
An Introduction to ShortRead

Martin Morgan

Modified: 21 October, 2013. Compiled: June 3, 2021

> library("ShortRead")

The ShortRead package provides functionality for working with FASTQ files from high
throughput sequence analysis. The package also contains functions for legacy (single-end,
ungapped) aligned reads; for working with BAM files, please see the Rsamtools, Genomi-
cRanges, GenomicAlignments and related packages.

1 Sample data
Sample FASTQ data are derived from ArrayExpress record E-MTAB-1147. Paired-end FASTQ
files were retrieved and then sampled to 20,000 records with
> sampler <- FastqSampler('E-MTAB-1147/fastq/ERR127302_1.fastq.gz', 20000)

> set.seed(123); ERR127302_1 <- yield(sampler)

> sampler <- FastqSampler('E-MTAB-1147/fastq/ERR127302_2.fastq.gz', 20000)

> set.seed(123); ERR127302_2 <- yield(sampler)

2 Functionality
Functionality is summarized in Table 1.

Input FASTQ files are large so processing involves iteration in ‘chunks’ using FastqStreamer

> strm <- FastqStreamer("a.fastq.gz")

> repeat {

+ fq <- yield(strm)

+ if (length(fq) == 0)

+ break

+ ## process chunk

+ }

or drawing a random sample from the file
> sampler <- FastqSampler("a.fastq.gz")

> fq <- yield(sampler)

The default size for both streams and samples is 1M records; this volume of data fits easily
into memory. Use countFastq to get a quick and memory-efficient count of the number of
records and nucleotides in a file

http://bioconductor.org/packages/Rsamtools
http://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/packages/GenomicAlignments
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/

An Introduction to ShortRead

Input
FastqStreamer Iterate through FASTQ files in chunks
FastqSampler Draw random samples from FASTQ files
readFastq Read an entire FASTQ file into memory
writeFastq Write FASTQ objects to a connection (file)
countFastq Quickly count FASTQ records in files

Sequence and quality summary
alphabetFrequency Nucleotide or quality score use per read
alphabetByCycle Nucleotide or quality score use by cycle
alphabetScore Whole-read quality summary
encoding Character / ‘phred’ score mapping

Quality assessment
qa Visit FASTQ files to collect QA statistics
report Generate a quality assessment report

Filtering and trimming
srFilter Pre-defined and bespoke filters
trimTails, etc. Trim low-quality nucleotides
narrow Remove leading / trailing nucleotides
tables Summarize read occurrence
srduplicated, etc. Identify duplicate reads
filterFastq Filter reads from one file to another

Table 1: Key functions for working with FASTQ files

> fl <- system.file(package="ShortRead", "extdata", "E-MTAB-1147",

+ "ERR127302_1_subset.fastq.gz")

> countFastq(fl)

records nucleotides scores

ERR127302_1_subset.fastq.gz 20000 1440000 1440000

Small FASTQ files can be read in to memory in their entirety using readFastq; we do this
for our sample data
> fq <- readFastq(fl)

The result of data input is an instance of class ShortReadQ (Table 2). This class contains

DNAStringSet (Biostrings) Short read sequences
FastqQuality, etc. Quality encodings
ShortReadQ Reads, quality scores, and ids

Table 2: Primary data types in the ShortRead package

reads, their quality scores, and optionally the id of the read.
> fq

class: ShortReadQ

length: 20000 reads; width: 72 cycles

> fq[1:5]

2

http://bioconductor.org/packages/Biostrings
http://bioconductor.org/packages/ShortRead

An Introduction to ShortRead

class: ShortReadQ

length: 5 reads; width: 72 cycles

> head(sread(fq), 3)

DNAStringSet object of length 3:

width seq

[1] 72 GTCTGCTGTATCTGTGTCGGCTGTCTCGCGGGAC...GTCAATGAAGGCCTGGAATGTCACTACCCCCAG

[2] 72 CTAGGGCAATCTTTGCAGCAATGAATGCCAATGG...CAGTGGCTTTTGAGGCCAGAGCAGACCTTCGGG

[3] 72 TGGGCTGTTCCTTCTCACTGTGGCCTGACTAAAA...TGGCATTAAGAAAGAGTCACGTTTCCCAAGTCT

> head(quality(fq), 3)

class: FastqQuality

quality:

BStringSet object of length 3:

width seq

[1] 72 HHHHHHHHHHHHHHHHHHHHEBDBB?B:BBGG<D...ABFEFBDBD@DDECEE3>:?;@@@>?=BAB?##

[2] 72 IIIIHIIIGIIIIIIIHIIIIEGBGHIIIIHGII...IIIHIIIHIIIIIGIIIEGIIGBGE@DDGGGIG

[3] 72 GGHBHGBGGGHHHHDHHHHHHHHHFGHHHHHHHH...HHHHHHHHGHFHHHHHHHHHHHHHH8AGDGGG>

The reads are represented as DNAStringSet instances, and can be manipulated with the rich
tools defined in the Biostrings package. The quality scores are represented by a class that
represents the quality encoding inferred from the file; the encoding in use can be discovered
with
> encoding(quality(fq))

! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

; < = > ? @ A B C D E F G H I J K L M N O P Q R S T

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

U V W X Y Z [\\] ^ _
` a b c d e f g h i j k l m n

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

o p q r s t u v w x y z { | } ~

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

The primary source of documentation for these classes is ?ShortReadQ and ?QualityScore.

3 Common work flows

3.1 Quality assessment
FASTQ files are often used for basic quality assessment, often to augment the purely technical
QA that might be provided by the sequencing center with QA relevant to overall experimental
design. A QA report is generated by creating a vector of paths to FASTQ files
> fls <- dir("/path/to", "*fastq$", full=TRUE)

collecting statistics over the files
> qaSummary <- qa(fls, type="fastq")

and creating and viewing a report

3

http://bioconductor.org/packages/Biostrings

An Introduction to ShortRead

> browseURL(report(qaSummary))

By default, the report is based on a sample of 1M reads.
These QA facilities are easily augmented by writing custom functions for reads sampled from
files, or by explorting the elements of the object returned from qa(), e.g., for an analysis of
ArrayExpress experiment E-MTAB-1147:
> qaSummary

class: FastqQA(10)

QA elements (access with qa[["elt"]]):

readCounts: data.frame(16 3)

baseCalls: data.frame(16 5)

readQualityScore: data.frame(8192 4)

baseQuality: data.frame(1504 3)

alignQuality: data.frame(16 3)

frequentSequences: data.frame(800 4)

sequenceDistribution: data.frame(1953 4)

perCycle: list(2)

baseCall: data.frame(5681 4)

quality: data.frame(44246 5)

perTile: list(2)

readCounts: data.frame(0 4)

medianReadQualityScore: data.frame(0 4)

adapterContamination: data.frame(16 1)

For instance, the count of reads in each lane is summarized in the readCounts element, and
can be displayed as
> head(qaSummary[["readCounts"]])

read filter aligned

ERR127302_1.fastq.gz 29741852 NA NA

ERR127302_2.fastq.gz 29741852 NA NA

ERR127303_1.fastq.gz 32665567 NA NA

ERR127303_2.fastq.gz 32665567 NA NA

ERR127304_1.fastq.gz 31876181 NA NA

ERR127304_2.fastq.gz 31876181 NA NA

> head(qaSummary[["baseCalls"]])

A C G T N

ERR127302_1.fastq.gz 16439860 19641395 19547421 16335620 35704

ERR127302_2.fastq.gz 16238041 20020655 19608896 16060661 71747

ERR127303_1.fastq.gz 16826258 19204659 19448727 16507994 12362

ERR127303_2.fastq.gz 16426991 19822132 19374419 16324978 51480

ERR127304_1.fastq.gz 16279217 19740457 19879137 16089405 11784

ERR127304_2.fastq.gz 15984998 20297064 19812474 15853510 51954

4

An Introduction to ShortRead

The readCounts element contains a data frame with 1 row and 3 columns (these dimensions
are indicated in the parenthetical annotation of readCounts in the output of qaSummary). The
rows represent different lanes. The columns indicated the number of reads, the number of
reads surviving the Solexa filtering criteria, and the number of reads aligned to the reference
genome for the lane. The baseCalls element summarizes base calls in the unfiltered reads.
The functions that produce the report tables and graphics are internal to the package. They
can be accessed through calling ShortRead:::functionName where functionName is one of the
functions listed below, organized by report section.
Run Summary : .ppnCount, .df2a, .laneLbl, .plotReadQuality
Read Distribution : .plotReadOccurrences, .freqSequences
Cycle Specific : .plotCycleBaseCall, .plotCycleQuality
Tile Performance : .atQuantile, .colorkeyNames, .plotTileLocalCoords, .tileGeometry, .plot-

TileCounts, .plotTileQualityScore
Alignment : .plotAlignQuality
Multiple Alignment : .plotMultipleAlignmentCount
Depth of Coverage : .plotDepthOfCoverage
Adapter Contamination : .ppnCount

3.2 Filtering and trimming
It is straight-forward to create filters to eliminate reads or to trim reads based on diverse
characteristics. The basic structure is to open a FASTQ file, iterate through chunks of the
file performing filtering or trimming steps, and appending the filtered data to a new file.
> myFilterAndTrim <-

+ function(fl, destination=sprintf("%s_subset", fl))

+ {

+ ## open input stream

+ stream <- open(FastqStreamer(fl))

+ on.exit(close(stream))

+

+ repeat {

+ ## input chunk

+ fq <- yield(stream)

+ if (length(fq) == 0)

+ break

+

+ ## trim and filter, e.g., reads cannot contain 'N'...

+ fq <- fq[nFilter()(fq)] # see ?srFilter for pre-defined filters

+ ## trim as soon as 2 of 5 nucleotides has quality encoding less

+ ## than "4" (phred score 20)

+ fq <- trimTailw(fq, 2, "4", 2)

+ ## drop reads that are less than 36nt

+ fq <- fq[width(fq) >= 36]

+

+ ## append to destination

+ writeFastq(fq, destination, "a")

5

An Introduction to ShortRead

+ }

+ }

This is memory efficient and flexible. Care must be taken to coordinate pairs of FASTQ files
representing paired-end reads, to preserve order.

4 Using ShortRead for data exploration

4.1 Data I/O
ShortRead provides a variety of methods to read data into R, in addition to readAligned.

4.1.1 readXStringColumns

readXStringColumns reads a column of DNA or other sequence-like data. For instance, the
Solexa files s_N_export.txt contain lines with the following information:
> ## location of file

> exptPath <- system.file("extdata", package="ShortRead")

> sp <- SolexaPath(exptPath)

> pattern <- "s_2_export.txt"

> fl <- file.path(analysisPath(sp), pattern)

> strsplit(readLines(fl, n=1), "\t")

[[1]]

[1] "HWI-EAS88" "3"

[3] "2" "1"

[5] "451" "945"

[7] "" ""

[9] "CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC" "YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH"

[11] "NM" ""

[13] "" ""

[15] "" ""

[17] "" ""

[19] "" ""

[21] "" "N"

> length(readLines(fl))

[1] 1000

Column 9 is the read, and column 10 the ASCII-encoded Solexa Fastq quality score; there
are 1000 lines (i.e., 1000 reads) in this sample file.
Suppose the task is to read column 9 as a DNAStringSet and column 10 as a BStringSet.
DNAStringSet is a class that contains IUPAC-encoded DNA strings (IUPAC code allows for
nucleotide ambiguity); BStringSet is a class that contains any character with ASCII code
0 through 255. Both of these classes are defined in the Biostrings package. readXString

Columns allows us to read in columns of text as these classes.
Important arguments for readXStringColumns are the dirPath in which to look for files, the
pattern of files to parse, and the colClasses of the columns to be parsed. The dirPath and
pattern arguments are like list.files. colClasses is like the corresponding argument to

6

http://bioconductor.org/packages/ShortRead

An Introduction to ShortRead

read.table: it is a list specifying the class of each column to be read, or NULL if the column
is to be ignored. In our case there are 21 columns, and we would like to read in columns 9
and 10. Hence
> colClasses <- rep(list(NULL), 21)

> colClasses[9:10] <- c("DNAString", "BString")

> names(colClasses)[9:10] <- c("read", "quality")

We use the class of the type of sequence (e.g., DNAString or BString), rather than the
class of the set that we will create (e.g., DNAStringSet or BStringSet). Applying names to
colClasses is not required, but makes subsequent manipulation easier. We are now ready to
read our file
> cols <- readXStringColumns(analysisPath(sp), pattern, colClasses)

> cols

$read

DNAStringSet object of length 1000:

width seq

[1] 35 CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC

[2] 35 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT

[3] 35 ACCAAAAACACCACATACACGAGCAACACACGTAC

[4] 35 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA

[5] 35 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA

...

[996] 35 GTGGCAGCGGTGAGGCGGCGGGGGGGGGTTGTTTG

[997] 35 GTCGGAGGTCAGCAAGCTGTAGTCGGTGTAAAGCT

[998] 35 GTCATAAATTGGACAGTGTGGCTCCAGTATTCTCA

[999] 35 ATCTACATTAAGGTCAATTACAATGATAAATAAAA

[1000] 35 TTCTCAGCCATTCAGTATTCCTCAGGTGAAAATTC

$quality

BStringSet object of length 1000:

width seq

[1] 35 YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH

[2] 35 ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO

[3] 35 LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE

[4] 35 JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ

[5] 35 LLLILIIIDLLHLLLLLLLLLLLALLLLHLLLLEL

...

[996] 35 ZZZZZZZYZZYUYZYUYZKYUDUZIYYODJGUGAA

[997] 35 ZZZZZZZZZZZZZZZZZZYZZYXXZYSSXXUUHHQ

[998] 35 ZZZZZZZZZZZZZZZYZZZZYZZZZYZZXZUUUUS

[999] 35 ZZZZZZZZZZZYXZYZYZZYZYZZXKZSYXUUNUN

[1000] 35 ZZZZZZZZZZZZZZYZZZZZZZZYYSYSZXUUUUU

The file has been parsed, and appropriate data objects were created.
A feature of readXStringColumns and other input functions in the ShortRead package is
that all files matching pattern in the specified dirPath will be read into a single object.
This provides a convenient way to, for instance, parse all tiles in a Solexa lane into a single
DNAStringSet object.

7

An Introduction to ShortRead

There are several advantages to reading columns as XStringSet objects. These are more
compact than the corresponding character representation:
> object.size(cols$read)

51032 bytes

> object.size(as.character(cols$read))

102128 bytes

They are also created much more quickly. And the DNAStringSet and related classes are
used extensively in ShortRead, Biostrings, BSgenome and other packages relevant to short
read technology.

4.2 Sorting
Short reads can be sorted using srsort, or the permutation required to bring the short read
into lexicographic order can be determined using srorder. These functions are different from
sort and order because the result is independent of the locale, and they operate quickly on
DNAStringSet and BStringSet objects.
The function srduplicated identifies duplicate reads. This function returns a logical vector,
similar to duplicated. The negation of the result from srduplicated is useful to create a
collection of unique reads. An experimental scenario where this might be useful is when the
sample preparation involved PCR. In this case, replicate reads may be due to artifacts of
sample preparation, rather than differential representation of sequence in the sample prior to
PCR.

4.3 Summarizing read occurrence
The tables function summarizes read occurrences, for instance,
> tbls <- tables(fq)

> names(tbls)

[1] "top" "distribution"

> tbls$top[1:5]

CTATTCTCTACAAACCACAAAGACATTGGAACACTATACCTATTATTCGGCGCATGAGCTGGAGTCCTAGGC

7

GTTTGGTCTAGGGTGTAGCCTGAGAATAGGGGAAATCAGTGAATGAAGCCTCCTATGATGGCAAATACAGCT

7

CGATAACGTTGTAGATGTGGTCGTTACCTAGAAGGTTGCCTGGCTGGCCCAGCTCGGCTCGAATAAGGAGGC

6

CTAGCATTTACCATCTCACTTCTAGGAATACTAGTATATCGCTCACACCTCATATCCTCCCTACTATGCCTA

6

CACGAGCATATTTCACCTCCGCTACCATAATCATCGCTATCCCCACCGGCGTCAAAGTATTTAGCTGACTCG

5

> head(tbls$distribution)

nOccurrences nReads

1 1 19291

2 2 247

8

An Introduction to ShortRead

3 3 34

4 4 18

5 5 3

6 6 2

The top component returned by tables is a list tallying the most commonly occurring se-
quences in the short reads. Knowledgeable readers will recognize the top-occurring read as a
close match to one of the manufacturer adapters.
The distribution component returned by tables is a data frame that summarizes how many
reads (e.g., 19291) are represented exactly 1 times.

4.4 Finding near matches to short sequences
Facilities exist for finding reads that are near matches to specific sequences, e.g., manufacturer
adapter or primer sequences. srdistance reports the edit distance between each read and
a reference sequence. srdistance is implemented to work efficiently for reference sequences
whose length is of the same order as the reads themselves (10’s to 100’s of bases). To find
reads close to the most common read in the example above, one might say
> dist <- srdistance(sread(fq), names(tbls$top)[1])[[1]]

> table(dist)[1:10]

dist

0 4 6 10 14 18 20 21 31 32

7 1 3 1 3 1 4 1 3 11

‘Near’ matches can be filtered, e.g.,
> fqSubset <- fq[dist>4]

A different strategy can be used to tally or eliminate reads that consist predominantly of a
single nucleotide. alphabetFrequency calculates the frequency of each nucleotide (in DNA
strings) or letter (for other string sets) in each read. Thus one could identify and eliminate
reads with more than 30 adenine nucleotides with
> countA <- alphabetFrequency(sread(fq))[,"A"]

> fqNoPolyA <- fq[countA < 30]

alphabetFrequency, which simply counts nucleotides, is much faster than srdistance, which
performs full pairwise alignment of each read to the subject.
Users wanting to use R for whole-genome alignments or more flexible pairwise aligment are
encouraged to investigate the Biostrings package, especially the PDict class and matchPDict

and pairwiseAlignment functions.

5 Legacy support for early file formats
The ShortRead package contains functions and classes to support early file formats and
ungapped alignments. Help pages are flagged as ‘legacy’; versions of ShortRead prior to 1.21
(Bioconductor version 2.13) contain a vignette illustrating common work flows with these
file formats.

9

http://bioconductor.org/packages/ShortRead
http://bioconductor.org/packages/ShortRead

An Introduction to ShortRead

6 sessionInfo

> toLatex(sessionInfo())

• R version 4.1.0 (2021-05-18), x86_64-w64-mingw32
• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,

LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Running under: Windows Server x64 (build 17763)

• Matrix products: default
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,

utils
• Other packages: Biobase 2.53.0, BiocGenerics 0.39.0, BiocParallel 1.27.0,

Biostrings 2.61.0, GenomeInfoDb 1.29.0, GenomicAlignments 1.29.0,
GenomicRanges 1.45.0, IRanges 2.27.0, MatrixGenerics 1.5.0, Rsamtools 2.9.0,
S4Vectors 0.31.0, ShortRead 1.51.0, SummarizedExperiment 1.23.0, XVector 0.33.0,
matrixStats 0.59.0

• Loaded via a namespace (and not attached): BiocManager 1.30.15,
BiocStyle 2.21.1, DelayedArray 0.19.0, GenomeInfoDbData 1.2.6, Matrix 1.3-4,
RColorBrewer 1.1-2, RCurl 1.98-1.3, bitops 1.0-7, compiler 4.1.0, crayon 1.4.1,
digest 0.6.27, evaluate 0.14, grid 4.1.0, htmltools 0.5.1.1, hwriter 1.3.2,
jpeg 0.1-8.1, knitr 1.33, lattice 0.20-44, latticeExtra 0.6-29, png 0.1-7, rlang 0.4.11,
rmarkdown 2.8, rstudioapi 0.13, tools 4.1.0, xfun 0.23, yaml 2.2.1, zlibbioc 1.39.0

10

	1 Sample data
	2 Functionality
	3 Common work flows
	3.1 Quality assessment
	3.2 Filtering and trimming

	4 Using ShortRead for data exploration
	4.1 Data I/O
	4.1.1 [functioncolor]readXStringColumns

	4.2 Sorting
	4.3 Summarizing read occurrence
	4.4 Finding near matches to short sequences

	5 Legacy support for early file formats
	6 sessionInfo

