TCGAbiolinks retrieved molecular subtypes information from TCGA samples. The functions PanCancerAtlas_subtypes
and TCGAquery_subtype
can be used to get the information tables.
While the PanCancerAtlas_subtypes
function gives access to a curated table retrieved from synapse (probably with the most updated molecular subtypes) the TCGAquery_subtype
function has the complete table also with sample information retrieved from the TCGA marker papers.
PanCancerAtlas_subtypes
: Curated molecular subtypes.Data and description retrieved from synapse (https://www.synapse.org/#!Synapse:syn8402849)
Synapse has published a single file with all available molecular subtypes that have been described by TCGA (all tumor types and all molecular platforms), which can be accessed using the PanCancerAtlas_subtypes
function as below:
subtypes <- PanCancerAtlas_subtypes()
DT::datatable(
data = subtypes,
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
The columns “Subtype_Selected” was selected as most prominent subtype classification (from the other columns)
All available molecular data based-subtype | Selected subtype | Number of samples | Link to file | Reference | link to paper | |
---|---|---|---|---|---|---|
ACC | mRNA, DNAmeth, protein, miRNA, CNA, COC, C1A.C1B | DNAmeth | 91 | Link | Cancer Cell 2016 | Link |
AML | mRNA and miRNA | mRNA | 187 | Link | NEJM 2013 | Link |
BLCA | mRNA subtypes | mRNA | 129 | Link | Nature 2014 | Link |
BRCA | PAM50 (mRNA) | PAM50 | 1218 | Link | Nature 2012 | Link |
GBM/LGG* | mRNA, DNAmeth, protein, Supervised_DNAmeth | Supervised_DNAmeth | 1122 | Link | Cell 2016 | Link |
Pan-GI (preliminary) ESCA/STAD/COAD/READ | Molecular_Subtype | Molecular_Subtype | 1011 | Link | Cancer Cell 2018 | Link |
HNSC | mRNA, DNAmeth, RPPA, miRNA, CNA, Paradigm | mRNA | 279 | Link (TabS7.2) | Nature 2015 | Link |
KICH | Eosinophilic | Eosinophilic | 66 | Link | Cancer Cell 2014 | Link |
KIRC | mRNA, miRNA | mRNA | 442 | Link | Nature 2013 | Link |
KIRP | mRNA, DNAmeth, protein, miRNA, CNA, COC | COC | 161 | Link | NEJM 2015 | Link |
LIHC (preliminary) | mRNA, DNAmeth, protein, miRNA, CNA, Paradigma, iCluster | iCluster | 196 | Link (Table S1A) | not published | |
LUAD | DNAmeth, iCluster | iCluster | 230 | Link (Table S7) | Nature 2014 | Link |
LUSC | mRNA | mRNA | 178 | Link (Data file S7.5) | Nature 2012 | Link |
OVCA | mRNA | mRNA | 489 | Link | Nature 2011 | Link |
PCPG | mRNA, DNAmeth, protein, miRNA, CNA | mRNA | 178 | tableS2 | Cancer Cell 2017 | Link |
PRAD | mRNA, DNAmeth, protein, miRNA, CNA, icluster, mutation/fusion | mutation/fusion | 333 | Link | Cell 2015 | Link |
SKCM | mRNA, DNAmeth, protein, miRNA, mutation | mutation | 331 | Link (Table S1D) | Cell 2015 | Link |
THCA | mRNA, DNAmeth, protein, miRNA, CNA, histology | mRNA | 496 | Link (Table S2 - Tab1) | Cell 2014 | Link |
UCEC | iCluster, MSI, CNA, mRNA | iCluster - updated according to Pan-Gyne/Pathways groups | 538 | Link (datafile S1.1) | Nature 2013 | Link |
Link | ||||||
UCS (preliminary) | mRNA | mRNA | 57 | Link | not published |
TCGAquery_subtype
: Working with molecular subtypes data.The Cancer Genome Atlas (TCGA) Research Network has reported integrated genome-wide studies of various diseases. We have added some of the subtypes defined by these report in our package:
TCGA dataset | Link | Paper | Journal |
---|---|---|---|
ACC | doi:10.1016/j.ccell.2016.04.002 | Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. | Cancer cell 2016 |
BRCA | https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30119-3 | A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers | Cancer cell 2018 |
BLCA | http://www.cell.com/cell/fulltext/S0092-8674(17)31056-5 | Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer Cell 2017 | |
CHOL | http://www.sciencedirect.com/science/article/pii/S2211124717302140?via%3Dihub | Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles | Cell Reports 2017 |
COAD | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 |
ESCA | https://www.nature.com/articles/nature20805 | Integrated genomic characterization of oesophageal carcinoma | Nature 2017 |
GBM | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 |
HNSC | http://www.nature.com/nature/journal/v517/n7536/abs/nature14129.html | Comprehensive genomic characterization of head and neck squamous cell carcinomas | Nature 2015 |
KICH | http://www.sciencedirect.com/science/article/pii/S1535610814003043 | The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma | Cancer cell 2014 |
KIRC | http://www.nature.com/nature/journal/v499/n7456/abs/nature12222.html | Comprehensive molecular characterization of clear cell renal cell carcinoma | Nature 2013 |
KIRP | http://www.nejm.org/doi/full/10.1056/NEJMoa1505917 | Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma | NEJM 2016 |
LIHC | http://linkinghub.elsevier.com/retrieve/pii/S0092-8674(17)30639-6 | Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma | Cell 2017 |
LGG | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 |
LUAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular profiling of lung adenocarcinoma | Nature 2014 |
LUSC | http://www.nature.com/nature/journal/v489/n7417/abs/nature11404.html | Comprehensive genomic characterization of squamous cell lung cancers | Nature 2012 |
PAAD | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30299-4 | Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma | Cancer Cell 2017 |
PCPG | http://dx.doi.org/10.1016/j.ccell.2017.01.001 | Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma | Cancer cell 2017 |
PRAD | http://www.sciencedirect.com/science/article/pii/S0092867415013392 | The Molecular Taxonomy of Primary Prostate Cancer | Cell 2015 |
READ | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 |
SARC | http://www.cell.com/cell/fulltext/S0092-8674(17)31203-5 | Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas | Cell 2017 |
SKCM | http://www.sciencedirect.com/science/article/pii/S0092867415006340 | Genomic Classification of Cutaneous Melanoma | Cell 2015 |
STAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular characterization of gastric adenocarcinoma | Nature 2013 |
THCA | http://www.sciencedirect.com/science/article/pii/S0092867414012380 | Integrated Genomic Characterization of Papillary Thyroid Carcinoma | Cell 2014 |
UCEC | http://www.nature.com/nature/journal/v497/n7447/abs/nature12113.html | Integrated genomic characterization of endometrial carcinoma | Nature 2013 |
UCS | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30053-3 | Integrated Molecular Characterization of Uterine Carcinosarcoma Cancer | Cell 2017 |
UVM | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30295-7 | Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma | Cancer Cell 2017 |
These subtypes will be automatically added in the summarizedExperiment object through GDCprepare. But you can also use the TCGAquery_subtype
function to retrieve this information.
## lgg subtype information from:doi:10.1016/j.cell.2015.12.028
A subset of the LGG subytpe is shown below:
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] grid stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] maftools_2.18.0 jpeg_0.1-10
## [3] png_0.1-8 DT_0.30
## [5] dplyr_1.1.3 SummarizedExperiment_1.32.0
## [7] Biobase_2.62.0 GenomicRanges_1.54.0
## [9] GenomeInfoDb_1.38.0 IRanges_2.36.0
## [11] S4Vectors_0.40.0 BiocGenerics_0.48.0
## [13] MatrixGenerics_1.14.0 matrixStats_1.0.0
## [15] TCGAbiolinks_2.30.0 testthat_3.2.0
##
## loaded via a namespace (and not attached):
## [1] RColorBrewer_1.1-3 rstudioapi_0.15.0
## [3] jsonlite_1.8.7 magrittr_2.0.3
## [5] GenomicFeatures_1.54.0 rmarkdown_2.25
## [7] BiocIO_1.12.0 fs_1.6.3
## [9] zlibbioc_1.48.0 vctrs_0.6.4
## [11] Rsamtools_2.18.0 memoise_2.0.1
## [13] RCurl_1.98-1.12 htmltools_0.5.6.1
## [15] S4Arrays_1.2.0 usethis_2.2.2
## [17] progress_1.2.2 curl_5.1.0
## [19] SparseArray_1.2.0 sass_0.4.7
## [21] bslib_0.5.1 htmlwidgets_1.6.2
## [23] desc_1.4.2 fontawesome_0.5.2
## [25] plyr_1.8.9 cachem_1.0.8
## [27] GenomicAlignments_1.38.0 mime_0.12
## [29] lifecycle_1.0.3 pkgconfig_2.0.3
## [31] Matrix_1.6-1.1 R6_2.5.1
## [33] fastmap_1.1.1 GenomeInfoDbData_1.2.11
## [35] shiny_1.7.5.1 digest_0.6.33
## [37] colorspace_2.1-0 ShortRead_1.60.0
## [39] AnnotationDbi_1.64.0 ps_1.7.5
## [41] rprojroot_2.0.3 pkgload_1.3.3
## [43] crosstalk_1.2.0 RSQLite_2.3.1
## [45] hwriter_1.3.2.1 filelock_1.0.2
## [47] fansi_1.0.5 httr_1.4.7
## [49] abind_1.4-5 compiler_4.3.1
## [51] remotes_2.4.2.1 bit64_4.0.5
## [53] withr_2.5.1 downloader_0.4
## [55] BiocParallel_1.36.0 DBI_1.1.3
## [57] pkgbuild_1.4.2 R.utils_2.12.2
## [59] biomaRt_2.58.0 rappdirs_0.3.3
## [61] DelayedArray_0.28.0 sessioninfo_1.2.2
## [63] rjson_0.2.21 DNAcopy_1.76.0
## [65] tools_4.3.1 httpuv_1.6.12
## [67] R.oo_1.25.0 glue_1.6.2
## [69] restfulr_0.0.15 callr_3.7.3
## [71] promises_1.2.1 generics_0.1.3
## [73] gtable_0.3.4 tzdb_0.4.0
## [75] R.methodsS3_1.8.2 tidyr_1.3.0
## [77] data.table_1.14.8 hms_1.1.3
## [79] xml2_1.3.5 utf8_1.2.4
## [81] XVector_0.42.0 pillar_1.9.0
## [83] stringr_1.5.0 vroom_1.6.4
## [85] later_1.3.1 splines_4.3.1
## [87] BiocFileCache_2.10.0 lattice_0.22-5
## [89] deldir_1.0-9 rtracklayer_1.62.0
## [91] aroma.light_3.32.0 survival_3.5-7
## [93] bit_4.0.5 tidyselect_1.2.0
## [95] Biostrings_2.70.0 miniUI_0.1.1.1
## [97] knitr_1.44 xfun_0.40
## [99] devtools_2.4.5 brio_1.1.3
## [101] stringi_1.7.12 yaml_2.3.7
## [103] codetools_0.2-19 TCGAbiolinksGUI.data_1.21.0
## [105] evaluate_0.22 interp_1.1-4
## [107] EDASeq_2.36.0 archive_1.1.6
## [109] tibble_3.2.1 BiocManager_1.30.22
## [111] cli_3.6.1 xtable_1.8-4
## [113] munsell_0.5.0 processx_3.8.2
## [115] jquerylib_0.1.4 Rcpp_1.0.11
## [117] dbplyr_2.3.4 parallel_4.3.1
## [119] XML_3.99-0.14 ellipsis_0.3.2
## [121] ggplot2_3.4.4 readr_2.1.4
## [123] blob_1.2.4 prettyunits_1.2.0
## [125] latticeExtra_0.6-30 profvis_0.3.8
## [127] urlchecker_1.0.1 bitops_1.0-7
## [129] scales_1.2.1 purrr_1.0.2
## [131] crayon_1.5.2 BiocStyle_2.30.0
## [133] rlang_1.1.1 KEGGREST_1.42.0
## [135] rvest_1.0.3