CDR3α and CDR3β contribute towards the overall similarity of the TCR clones with
equal weights.

ClustIRR provides two additional metrics for computing similarity scores between TCR clones,
including a metric=strict, which assigns high similarity score to a pair of TCR clones only if both
of their CDR3α and CDR3β sequence pairs are similar

ω(i, j) = min(ω̄α, ω̄β) or ω(i, j) = min(ω̄α
c , ω̄

β
c),

and a metric=loose, which assigns high similarity score to a pair of TCR clones if either of their
CDR3α and CDR3β sequence pairs are similar

ω(i, j) = max(ω̄α, ω̄β) or ω(i, j) = max(ω̄α
c , ω̄

β
c),

Value

The output is a list with the folling elements:

community_occupancy_matrix

matrix, rows are communities, columns are repertoires, matrix entries are num-
bers of cells in each community and repertoire.

community_summary

data.frame, rows are communities and their properties are provided as columns.

node_summary data.frame, rows are nodes (clones) and their properties are provided as column-
scontains all user provided.

graph igraph object, processed graph object

input_config list, inputs provided as list.

Examples

load package input data
data("CDR3ab", package = "ClustIRR")
a <- data.frame(CDR3a = CDR3ab[1:300, "CDR3a"],

CDR3b = CDR3ab[1:300, "CDR3b"],
clone_size = 1,
sample = "a")

b <- data.frame(CDR3a = CDR3ab[201:400, "CDR3a"],
CDR3b = CDR3ab[201:400, "CDR3b"],
clone_size = 1,
sample = "b")

b$clone_size[1] <- 20

run ClustIRR analysis
c <- c(cluster_irr(s = a), cluster_irr(s = b))

get joint graph

10 get_graph

jg <- get_joint_graph(clust_irrs = c)

detect communities
gcd <- detect_communities(graph = jg$graph,

algorithm = "leiden",
resolution = 1,
weight = "ncweight",
metric = "average",
chains = c("CDR3a", "CDR3b"))

look at outputs
names(gcd)

look at the community occupancymatrix
head(gcd$community_occupancy_matrix)

look at the community summary
head(gcd$community_summary)

look at the node summary
head(gcd$node_summary)

get_graph Get igraph object from clust_irr object

Description

Given a clust_irr object generated by the function cluster_irr, the function get_graph con-
structs an igraph object.

The graph nodes represent IR clones. Undirected edges are drawn between pairs of nodes, and the
attributes of these edges are assigned based on the clust_irr outputs: ω̄, ω̄c, etc.

Usage

get_graph(clust_irr)

Arguments

clust_irr S4 object generated by the function cluster_irr

Value

The output is a list with the following elements. First, the list contains an igraph object. The
graph nodes and edges contain attributes encoded in the clust_irr objects. Second, it contains
a data.frame in which rows are clones (nodes) in the graph. Third, the list contains the logical
variable joint_graph, which is set to TRUE if the graph is a joint graph generated by the function
get_joint_graph and FALSE if the graph is not a joint graph generated by get_graph.

get_joint_graph 11

Examples

load package input data
data("CDR3ab", package = "ClustIRR")
s <- data.frame(CDR3b = CDR3ab[1:100, "CDR3b"], sample = "A", clone_size = 1)

run ClustIRR analysis
out <- cluster_irr(s = s)

get graph
g <- get_graph(clust_irr = out)

names(g)

get_joint_graph Create joint igraph object from multiple clust_irr objects

Description

Given a vector of clust_irr objects, generated by the function cluster_irr, the function get_joint_graph
performs the following steps:

1. runs the function get_graph on each clust_irr object

2. merges the nodes: if graph a and b have |a| and |b| nodes, then the joint graph has |a|+|b|
nodes, regardless of whether exactly the same clone (vertex) is found in both graphs.

3. draws edges between nodes from the different graphs using the same algorithm for drawing edges
between nodes within an IRR (see function clust_irr).

4. return a joint graph as igraph object

5. return a data.frame with all clones (graph nodes)

6. return a logical joint_graph=TRUE

Usage

get_joint_graph(clust_irrs, cores = 1)

Arguments

clust_irrs A list of at least two S4 objects generated with the function cluster_irr

cores number of computer cores to use (default = 1)

Value

The main output is an igraph object.

Examples

load package input data
data("CDR3ab", package = "ClustIRR")
a <- data.frame(CDR3b = CDR3ab[1:100, "CDR3b"], sample = "a", clone_size = 1)
b <- data.frame(CDR3b = CDR3ab[1:100, "CDR3b"], sample = "b", clone_size = 1)

run ClustIRR analysis

12 mcpas

c <- c(cluster_irr(s = a), cluster_irr(s = b))

get graph
g <- get_joint_graph(clust_irrs = c)

names(g)

mcpas CDR3 sequences and their matching epitopes obtained from McPAS-
TCR

Description

data.frame with CDR3a and/or CDR3b sequences and their matching antigenic epitopes obtained from
McPAS-TCR. The remaining CDR3 columns are set to NA. For data processing details see the script
inst/script/get_mcpastcr.R

Usage

data(mcpas)

Format

data.frame with columns:

1. CDR3a: CDR3a amino acid sequence

2. CDR3b: CDR3b amino acid sequence

3. CDR3g: CDR3g amino acid sequence -> NA

4. CDR3d: CDR3d amino acid sequence -> NA

5. CDR3h: CDR3h amino acid sequence -> NA

6. CDR3l: CDR3l amino acid sequence -> NA

7. CDR3_species: CDR3 species (e.g. human, mouse, ...)

8. Antigen_species: antigen species

9. Antigen_gene: antigen gene

10. Reference: Reference (Pubmed ID)

Value

data(mcpas) loads the object McPAS-TCR

Source

McPAS-TCR, June 2024

Examples

data(mcpas)

http://friedmanlab.weizmann.ac.il/McPAS-TCR/

plot_graph 13

plot_graph Plot ClustIRR graph

Description

This function visualizes a graph. The main input is g object created by the function get_graph.

Usage

plot_graph(g,
select_by = "Ag_species",
as_visnet = FALSE,
show_singletons = TRUE,
node_opacity = 1)

Arguments

g Object returned by the functions get_graph or get_joint_graph

as_visnet logical, if as_visnet=TRUE we plot an interactive graph with visNetwork. If
as_visnet=FALSE, we plot a static graph with igraph.

select_by character string, two values are possible: "Ag_species" or "Ag_gene". This only
has an effect if as_visnet = TRUE, i.e. if the graph is interactive. It will allow
the user to highligh clones (nodes) in the graph that are associated with a specific
antigenic specie or gene. The mapping between CDR3 and antigens is extracted
from databases, such as, VDJdb, McPAS-TCR and TCR3d. This mapping is
done by the function get_graph. If none of the clones in the graph are matched
to a CDR3, then the user will have no options to select/highlight.

show_singletons

logical, if show_singletons=TRUE we plot all vertices. If show_singletons=FALSE,
we plot only vertices connected by edges.

node_opacity probability, controls the opacity of node colors. Lower values corresponding to
more transparent colors.

Value

The output is an igraph or visNetwork plot.

The size of the vertices increases linearly as the logarithm of the degree of the clonal expansion
(number of cells per clone) in the corresponding clones.

Examples

load package input data
data("CDR3ab", package = "ClustIRR")
s <- data.frame(CDR3b = CDR3ab[1:100, "CDR3b"], sample = "A", clone_size = 1)

run ClustIRR analysis
out <- cluster_irr(s = s)

get graph
g <- get_graph(clust_irr = out)

14 tcr3d

plot graph with vertices as clones
plot_graph(g, as_visnet=FALSE, show_singletons=TRUE, node_opacity = 0.8)

tcr3d CDR3 sequences and their matching epitopes obtained from TCR3d

Description

data.frame with paired CDR3a and CDR3b CDR3 sequences and their matching epitopes obtained
from TCR3d. The remaining CDR3 columns are set to NA. The antigenic epitopes come from can-
cer antigens and from viral antigens. For data processing details see the script inst/script/get_tcr3d.R

Usage

data(tcr3d)

Format

data.frame with columns:

1. CDR3a: CDR3a amino acid sequence

2. CDR3b: CDR3b amino acid sequence

3. CDR3g: CDR3g amino acid sequence -> NA

4. CDR3d: CDR3d amino acid sequence -> NA

5. CDR3h: CDR3h amino acid sequence -> NA

6. CDR3l: CDR3l amino acid sequence -> NA

7. CDR3_species: CDR3 species (e.g. human, mouse, ...)

8. Antigen_species: antigen species

9. Antigen_gene: antigen gene

10. Reference: Reference ID

Value

data(tcr3d) loads the object tcr3d

Source

TCR3d, June 2024

Examples

data("tcr3d")

https://tcr3d.ibbr.umd.edu/

vdjdb 15

vdjdb CDR3 sequences and their matching epitopes obtained from VDJdb

Description

data.frame with unpaired CDR3a or CDR3b sequences and their matching epitopes obtained from
VDJdb. The remaining CDR3 columns are set to NA. For data processing details see the script
inst/script/get_vdjdb.R

Usage

data(vdjdb)

Format

data.frame with columns:

1. CDR3a: CDR3a amino acid sequence

2. CDR3b: CDR3b amino acid sequence

3. CDR3g: CDR3g amino acid sequence -> NA

4. CDR3d: CDR3d amino acid sequence -> NA

5. CDR3h: CDR3h amino acid sequence -> NA

6. CDR3l: CDR3l amino acid sequence -> NA

7. CDR3_species: CDR3 species (e.g. human, mouse, ...)

8. Antigen_species: antigen species

9. Antigen_gene: antigen gene

10. Reference: Reference (Pubmed ID)

Value

data(vdjdb) loads the object vdjdb

Source

VDJdb, June 2024

Examples

data("vdjdb")

https://vdjdb.cdr3.net/

Index

∗ datasets
CDR3ab, 2
mcpas, 12
tcr3d, 14
vdjdb, 15

CDR3ab, 2
class:clust_irr (clust_irr-class), 5
clust_irr (clust_irr-class), 5
clust_irr-class, 5
cluster_irr, 3

dco, 6
detect_communities, 8

get_clustirr_clust (clust_irr-class), 5
get_clustirr_clust,clust_irr-method

(clust_irr-class), 5
get_clustirr_inputs (clust_irr-class), 5
get_clustirr_inputs,clust_irr-method

(clust_irr-class), 5
get_graph, 10
get_joint_graph, 11

mcpas, 12

plot_graph, 13

tcr3d, 14

vdjdb, 15

16

	CDR3ab
	cluster_irr
	clust_irr-class
	dco
	detect_communities
	get_graph
	get_joint_graph
	mcpas
	plot_graph
	tcr3d
	vdjdb
	Index

