JunctionSeq Package User Manual

Stephen Hartley

National Human Genome Research Institute
National Institutes of Health

November 8, 2019
JunctionSeq v1.17.0

Contents
1 Overview 2
2 Requirements................ 4
21 Alignment o oL 6
2.2 Recommendations 6
3 ExampleDataset. 6
4 Preparations. 8
4.1 Generatingraw countsviaQoRTs 9

4.2 Merging Counts from Technical Replicates (If Needed) . 10
4.3 (Option 1) Including Only Annotated Splice Junction Loci

11
4.4 (Option 2) Including Novel Splice Junction Loci. 11
5 Differential Usage Analysis via JunctionSeq 13
5.1 Simple analysis pipeline 13
5.1.1 Exporting size factors (optional) 14
5.2 Advanced Analysis Pipeline. 15

5.3 Extractingtestresults 16

JunctionSeq Package User Manual

6 Visualization and Interpretation. 20
6.1 SummaryPlots 22

6.2 GeneProfileplots. 23

6.2.1 Coverage/Expression Profile Plots. 24

6.2.2 Normalized CountPlots 27

6.2.3 Relative ExpressionPlots 28

6.3 Generating Genome Browser Tracks. 29

6.3.1 WiggleTracks., 30

6.3.2 MergingWiggle Tracks 32

6.3.3 SplicedunctionTracks 33

6.4 Additional Plotting Options. 34

6.41 RawCountPlots 34

6.4.2 Additional Optional Parameters 35

7 Statistical Methodology. 37
7.1 Preliminary Definitions 37

7.2 Model Framework. 38

7.3 Dispersion Estimation 39

7.4 HypothesisTesting 40

7.5 Parameter Estimation 41

8 For Advanced Users: Optional Alternative Method-

ologies. 42
8.1 Replicating DEXSeq Analysis via JunctionSeq 44
8.2 Advanced generalized linear modelling 45
9 Session Information. L. 48
10 Legal 50

1 Overview

The JunctionSeq R package offers a powerful tool for detecting, identifying,
and characterizing differential usage of transcript exons and/or splice junctions
in next-generation, high-throughput RNA-Seq experiments.

JunctionSeq Package User Manual

"Differential usage" is defined as a differential expression of a particular feature
or sub-unit of a gene (such as an exon or spice junction) relative to the overall
expression of the gene as a whole (which may or may not itself be differentially
expressed). The term was originally used by Anders et.al. [1] for their tool,
DEXSeq, which is designed to detect differential usage of exonic sub-regions in
RNA-Seq data. Tests for differential usage can be used as a proxy for detecting
alternative isoform regulation (AIR).

Although many tools already exist to detect alternative isoform regulation, the
results of these tools are almost universally resistant to interpretation. Alter-
native isoform regulation is a broad and diverse class of phenomena which may
involve alternative splicing, alternative promoting, nucleosome occupancy, long
non coding RNAs, alternative polyadenylation, or any number of these factors
occurring simultaneously. Unlike simple gene-level differential expression, such
regulation cannot be represented by a single p-value and fold-change. The re-
sults are often complex and counterintuitive, and effective interpretation is both
crucial and non-trivial.

JunctionSeq provides a powerful and comprehensive automated visualization
toolset to assist in this interpretation process. This includes gene profile plots
(see Section 6.2.1), as well as genome-wide browser tracks for use with IGV
or the UCSC genome browser (see Section 6.3). Together, these visualizations
allow the user to quickly and intuitively interpret and understand the underlying
regulatory phenomena that are taking place.

This visualization toolset is the core advantage to JunctionSeq over similar
methods like DEXSeq. In fact, using a specific set of parameters (outlined in
Section 8.1), you can replicate a DEXSeq analysis in JunctionSeq, and thus use
the JunctionSeq visualization tools along with the standard DEXSeq method-

ology.

Under the default parameterization, JunctionSeq also builds upon and expands
the basic design put forth by DEXSeq, providing (among other things) the
ability to test for both differential exon usage and differential splice junction
usage. These two types of analyses are complementary: Exons represent a
broad region on the transcripts and thus tend to have higher counts than the
individual splice junctions (particularly for large exons) and as such tests for
differential exon usage will often have higher power under ideal conditions.
However, certain combinations of isoform differentials may not result in strong
observed differentials in the individual exons, and up- or down-regulation in
unannotated isoforms may not be detectable at all. The addition of splice
junction usage analysis makes it possible to detect a broader array of isoform-
regulation phenomena, as well as vastly improving the detection of differentials
in unannotated isoforms.

JunctionSeq Package User Manual

JunctionSeq is not designed to detect changes in overall gene expression. Gene-
level differential expression is best detected with tools designed specifically for
that purpose such as DESeq2 [2] or edgeR [3].

Additional help and documentation is available online. There is also a compre-
hensive walkthrough of the entire analysis pipeline, along with a full example
dataset. Note that the raw example bam and fastq files are in a separate
download.

You can cite JunctionSeq by citing the preprint on arxiv.org:

Hartley SW, Mullikin JC. Detection and Visualization of Differential Exon and
Splice Junction Usage in RNA-Seq Data with JunctionSeq. arXiv preprint
arXiv:1512.06038. 2015 Dec 18.

2 Requirements

JunctionSeq requires R v3.2.2 as well as a number of R packages. See the
JunctionSeq website for more detailed and updated information on JunctionSeq
installation.

JunctionSeq is now part of Bioconductor, and will be included in the next
release. If you are on the Devel branch of R (currently v3.3), then you can
install JunctionSeq as part of the Devel branch of Bioconductor, using the
commands (in R):

if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("JunctionSeq")

If you do not wish to work in the (often unstable) devel Bioconductor branch,
you can install JunctionSeq now using a custom install script, available online.
Use the commands (in R):

source("http://hartleys.github.io/JunctionSeq/install/JS.install.R");
JS.install();

Alternatively, JunctionSeq can be installed manually:

#CRAN package dependencies:
install.packages("statmod");
install.packages("plotrix");
install.packages("stringr");

http://hartleys.github.io/JunctionSeq/index.html
http://hartleys.github.io/JunctionSeq/doc/example-walkthrough.pdf
http://hartleys.github.io/JunctionSeq/doc/example-walkthrough.pdf
ftp://nhgriftp.nhgri.nih.gov/pub/outgoing/mullikin/QoRTsExample/QoRTsPipelineWalkthrough.zip
ftp://nhgriftp.nhgri.nih.gov/pub/outgoing/mullikin/QoRTsExample/QoRTsPipelineWalkthrough.zip
ftp://nhgriftp.nhgri.nih.gov/pub/outgoing/mullikin/QoRTsExample/QoRTsPipelineWalkthroughData.zip
http://arxiv.org/abs/1512.06038
http://arxiv.org/abs/1512.06038
http://arxiv.org
http://arxiv.org/abs/1512.06038
http://hartleys.github.io/JunctionSeq/

JunctionSeq Package User Manual

install.packages("Rcpp");
install.packages("RcppArmadillo");
install.packages("locfit");
install.packages("Hmisc");

#Bioconductor dependencies:
if (!requireNamespace("BiocManager", quietly=TRUE));
install.packages("BiocManager");
BiocManager::install();
BiocManager::install("Biobase");
BiocManager::install("BiocGenerics");
BiocManager::install("BiocParallel");
BiocManager::install("GenomicRanges");
BiocManager::install("IRanges");
BiocManager::install("S4Vectors");
BiocManager::install("genefilter");
BiocManager::install("geneplotter");
BiocManager::install("SummarizedExperiment");
BiocManager::install("DESeq2");

install.packages("http://hartleys.github.io/JunctionSeq/install/JunctionSeq_LATEST.tar.gz"
repos = NULL,
type = "source");

Generating splice junction counts: The easiest way to generate the counts
for JunctionSeq is via the QoRTs [4] software package. The QoRTs software
package requires R version 3.0.2 or higher, as well as (64-bit) java 6 or higher.
QoRTs can be found online here.

Hardware: Both the JunctionSeq and QoRTs [4] software packages will generally
require at least 2-10 gigabytes of RAM to run. In general at least 4gb is
recommended when available for the QoRTs runs, and at least 10gb for the
JunctionSeq runs. R multicore functionality usually involves duplicating the R
environment, so memory usage may be higher if multicore options are used.

Annotation: JunctionSeq requires a transcript annotation in the form of a gtf
file. If you are using a annotation guided aligner (which is STRONGLY rec-
ommended) it is likely you already have a transcript gtf file for your reference
genome. We recommend you use the same annotation gtf for alignment, QC,
and downstream analysis. We have found the Ensembl "Gene Sets" gtf! suitable ~'Which can be

for these purposes. However, any format that adheres to the gtf file specifica- 2cquired from the
Lo Ensembl website
tion” will work. _
2See the gtf file
specification here

http://www.ensembl.org
http://genome.ucsc.edu/FAQ/FAQformat.html
http://hartleys.github.io/QoRTs/index.html

JunctionSeq Package User Manual

Dataset: JunctionSeq requires aligned RNA-Seq data. Data can be paired-
end or single-end, unstranded or stranded. For paired-end data it is strongly
recommended (but not explicitly required) that the SAM/BAM files be sorted
either by name or position (it does not matter which).

2.1 Alignment

QoRTs [4], which is used to generate read counts, is designed to run on paired-
end or single-end next-gen RNA-Seq data. The data must first be aligned (or
"mapped") to a reference genome. RNA-Star [5], GSNAP [6], and TopHat2 [7]
are all popular and effective aligners for use with RNA-Seq data. The use of
short-read or unspliced aligners such as BowTie, ELAND, BWA, or Novoalign
is NOT recommended.

2.2 Recommendations

Using barcoding, it is possible to build a combined library of multiple distinct
samples which can be run together on the sequencing machine and then demul-
tiplexed afterward. In general, it is recommended that samples for a particular
study be multiplexed and merged into "balanced" combined libraries, each con-
taining equal numbers of each biological condition. If necessary, these combined
libraries can be run across multiple sequencer lanes or runs to achieve the desired
read depth on each sample.

This reduces "batch effects", reducing the chances of false discoveries being
driven by sequencer artifacts or biases.

It is also recommended that the data be thoroughly examined and checked for
artifacts, biases, or errors using the QoRTs [4] quality control package.

3 Example Dataset

To allow users to test JunctionSeq and experiment with its functionality, an
example dataset is available online here. It can be installed with the command:

install.packages("http://hartleys.github.io/JunctionSeq/install/JctSeqData LATEST.tar.gz",

A more complete walkthrough using this same dataset is available here. The
bam and fastq files are available here.

http://hartleys.github.io/JunctionSeq/install/JctSeqData_LATEST.tar.gz
ftp://nhgriftp.nhgri.nih.gov/pub/outgoing/mullikin/QoRTsExample/QoRTsPipelineWalkthrough.zip
ftp://nhgriftp.nhgri.nih.gov/pub/outgoing/mullikin/QoRTsExample/QoRTsPipelineWalkthroughData.zip

JunctionSeq Package User Manual

The example dataset was taken from rat pineal glands. Sequence data from
six samples (aka "biological replicates") are included, three harvested during
the day, three at night. To reduce the file sizes to a more managable level,
this dataset used only 3 out of the 6 sequencing lanes, and only the reads
aligning to chromosome 14 were included. This yielded roughly 750,000 reads
per sample. The example dataset, including aligned reads, QC data, example
scripts, splice junction counts, and JunctionSeq results, is available online (see
the JunctionSeq github page). Information on the original dataset from which
the example data was derived is described elsewhere [8].

THIS EXAMPLE DATASET ISINTENDED FOR TESTING PURPOSES ONLY!
The original complete dataset can be downloaded from GEO (the National Cen-
ter for Biotechnology Information Gene Expression Omnibus), GEO series acces-
sion number GSE63309. The test dataset has been cut down to reduce file sizes
and processing time, and a number of artificial "edge cases" were introduced
for testing purposes. For example: in the gene annotation, one gene has an
artificial transcript that lies on the opposite strand from the other transcripts,
to ensure that JunctionSeq deals with that (unlikely) possibility in a sensible
way. The results from this test analysis are not appropriate for anything other
than testing!

Splice junction counts and annotation files generated from this example dataset
are included in the JcnSeqExData R package, available online (see the Junc-
tionSeq github page), which is what will be used by this vignette.

The annotation files can be accessed with the commands:

decoder.file <- system.file("extdata/annoFiles/decoder.bySample.txt",
package="JctSeqgData",
mustWork=TRUE) ;
decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);
gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqgData",
mustWork=TRUE) ;

The count files can be accessed with the commands:

countFiles.noNovel <- system.file(paste@("extdata/cts/",
decoder$sample.ID,

"/QC.spliceJunctionAndExonCounts.forJunctionSeq.txt.gz"),

package="JctSegData", mustWork=TRUE);

http://www.ncbi.nlm.nih.gov/geo/

JunctionSeq Package User Manual

countFiles <- system.file(pasteO("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSegData", mustWork=TRUE);

There is also a smaller subset dataset, intended for rapid testing purposes. This
is the dataset we will use in this vignette, to reduce build times to within the
Bioconductor limitations.

The annotation gtf file can be accessed with the command:

gff.file <- system.file(
"extdata/tiny/withNovel. forJunctionSeq.gff.gz",
package="JctSegData",
mustWork=TRUE) ;

The count files can be accessed with the commands:

countFiles <- system.file(pasteO("extdata/tiny/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSegData", mustWork=TRUE);

4 Preparations

Once alignment and quality control has been completed on the study dataset,
the splice-junction and gene counts must be generated via QoRTs [4].

To reduce batch effects, the RNA samples used for the example dataset were
barcoded and merged together into a single combined library. This combined
library was run on three HiSeq 2000 sequencer lanes. Thus, after demultiplex-
ing each sample consisted of three "technical replicates". JunctionSeq is only
designed to compare biological replicates, so QoRTs includes functions for gen-
erating counts for each technical replicate and then combining the counts across
the technical replicates from each biological sample.

JunctionSeq Package User Manual

4.1

Generating raw counts via QoRTs

To generate read counts, you must run QoRTs [4] on each aligned bam file.
QoRTs includes a basic function that calculates a variety of QC metrics along
with gene-level and splice-junction-level counts. All these functions can be
performed in a single step and a single pass through the input alignment file,
greatly simplifying the analysis pipeline.

For example, to run QoRTs on the first read-group of replicate SHAM1_RG1 from
the example dataset:

java -jar /path/to/jarfile/QoRTs.jar QC \
--stranded \
inputData/bamFiles/SHAM1_RG1.bam \
inputData/annoFiles/anno.gtf.gz \
rawCts/SHAM1_RG1/

Note that the --stranded option is required because this example dataset is
strand-specific. Also note that QoRTs uses the original gtf annotation file,
NOT the flattened gff file produced in section 4.3. More information on this
command and on the available options can be found online here.

For more information about the quality control metrics provided by QoRTs and
how to visualize, organize, and view them, see the QoRTs github page and
documentation, available online here.

Certain datasets may require additional options. For example: by default,
QoRTs assumes the "MAPQ" rules used by the RNA-STAR aligner and the
TopHat 1 aligner. If you use other aligners (TopHat2, GSNAP, etc.) you may
need to specify the "-minMAPQ" parameter. See the QoRTs QC command
documentation.

If Quality Control is being done seperately by other software packages or col-
laborators, the JunctionSeq counts can be generated without the rest of the
QC data by setting the --runFunctions option:

java -jar /path/to/jarfile/QoRTs.jar QC \
--stranded \
--runFunctions writeKnownSplices,writeNovelSplices,writeSpliceExon \
inputData/bamFiles/SHAM1_RG1l.bam \
inputData/annoFiles/anno.gtf.gz \
rawCts/SHAM1_RG1l/

http://hartleys.github.io/QoRTs/jarHtml/index.html
http://hartleys.github.io/QoRTs/index.html
http://hartleys.github.io/QoRTs/jarHtml/QC.html
http://hartleys.github.io/QoRTs/jarHtml/QC.html

JunctionSeq Package User Manual

This will take much less time to run, as it does not generate the full battery of
quality control metrics.

The above command will generate a count file rawCts/SHAM1_RG1/QC.spliceJunctionAndExonCounts.forJ
This file contains both gene-level coverage counts, as well as coverage counts

for transcript subunits such as exons and splice junction loci. It will also gen-

erate two additional secondary count files (one with all known splice counts,

the other with all novel splice counts) which may be needed if you wish to add

novel splice junctions to your analysis (see Section 4.4).

4.2 Merging Counts from Technical Replicates (If Needed)

QoRTs [4] includes functions for merging all count data from various technical
replicates. If your dataset does not include technical replicates, or if technical
replicates have already been merged prior to the count-generation step then this
step is unnecessary.

The example dataset has three such technical replicates per sample, which were
aligned separately and counted separately. For the purposes of quality control
QoRTs was run separately on each of these bam files (making it easier to discern
any lane or run specific artifacts that might have occurred). It is then necessary
to combine the read counts from each of these bam files.

QoRTs includes an automated utility for performing this merge. For the example
dataset, the command would be:

java -jar /path/to/jarfile/QoRTs.jar \
mergeAllCounts \
rawCts/ \
annoFiles/decoder.byUID.txt \
cts/

The "rawCts/" and "cts/" directories are the relative paths to the input and
output data, respectively. The "decoder" file should be a tab-delimited text file
with column titles in the first row. One of the columns must be titled "sam-
ple.ID", and one must be labelled "unique.ID". The unique.ID must be unique
and refers to the specific technical replicate, the sample.ID column indicates
which biological sample each technical replicate belongs to.

10

JunctionSeq Package User Manual

4.3

4.4

(Option 1) Including Only Annotated Splice Junc-
tion Loci

If you wish to only test annotated splice junctions, then a simple flat annotation
file can be generated for use by JunctionSeq. This file parses the input gtf an-
notation and assigns unique identifiers to each feature (exon or splice junction)
belonging to each gene. These identifiers will match the identifiers listed in the
count files produced by QoRTs in the count-generation step (see Section 4.1).

java -jar /path/to/jarfile/QoRTs.jar makeFlatGff \
--stranded \
annoFiles/anno.gtf.gz \
annoFiles/JunctionSeq.flat.gff.gz

Note it is vitally important that the flat gff file and the read-counts be run using
the same "strandedness" options (as described in Section 4.1). If the counts
are generated in stranded mode, the gff file must also be generated in stranded
mode.

(Option 2) Including Novel Splice Junction Loci

One of the core advantages of JunctionSeq over similar tools such as DEXSeq is
the ability to test for differential usage of previously-undiscovered transcripts via
novel splice junctions. Most advanced aligners have the ability to align read-
pairs to both known and unknown splice junctions. QoRTs [4] can produce
counts for these novel splice junctions, and JunctionSeq can test them for
differential usage.

Because many splice junctions that appear in the mapped file may only have a
tiny number of mapped reads, it is generally desirable to filter out low-coverage
splice junctions. Many such splice junctions may simply be errors, and in any
case their coverage counts will be too low to detect differential effects.

In order to properly filter by read depth, size factors are needed. These can
be generated by JunctionSeq (see Section 5.1.1), or generated from gene-level
read counts using DESeq2, edgeR, or QoRTs. See the QoRTs vignette for more
information on how to generate these size factors.

Once size factors have been generated, novel splice junctions can be selected
and counted using the command:

11

JunctionSeq Package User Manual

java -jar /path/to/jarfile/QoRTs.jar \
mergeNovelSplices \
--minCount 6 \
--stranded \
cts/ \
annoFiles/decoder.bySample.txt \
annoFiles/anno.gtf.gz \
cts/

Note: The decoder file must have a column titled "sample.ID". Optionally, it
can also include size factors for each sample (generated by external tools) in
a column labelled 'size.factor’. All other columns will be ignored. If no size
factors are specified, then size factors will automatically be calculated using the
DESeq "geometric" normalization method, based on the gene-level counts for
all non-aggregate (ie. non-overlapping) genes. The absence of the overlapping
genes may cause these size factors to differ slightly from the DESeq-calculated
size-factors.

Note: In older versions of QoRts (v1.0.20 and below) the size.factor column
was required. If you encounter errors, upgrade to the newest version of QoRTs.

This utility finds all splice junctions that fall inside the bounds of any known
gene. It then filters this set of splice junctions, selecting only the junction loci
with mean normalized read-pair counts of greater than the assigned threshold
(set to 6 read-pairs in the example above). It then gives each splice junction
that passes this filter a unique identifier.

This utility produces two sets of output files. First it writes a .gff file containing
the unique identifiers for each annotated and novel-and-passed-filter splice locus.
Secondly, for each sample it produces a count file that includes these additional
splice junctions (along with the original counts as well).

12

JunctionSeq Package User Manual

5 Differential Usage Analysis via Junction-
Seq

5.1 Simple analysis pipeline

JunctionSeq includes a single function that loads the count data and performs
a full analysis automatically. This function internally calls a number of sub-
functions and returns a JunctionSeqCountSet object that holds the analysis
results, dispersions, parameter estimates, and size factor data.

jscs <- runJunctionSegAnalyses(sample.files = countFiles,
sample.names = decoder$sample.ID,
condition=factor(decoder$group.ID),

flat.gff.file = gff.file,
nCores = 1,
analysis.type = "junctionsAndExons"

)

Warning in MulticoreParam(workers = nCores): MulticoreParam() not
supported on Windows, use SnowParam()

Warning in MulticoreParam(workers = nCores): MulticoreParam() not
supported on Windows, use SnowParam()

The default analysis type, which is explicitly set in the above command, per-
forms a "hybrid" analysis that tests for differential usage of both exons and
splice junctions simultaniously. The methods used to test for differential splice
junction usage are extremely similar to the methods used for differential exon
usage other than the fact that the counts are derived from splice sites rather
than exonic regions. These methods are based on the methods used by the
DEXSeq package [1,2].

The advantage to our method is that reads (or read-pairs) are never counted
more than once in any given statistical test. This is not true in DEXSeq, as the
long paired-end reads produced by current sequencers may span several exons
and splice junctions and thus be counted several times. Our method also pro-
duces estimates that are more intuitive to interpret: our fold change estimates
are defined as the fold difference between two conditions across a transcript
sub-feature relative to the fold change between the same two conditions for
the gene as a whole. The DEXSeq method instead calculates a fold change
relative to the sum of the other sub-features, which may change depending on
the analysis inclusion parameters.

JunctionSeq Package User Manual

The above function has a number of optional parameters, which may be relevant
to some analyses:

analysis.type : By default JunctionSeq simultaniously tests both splice junction
loci and exonic regions for differential usage (a "hybrid" analysis). This pa-
rameter can be used to limit analyses specifically to either splice junction loci
or exonic regions.

nCores : The number of cores to use (note: this will only work when package
BiocParallel is used on a Linux-based machine. Unfortunately R cannot run
multiple threads on windows at this time).

meanCountTestableThreshold : The minimum normalized-read-count threshold used
for filtering out low-coverage features.

test.formulad : The model formula used for the null hypothesis in the ANODEV
analysis.

test.formulal : The model formula used for the alternative hypothesis in the AN-
ODEV analysis.

effect.formula : The model formula used for estimating the effect size and param-
eter estimates.

genelLevel.formula : The model formula used for estimating the gene-level expres-
sion.

gene.names : A text file or data.frame that contains two columns: first the genelD
then the gene name. Many annotations do not use common gene symbols
as the primary identifier for genes. However, full ensembl ID's (for example)
are not suited to easy recognition or conversation. Thus, you can use this
additional parameter to tell JunctionSeq to use the common gene names in
tables and plots (while still using the genelDs for identification purposes).

A full description of all these options and how they are used can be accessed
using the command:

help(runJunctionSeqgAnalyses);

5.1.1 Exporting size factors (optional)

As part of the analysis pipeline, JunctionSeq produces size factors which can be
used to "normalize" all samples’ read counts to a common scale. These can be
accessed using the command:

writeSizeFactors(jscs, file = "sizeFactors.txt");

sample.ID size.factor sizeFactors.byGenes sizeFactors.byCountbins

JunctionSeq Package User Manual

SAMP1
SAMP2
SAMP3
SAMP4
SAMP5
SAMP6

SAMP1
SAMP2
SAMP3
SAMP4
SAMP5
SAMP6

o H O 0 O

.033 1.033
.977 0.977
.976 0.976
.950 0.950
.141 1.141
.985 0.985

These size factors are sometimes needed for various purposes, such as the gen-
eration of summary wiggle tracks (see 6.3).

5.2 Advanced Analysis Pipeline

Some advanced users may need to deviate from the standard analysis pipeline.
They may want to use different size factors, apply multiple different models
without having to reload the data from file each time, or use other advanced

features offered by JunctionSeq.

First you must create a "design" data frame:

design <- data.frame(condition = factor(decoder$group.ID));

Note: the experimental condition variable MUST be named "condition".

Just to demonstrate one advanced feature: We can include the gene names
file. This text file contains two columns: first the genelD then the gene name.
Many annotations do not use common gene symbols as the primary identifier
for genes. However, full ensembl ID's (for example) are not suited to easy
recognition or conversation. Thus, you can use this additional parameter to
tell JunctionSeq to use the common gene names in tables and plots (while still
using the genelDs for identification purposes).

genelD.to.symbol.file <- system.file(

"extdata/annoFiles/ensid.2.symbol. txt",
package="JctSegData",
mustWork=TRUE) ;

Next, the data must be loaded into a JunctionSeqCountSet:

jscs = readJunctionSeqCounts(countfiles = countFiles,

samplenames = decoder$sample.ID,
design = design,
flat.gff.file = gff.file,

o R P O O K

.029
.997
.941
.009
.189
.933

15

JunctionSeq Package User Manual

5.3

gene.names = genelD.to.symbol.file
);
Next, size factors must be created and loaded into the dataset:
#Generate the size factors and load them into the JunctionSeqCountSet:
jscs <- estimateJunctionSeqSizeFactors(jscs);
Next, we generate test-specific dispersion estimates:
jscs <- estimateJunctionSeqDispersions(jscs, nCores = 1);
Next, we fit these observed dispersions to a regression to create fitted disper-
sions:

jscs <- fitJunctionSegDispersionFunction(jscs);

Next, we perform the hypothesis tests for differential splice junction usage:

jscs <- testForDiffUsage(jscs, nCores = 1);

Finally, we calculate effect sizes and parameter estimates:

jscs <- estimateEffectSizes(jscs, nCores = 1);

All these steps simply duplicates the behavior of the runJunctionSeqAnalyses
function. However, far more options are available when run in this way. Full
documentation of the various options for these commands:

help(readJunctionSeqCounts);
help(estimateJunctionSeqSizeFactors);
help(estimateJunctionSegDispersions);
help(fitJunctionSeqDispersionFunction);
help(testForDiffUsage);
help(estimateEffectSizes);

Extracting test results

Once the differential splice junction usage analysis has been run, the results,
including model fits, fold changes, p-values, and coverage estimates can all be
written to file using the command:

16

JunctionSeq Package User Manual

writeCompleteResults(jscs,

This produces a series of output files. The main results files are allGenes.results.txt.gz

outfile.prefix="./test",
save.jscs = TRUE
)3

and sigGenes.results.txt.gz. The former includes rows for all genes, whereas the
latter includes only genes that have one or more statistically significant differ-
entially used splice junction locus. The columns for both are:

featurelD: The unique ID of the exon or splice junction locus.
genelD: The unique ID of the gene.

countbinID: The sub-ID of the exon or splice junction locus.
testable: Whether the locus has sufficient coverage to test.
dispBeforeSharing: The locus-specific dispersion estimate.
dispFitted: The the fitted dispersion.

dispersion: The final dispersion used for the hypothesis tests.
pvalue: The raw p-value of the test for differential usage.

padjust: The adjusted p-value, adjusted using the "FDR" method.

chr, start, end, strand: The (1-based) positon of the exonic region or
splice junction.

transcripts: The list of known transcripts that contain this splice junction.
Novel splice junctions will be listed as "UNKNOWN_TX".

feature Type: The type of the feature (exonic region, novel splice junction
or known splice junction)

baseMean: The base mean normalized coverage counts for the locus
across all conditions.

HtestCoef(A/B): The interaction coefficient from the alternate hypothesis
model fit used in the hypothesis tests. This is generally not used for
anything but may be useful for certain testing diagnostics.

log2FC(A/B): The estimated log2 fold change found using the effect-size
model fit. This is calculated using a different model than the model used
for the hypothesis tests.

17

JunctionSeq Package User Manual

log2FCvst(A/B): The estimated log2 fold change between the vst-transformed

estimates. This can be superior to simple fold-change estimates for the
purposes of ranking effects by their effect size. Simple fold-change esti-
mates can be deceptively high when expression levels are low.

expr_A: The estimate for the mean normalized counts of the feature in
group A.

expr_B: The estimate for the mean normalized counts of the feature in
group B.

geneWisePadj: The gene-level g-value, for the hypothesis that one or
more features belonging to this gene are differentially used. This value
will be the same for all features belonging to the same gene. In many
studies this may actually be what you want to report.

Note: If the biological condition has more than 2 categories then there will be
multiple columns for the HtestCoef and log2FC. Each group will be compared
with the reference group. |If the supplied condition variable is supplied as a
factor then the first "level" will be used as the reference group.

There will also be a file labelled "sigGenes.genewiseResults.txt.gz", which in-
cludes summary information for all statistically-significant genes:

genelD: The unique ID of the gene.
chr, start, end, strand: The (1-based) positon of the gene.

baseMean: The base mean normalized coverage counts for the gene across
all conditions.

geneWisePadj: The gene-level g-value, for the hypothesis that one or
more features belonging to this gene are differentially used. This value
will be the same for all features belonging to the same gene.

mostSiglID: The sub-feature ID for the most significant exon or splice-
junction belonging to the gene.

mostSigPadjust: The adjusted p-value for the most significant exon or
splice-junction belonging to the gene.

numExons: The number of (known) non-overlapping exonic regions be-
longing to the gene.

numKnown: The number of known splice junctions belonging to the gene.
numNovel: The number of novel splice junctions belonging to the gene.

exonsSig: The number of statistically significant non-overlapping exonic
regions belonging to the gene.

18

JunctionSeq Package User Manual

= knownSig: The number of statistically significant known splice junctions
belonging to the gene.

= novelSig: The number of statistically significant novel splice junctions
belonging to the gene.

= numkFeatures: The columns numExons, numKnown, and numNovel, sep-
arated by slashes.

= numSig: The columns exonsSig, knownSig, and novelSig, separated by
slashes.

The writeCompleteResults function also writes a file: allGenes.expression.data.txt.gz.
This file contains the raw counts, normalized counts, expression-level estimates

by condition value (as normalized read counts), and relative expression esti-
mates by condition value. These are the same values that are plotted in Section

6.2.

Finally, this function also produces splice junction track files suitable for use
with the UCSC genome browser or the IGV genome browser. These files are
described in detail in Section 6.3.3. If the save.jscs parameter is set to TRUE,
then it will also save a binary representation of the JunctionSeqCountSet object.

19

JunctionSeq Package User Manual

6

Visualization and Interpretation

The interpretation of the results is almost as important as the actual analysis it-
self. Differential splice junction usage is an observed phenomenon, not an actual
defined biological process. It can be caused by a number of underlying regula-
tory processes including alternative start sites, alternative end sites, transcript
truncation, mRNA destabilization, alternative splicing, or mRNA editing. De-
pending on the quality of the transcript annotation, apparent differential splice
junction usage can even be caused by simple gene-level differential expression, if
(for example) a known gene and an unannotated gene overlap with one another
but are independently regulated.

Many of these processes can be difficult to discern and differentiate. Therefore,
it is imperative that the results generated by JunctionSeq be made as easy to
interpret as possible.

JunctionSeq, especially when used in conjunction with the QoRTs [4] software
package, contains a number of tools for visualizing the results and the patterns
of expression observed in the dataset.

A comprehensive battery of plots, along with a set of html files for easy navi-
gation, can be generated with the command:

buildAl1Plots(jscs=jscs,
outfile.prefix = "./plots/",
use.plotting.device = "png",
FDR.threshold = 0.01
);

This produces a number of sub-directories, and includes analysis-wide summary
plots along with plots for every gene with one or more statistically significant
exons or splice junctions. Alternatively, plots for a manually-specified gene list
can be generated using the gene.list parameter. Other parameters include:

= colorRed.FDR.threshold: The adjusted-p-value threshold to use to determine
when features should be colored as significant.

= plot.gene.level.expression: If FALSE, do not include the gene-level expres-
sion plot on the right side.

= sequencing.type: "paired-end" or "single-end". This option is purely cos-
metic, and simply determines whether the y-axes will be labelled as "read-pairs"
or "reads".

20

JunctionSeq Package User Manual

par.cex, anno.cex.text, anno.cex.axis, anno.cex.main: The character ex-
pansions for various purposes. par.cex determines the cex value passed to par,

which expands all other text, margins, etc. The other three parameters deter-

mine the size of text for the various labels.

plot.lwd, axes.lwd, anno.lwd, gene.lwd: Line width variables for various
lines.

base.plot.height, base.plot.width, base.plot.units: The "base" width
and height for all plots. Plots with transcripts drawn will be expanded ver-
tically to fit the transcripts, plots with a large number of exons or junctions
will be likewise be expanded horizontally. This functionality can be deac-
tivated by setting autoscale.height.to.fit.TX.annotation to FALSE and
autoscale.width.to.fit.bins to Inf.

writeHTMLresults: If TRUE, create a navigable HTML page (default: TRUE).

html.compare.results.list: If you have multiple studies that you want to
directly compare, you can use this parameter to allow cross-linking between
analyses from the html navigation pages. The results from each analysis must
be placed in the same parent directory, and this parameter must be set to a
named list of subdirectory names, corresponding to the outfile.prefix for
each run of buildAllPlots. In general you should also set the gene.list
parameter, or else cross-links will fail if a gene is significant in one analysis
but not the other. This parameter can also be used to cross-link different runs
of buildAllPlots on the same dataset, to easily compare different parameter
settings.

21

JunctionSeq Package User Manual

6.1

Summary Plots

JunctionSeq provides functions for two basic summary plots, used to display
experiment-wide results. The first is the dispersion plot, which displays the
dispersion estimates (y-axis) as a function of the base mean normalized counts
(x-axis). The test-specific dispersions are displayed as blue density shading, and
the "fitted" dispersion is displayed as a red line. JunctionSeq can also produce
an "MA" plot, which displays the fold change("M") on the y-axis as a function
of the overall mean normalized counts ("A") on the x-axis.

These plots can be generated with the command:
plotDispEsts(jscs);
plotMA(jscs, FDR.threshold=0.05);

Dispersion Estimates MA Plot (CTRL/ICASE)

= MLE 0 12 higher in CTRL
© MAP

Fold Change
L
’ |
|

Dispersion

10% Frele] Exons

Junetions 10° 4 9 higher in CASE

1 10 10° 10° 1 10 10° 10°

Wean Normalized Coverage Wean Normalized Coverage

Figure 1: Summary Plots

22

JunctionSeq Package User Manual

6.2 Gene Profile plots

Generally it is desired to print plots for all genes that have one or more splice
junctions with statistically significant differential splice junction usage. By de-
fault, JunctionSeq uses an FDR-adjusted p-value threshold of 0.01.

For each selected gene, the buildAl1Plots function will yield 6 plots:

= genelD-expr.png: Estimates of average coverage count over each feature, for
each value of the biological condition. See Section 6.2.1.

= genelD-expr-TX.png: as above, but with the transcript annotation displayed.

= genelD-normCts.png: Normalized read counts for each sample, colored by
biological condition. See Section 6.2.2.

s genelD-normCts-TX.png: as above, but with the transcript annotation dis-
played.

= genelD-rExpr.png: Expression levels relative to the overall gene-level expres-
sion. See Section 6.2.3.

» genelD-rExpr-TX.png: as above, but with the transcript annotation displayed.

Note: If the writeHTMLresults option is TRUE, JunctionSeq will also generate
an html index file for easy browsing of these output files. By default, if this
option is not deactivated, the 'genelD’ will be replaced with a number to reduce
the length of the filename (some web servers will have issues if image file names
are too long). This behavior can be turned off by setting the minimalImage
Filenames option to FALSE.

23

JunctionSeq Package User Manual

6.2.1 Coverage/Expression Profile Plots

Figure 2 displays the model estimates of the mean normalized exonic-region /splice-
junction coverage counts for each biological condition (in this example: DAY vs
NIGHT). Note that these values are not equal to the simple mean normalized
read counts across all samples. Rather, these estimates are derived from the
GLM parameter estimates (via linear contrasts).

Mean Normalized Coverage (Commd1)

: ” m CASE
w4 ! : m CTRL
. — E10°
: ; : P
o i 3
510° . : s
g] B | B g
) T T —— | ,a
2 ;‘ 3
gz ' @
g E
10 o ®
& 10 6
@
il
@
<
. ; s
L A e S Ry I R Ry
0= T T l l T T 0
E001 Joo4 E002 NO06 NOO7 Joos E003 GENE
e

chri4 ———rrrrrr IRARRERERE IRERRERERR BRI S— LU B e T
107680000 107700000 107720000 107740000 107760000

Figure 2: Feature coverage by biological condition

The plot includes 3 major frames. The top-left frame graphs the expression levels for each
tested splice junction (aka the model estimates for the normalized read-pair counts). On
the top-right is a box containing the estimates for the overall expression of the gene as a
whole (plotted on a distinct y-axis scale). Junctions or exonic regions that are statisically
significant are marked with vertical pink lines, and the significant p-values are displayed
along the top of the plot. The bottom frame is a line drawing of the known exons for the
given gene, as well as all splice junction. Known junctions are drawn with solid lines, novel
junctions are dashed, and "untestable" junctions are drawn in grey. Additionally, statisti-
cally significant loci are colored pink. Between the two frames a set of lines connect the
gene drawing to the expression plots.

There are a few things to note about this plot:

= The y-axis is log-transformed, except for the area between 0 and 1 which
is plotted on a simple linear scale.

JunctionSeq Package User Manual

= In the line drawing at the bottom, the exons and introns are not drawn to a
common scale. The exons are enlarged to improve readability. Each exon
or intron is rescaled proportionately to the square-root of their width,
then the exons are scaled up to take up 30 percent of the horizontal
space. This can be adjusted via the "exon.rescale.factor" parameter (the
default is 0.3), or turned off entirely by setting this parameter to -1.
The proportionality function can also be changed using the exonRescale
Function parameter. For mammalian genomes at least, we have found
square-root-proportional function to be a good trade-off between making
sure that features are distinct while still being able to visually identify
which features are larger or smaller.

= Note that the rightmost junction (J005) is marked as significantly dif-
ferentially used, even though it is NOT differentially expressed. This is
because JunctionSeq does not test for simple differential expression. It
tests for differential splice junction coverage relative to gene-wide ex-
pression. Therefore, if (as in this case) the gene as a whole is strongly
differentially expressed, then a splice junction that is NOT differentially
expressed is the one that is being differentially used.

= Similarly the second junction from the right (N008), which is novel, is
differentially used in the opposite way: while the gene itself is somewhat
differentially expressed (at a fold change of roughly 3-4x overall), this
particular junction has a massive differential, far beyond that found in
the gene as a whole (at 45x fold change). Thus, it is being differentially
used.

JunctionSeq Package User Manual

Figure 3 displays the same information found in Figure 2, except with all known
transcripts plotted beneath the main plot.

Mean Normalized Coverage (Commd1)

, ; 1 B CASE
10° 4 i B CTRL
B . _103
: i »
o PR :
210”3 : =
: g @
5 : [— F10° ©
a i : 4
[: »
5 2
g E
- S
$10 4 B
o L., ©
10 &
?
2
5
2
@
4
[
chr14 ———rrrrrr Aaamzasa RaaaRARLE e AR T
107680000 107700000 107720000 107740000 107760000
HHHHHHHHHHHHHHHHHH o
gy L ey —— .

Figure 3: Feature coverage by biological condition, with annotated transcripts
displayed

This plot is identical to the previous, except all annotated transcripts are displayed below
the standard plot.

JunctionSeq Package User Manual

6.2.2 Normalized Count Plots

Normalized Counts (Commd1)

; S B CASE
10° 4 ; : m CTRL
I—— i L E10°
T3 ; e F
v b {4 z
102 — E e I g
» - t 2
£ St S —— { 5
o _— e N
8 s S ——— ¢ L2 8
ko] | QS Q
[0} H H o
N i)
= ¢
£ i Z
o 1 by
Z10 o H g
: E10 ¢
e
" (0]
i 2
] " @
LI T TT TR R PR PRPPPPRRI R ISPPPRPPPRPRRRRPR e [EEEPRCSISTPPPPPPRI PR [ERTPRRRR +1
% %
0 | | | 0
E001 J004 E002 NO06 NOO7 J005 E003 GENE
é
chri4 ———rrrrvr IRARRERERE IRARRERRRE B S— |ILILI I e T
107680000 107700000 107720000 107740000 107760000

Figure 4: Normalized counts for each sample

Figure 4 displays the normalized coverage counts for each sample over each
splice junction or exonic region. This will be identical to the counts displayed
in Section 6.4.1 except that each read count will be normalized by the sample
size factors so that the samples can be compared directly.

27

JunctionSeq Package User Manual

6.2.3 Relative Expression Plots

Relative Coverage (Commd1)

] fr— B CASE
] i ; B CTRL
T] s,
! :
B ! 4
L / ! ,
—_—) E10
102 —_— 3
3 B : 9
H o
(o) . T
2 ; g
) . . |2 @
> ——
3 : F
] (]
2 e
©
& 10 o ' : -.%
ol 1o §
: : ?
H ! —
. . @
e <
a
L R Rt AR I R Ry
\\ \\
0 | | | | | T | 0
E001 J004 E002 N006 N0O7 J005 E003 GENE
é
chri4 ———rrrrvr IRARRERERE IRARRERRRE B S— |ILILI I e T
107680000 107700000 107720000 107740000 107760000

Figure 5: Relative splice junction coverage by biological condition

Figure 5 displays the "relative" coverage for each splice junction or exonic region,
relative to gene-wide expression (which is itself plotted in the right panel).

JunctionSeq is designed to detect differential expression even in the presence of
gene-wide, multi-transcript differential expression. However it can be difficult
to visually assess differential usage on differentially exprssed genes. This plot
displays the coverage relative to the gene-wide expression. These estimates are
derived from the GLM parameter estimates (via linear contrasts). The reported
"fold changes" are ratios of these relative expression estimates.

28

JunctionSeq Package User Manual

6.3

Generating Genome Browser Tracks

Once potential genes of interest have been identified via JunctionSeq, it can
be helpful to examine these genes manually on a genome browser (such as the
UCSC genome browser or the IGV browser). This can assist in the identifica-
tion of potential sources of artifacts or errors (such as repetitive regions or the
presence of unannotated overlapping features) that may underlie false discov-
eries. To this end, the QoRTs [4] and JunctionSeq software packages include
a number of tools designed to assist in generating simple and powerful browser
tracks designed to aid in the interpretation of the data and results.

Scale 50 kb | ma
chri4: 103,600,000 103,550,000‘
RefSeq Genes
Commd1 k] |
Zrsr1 [
664.669 _ Forward-strand Multiwig Example
FWD_Multiwig
o_
0_ Reverse-strand Multiwig Example
TYTYT YTy “ T
REV_Multiwig
-434.127 _

JunctionSeq Splice-Locus Coverage Depth by Group, All Genes (testallGenes.coverage.bb)
DAY:J005(98.7) 2 |
NIGHT: J005(360.2) 3 !
DAY:N008(59.0) hcecececeseq
NIGHT:N008(267.0) h<<ectesss<e
DAY:NO09(1.3) hs<gscess<<<]
NIGHT:N009(58.0) h<s—<ssss<<<<<]
DAY:J007(45.3) |
NIGHT:J007(60.8) |
JunctionSeq Significant Splice Junctions, p < 0.05 (testsigGenes.pvalues.bb)
NO09(0.0000) H&<et<<<<]
J007(0.0001) 1

Figure 6: An example of the browser tracks that can be generated using QoRTs
and JunctionSeq

The top two "MultiWig" tracks display the mean normalized coverage for 100-base-pair
windows across the genome, by biological group (DAY or NIGHT). The top track displays
the coverage across the forward (genomic) strand, and the second track displays the cov-
erage across the reverse strand. In both tracks the mean normalized coverage depth across
the three NIGHT samples is displayed in blue and the mean normalized coverage depth
across the three DAY samples is displayed in red. The overlap is colored black. The third
track displays the mean normalized coverage across all testable splice junction loci for each
biological condition. Each junction is labelled with the condition ID (DAY or NIGHT), the
splice junction ID (J for annotated, N for novel), followed by the mean normalized coverage
across that junction and biological condition, in parentheses. Once again, DAY samples are
displayed in red and NIGHT samples are displayed in blue. The final bottom track displays
the splice junctions that exhibit statistically significant differential usage. Each junction is
labelled with the splice junction ID and the p-value. These images were produced by the
UCSC genome browser, and a browser session containing these tracks in this configuration
is available online here

29

https://genome.ucsc.edu/
https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=JunctionSeqExample_Full

JunctionSeq Package User Manual

6.3.1

Advanced tracks like those displayed in Figure 6 can be used to visualize the data
and can aid in determining the form of regulatory activity that underlies any
apparent differential splice junction usage. The wiggle files needed to produce
such tracks can be generated via QoRTs and JunctionSeq. Configuring the
multi-colored "MultiWig" tracks in the UCSC browser require the use of track
hubs, the configuration of which is beyond the scope of this manual. More
information on track hubs can be found on the UCSC browser documentation.

Wiggle Tracks

Both IGV and the UCSC browser can display "wiggle" tracks, which can be used
to display coverage depth across the genome. QoRTs [4] includes functions for
generating these wiggle files for each sample/replicate, merging across technical
replicates, and computing mean normalized coverages across multiple samples
for each biological condition.

Scale 50 kb{ { ma
chri4: 103,600,000 103,650,000‘
RefSeq Genes
Commd1 [k 4
Zrsr1 .
23.17 _ Coverage Depth, Replicate SHAM1_RG1, Fwd-strand (SHAM1_RG1.QC.wiggle.fwd.bw)
SHAM1_RG1.QC.wiggle.fwd.bw
0_ N
-0_ Coverage Depth, Replicate SHAM1_RG1, Rev-strand (SHAM1_RG1.QC.wiggle.rev.bw)
T | 1T

|

SHAM1_RG1.QC.wiggle.rev.bw

-38.28 _

Figure 7: Two "wiggle" tracks displaying the forward- and reverse-strand cover-

age for replicate SHAM1_RG1

These tracks display the read-pair mean coverage depth for each 100-base-pair window
across the whole genome. The reverse strand is displayed as negative values. These tracks
have been loaded into the UCSC genome browser, and a browser session containing these

tracks in this configuration is available online here

Figure 7 shows an example pair of "wiggle" files produced by QoRTs for replicate
SHAM1_RG1. QoRTs includes two ways to generate such wiggle files from a
sam/bam file:

The first way is to create these files at the same time as the read counts. To
do this, simply add the "—chromSizes" parameter like so:

java -jar /path/to/jarfile/QoRTs.jar \
--stranded \
--chromSizes inputData/annoFiles/chrom.sizes \
inputData/bamFiles/SHAM1_RG1l.chrl4.bam \
inputData/annoFiles/rn4.anno.chrl4.gtf.gz \

30

https://genome.ucsc.edu/goldenPath/help/hgTrackHubHelp.html
https://genome.ucsc.edu/goldenPath/help/hgTrackHubHelp.html
https://genome.ucsc.edu/goldenPath/help/hgTrackHubHelp.html
https://genome.ucsc.edu/
https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=JunctionSeqExample_SHAM1_RG1wiggle

JunctionSeq Package User Manual

outputData/qortsData/SHAM1_RG1l/

By default this will cause QoRTs to generate the wiggle file(s) for this sample.
Note that if the —runFunctions parameter is being included, you must also
include in the function list the function "makeWiggles". Note that if the data
is stranded (as in the example dataset), then two wiggle files will be generated,

one for each strand.

Alternatively, the wiggle file(s) can be generated manually using the command:

java -jar /path/to/jarfile/QoRTs.jar \
bamToWiggle \
--stranded \
--negativeReverseStrand \
--includeTrackDefLine \
inputData/bamFiles/SHAM1_RGl.chrl4.bam \
SHAM1_RG1 \
inputData/annoFiles/rn4.chrl4.chrom.sizes \
outputData/qortsData/SHAM1_RG1/QC.wiggle

If this step is performed prior to merging technical replicates (see Section 4.2),
and if the standard file-name conventions are followed (as displayed in the ex-
amples above), then the technical-replicate wiggle files will automatically be
merged along with the other count information in by the QoRTs technical repli-

cate merge utility.

31

JunctionSeq Package User Manual

6.3.2 Merging Wiggle Tracks

Scale 50 I\bi } m4
chrid: 103,600,000 103,650,000|
RefSeq Genes
Commd1 # { }
Zrst1 .
48.6332 _ Mean Normalized Coverage Depth, Day/Fwd-strand (DAY fwd.bw)
DAY fwd.bw
o_ R
-0_ Mean Normalized Coverage Depth, Day/Rev-strand (DAY.rev.bw)

DAY rev.bw

-116.148 _

Figure 8: Two "wiggle" tracks displaying the forward- and reverse-strand cover-
age for the three "DAY" samples

These tracks display the mean normalized read-pair coverage depth for each 100-base-

pair window across the whole genome. The reverse strand is displayed as negative values.
These tracks have been loaded into the UCSC genome browser, and a browser session con-

taining these tracks in this configuration is available online here.

QoRTs [4] can generate wiggle files containing mean normalized coverage counts
across a group of samples, as shown in Figure 8. These can be generated using
the command:

java -jar /path/to/jarfile/QoRTs.jar \
mergeWig \
--calcMean \
--trackTitle DAY_FWD \
--infilePrefix outputData/countTables/ \
--infileSuffix /QC.wiggle.fwd.wig.gz \
--sizeFactorFile sizeFactors.GEO.txt \
--sampleList SHAM1,SHAM2,SHAM3 \
outputData/DAY.fwd.wig.gz

The "—sampleList" parameter can also accept data from standard input ("-"),
or a text file (which must end ".txt") containing a list of sample ID's, one on
each line.

32

https://genome.ucsc.edu/
https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=JunctionSeqExample_DAYwiggle

JunctionSeq Package User Manual

6.3.3 Splice Junction Tracks

Scale 50 I\bi } m4
chrid: 103,600,000 103,650,000|
RefSeq Genes
Commd1

-

Zrst1 .
JunctionSeq Splice-Locus Coverage Depth by Group, All Genes (testallGenes.coverage.bb)

DAY:J005(38.7) K
NIGHT:J005(360.2) K {
DAY:N008(59.0
NIGHT:N008(267.0
DAY:N009(1.3
NIGHT:N009(58.0
DAY:J007(45.3) +
NIGHT: J007(60.8) |
JunctionSeq Significant Splice Junctions, p < 0.05 (testsigGenes.pvalues.bb)
NO009(0.0000) H<<<<<<<<<<
J007(0.0001) ¢

R e |
R e |
gttt
[

Figure 9: The first track displays the mean-normalized coverage for each splice
junction for DAY (blue) and NIGHT (red) conditions

Each splice junction is marked with the condition ID (DAY or NIGHT), followed by

the splice junction ID (J for annotated, N for novel), followed by the mean normalized
read count in parentheses. The second track displays the splice junctions that display
statistically-significant differential usage, along with the junction ID and the adjusted p-
value in parentheses (rounded to 4 digits). This track has been loaded into the UCSC
genome browser, and a browser session containing these tracks in this configuration is
available online here.

Splice Junction Tracks are generated automatically by the writeCompleteResults
function, assuming the write.bedTracks parameter has not been set to FALSE.
By default, five bed tracks are generated:

= allGenes.junctionCoverage.bed.gz: A track that lists the mean normalized read
(or read-pair) coverage for each splice junction and for each biological condi-
tion. These are not equal to the actual mean normalized counts, rather these
are derived from the parameter estimates.

= sigGenes.junctionCoverage.bed.gz: |dentical to the previous, but only for genes
with statistically significant features.

= allGenes.exonCoverage.bed.gz: Similar to the Junction Coverage plots, but
displaying coverage across exonic regions.

= sigGenes.exonCoverage.bed.gz: ldentical to the previous, but only for genes
with statistically significant features.

= sigGenes.pvalues.bed.gz: This track displays all statistically-significant loci
(both exonic regions and splice junctions), with the adjusted p-value listed
in parentheses.

These five files can be generated via the writeCompleteResults command (see
Section 5.3)

Individual-sample or individual-replicate junction coverage tracks can also be
generated via QoRTs. See the QoRTs [4] documentation available online.

https://genome.ucsc.edu/
https://genome.ucsc.edu/
https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=stephen.hartley&hgS_otherUserSessionName=JunctionSeqExample_BEDs
http://hartleys.github.io/QoRTs/index.html

JunctionSeq Package User Manual

6.4 Additional Plotting Options

6.4.1 Raw Count Plots

Raw expression plots can be added using the command:

buildAllPlots(jscs=jscs,

outfile.prefix = "./plots2/",
use.plotting.device = "png",

FDR.threshold = 0.01,

expr.plot = FALSE, normCounts.plot = FALSE,
rExpr.plot = FALSE, rawCounts.plot = TRUE

);

Raw Counts (Commd1)

W CASE
m CTRL

| Il

I]

peay mey

Y e 10

e

S

[{ i g
3 H

3 { i

4

F

4

iy
3
[9AST-0U99 'SunoD

T T T T T T T
E001 J004 E002 Noo6 NOO7 J005 E003 GENE

o W

T T T T T
107680000 107700000 107720000 107740000 107760000

Figure 10: Raw counts for each sample

Figure 10 displays the raw (un-normalized) coverage counts for each sample
over each splice junction or exonic region. This is equal to the number of reads
(or read-pairs, for paired-end data) that bridge each junction. Note that these
counts are not normalized, and are generally not directly comparable. Note that
by default this plot is NOT generated by buildAl1Plots. Generation of these
plots must be turned on by adding the parameter: "rawCounts.plot=TRUE".

34

JunctionSeq Package User Manual

6.4.2 Additional Optional Parameters

By setting the plot.exon.results and plot.junction.results parameters to
FALSE, we can exclude exons or junctions from the plots, respectively. There are
numerous other options that can be used to generate plots either individually
or in groups.

Just a few examples:

#Make a battery of exon-only plots for one gene only:
buildAllPlotsForGene(jscs=jscs, geneID = "ENSRNOGOOOOO0O0O9281",
outfile.prefix = "./plots/",
use.plotting.device = "png",
colorRed.FDR.threshold = 0.01,
#Limit plotting to exons only:
plot.junction.results = FALSE,
#Change the fill color of significant exons:
colorList = 1ist(SIG.FEATURE.FILL.COLOR = "red"),
0

#Make a set of Junction-Only Plots for a specific list of interesting genes:
buildAl1Plots(jscs=jscs,

gene.list = c("ENSRNOGOOO00009281"),

outfile.prefix = "./plotsJCT/",

use.plotting.device = "png",

FDR.threshold = 0.01,

#Do not graph exonic regions:
plot.exon.results = FALSE,
)i

Warning in dir.create(outfile.prefix): ’.\plots’ already exists

See Figure 11 and Figure 12.
For more information, use the help documentation:

help(buildAllPlots);
help(buildAllPlotsForGene);
help(plotJunctionSeqResultsForGene);

35

JunctionSeq Package User Manual

Mean Normalized Coverage (Commd1)

s S B CASE

10° . | B CTRL
E10°

210 3 r
E -
&
B £10°
o F
[F
£ F
S [
< L
g 10 o
14 10

L (Gt I I Ry

oLt I o

E001

<]

chr14 T T T[T T T T T T T T T T T T T T

T
107680000 107700000 107720000 107740000 107760000

ENSRNOT00000012750

Figure 11: Exon expression plots
Note the altered fill color of the significant exon.

|one-auas) ‘s|dweg Jad slled-peay

36

JunctionSeq Package User Manual

Mean Normalized Coverage (Commd1)

B CASE
B CTRL

Q

™

1
T T

=

o

w

10

Read-Pairs per Sample

|one-auas) ‘s|dweg Jad slled-peay

chri4 ———rrrrr IRARRERERE) IRERRERRRR LI e LN B T
107680000 107700000 107720000 107740000 107760000

ENSRNOT00000012750

Figure 12: Splice Junction expression plots

Statistical Methodology

7.1

The statistical methods are based on those described in (S. Anders et al., 2012),
as implemented in the DEXSeq Bioconductor package. However these methods
have been expanded, adapted, and altered in a number of ways in order to
accurately and efficiently test for differential junction usage.

Preliminary Definitions

The methods used to generate exonic segment counting bins is idential to the
methods used in DEXSeq. Briefly: for each gene the set of all transcripts are
combined and exons are broken up into mutually-exclusive sub-segments.

Using the transcript annotation we generate a list of "features" for each gene.
These features include all the mutually-exclusive exonic segments, along with all
the splice junctions (both annotated splice junctions and novel splice junctions
that pass the coverage thresholds).

37

JunctionSeq Package User Manual

7.2

For each sample i and feature 7 on gene g we define the counts:

k;fat““e = # reads/pairs covering feature j in sample i 1a]
and
k:gf”e = # reads/pairs covering gene g in sample i 1b]

Reads are counted towards an exonic segment feature if they overlap with any
portion of that exonic segment. Reads are counted towards a splice junction
feature if they map across the splice junction. Paired-end reads in which the
two mates lie on opposite sides of a junction are NOT counted, as the specific
splice junction between them cannot be reliably identified.

The count kgf”e is calculated using the same methods already in general use for
gene-level differential expression analysis (using the "union" rule). Briefly: any
reads or read-pairs that cover any part of any of the exons of any one unique
gene are counted towards that gene. Purely-intronic reads are ignored.

It should be noted that the QoRTs script that produces the exonic segments
differs slightly in its output from the DEXSeq script prepare_annotation.py.
This is because the DEXSeq script uses unordered data structures and thus
the order in which elements appear is not defined. Additionally, for unstranded
data QoRTs version operates in a slightly-different "unstranded" mode, in which
genes that overlap across opposite strands are counted as overlapping.

Model Framework

Each feature is fitted to a separate statistical model. For a given feature j
located on gene g, we define two counting bins: covering the feature j, and
covering the gene g, but NOT covering the feature j. Thus we define y1; and
Yyo; for each sample i € {1,2,...,n}:

Feature
Y = kj; 2a
and
_ 1.Gene Feature
Yoi = kgi - kji Eﬂ

Thus, yy; is simply equal to the number of reads covering the feature in sample
i, and yo; is equal to the number of reads covering the gene but NOT covering
the feature.

Note that while JunctionSeq generally uses methods similar to those used by
DEXSeq, this framework differs from that used by DEXSeq on exon counting
bins.

38

JunctionSeq Package User Manual

7.3

In the framework used by DEXSeq, the feature count (i.e. kfs2*™) is compared
with the sum of all other feature counts for the given gene. This means that
some reads may be counted more than once if they span multiple features.
When reads are relatively short (as was typical when DEXSeq was designed)
this effect is minimal, but it becomes more problematic as reads become longer.
This problem is also exacerbated in genes with a large number of features in
close succession. Under our framework, no read-pair is ever counted more than
once in a given model.

As in DEXSeq, we assume that the count y,; is a realization of a negative-
binomial random variable Y};:

Yy ~ NegBin(mean = s; 1, dispersion = «;) 3

Where «; is the dispersion parameter for the current splice junction j, s; is the
normalization size factor for each sample ¢, and p,; is the mean for sample ¢ and
counting-bin b. Size factors s; are estimated using the "geometric" normaliza-
tion method, which is the default method used by DESeq, DESeq2, DEXSeq,
and CuffDiff. Unlike with DEXSeq, these size factors are calculated using the
gene-level counts kng”e, and thus does not implicitly assign excess weight to
genes with a large number of features.

Dispersion Estimation

In many high-throughput sequencing experiments there are too few replicates
to directly estimate the locus-specific dispersion term «; for each splice junction
j. This problem is well-characterized, and a number of different solutions have
been proposed, the vast majority of which involve sharing information between
loci across the genome. By default JunctionSeq uses the exact same method for
dispersion estimation used by the more recent versions of the DEXSeq package
(v1.14.0 and above) and by the DESeq2 package. This method is described at
length in the DESeq2 methods paper [2].

Briefly: "feature-specific" estimates of dispersion are generated via a Cox-Reid
adjusted-log-likelihood-based method, and these dispersions are fitted to a para-
metric trend. These "fitted" and "feature-specific" estimates of dispersion are
combined, and we use the maximum a posteriori estimate as the final dispersion
for each feature.

It is currently unclear whether splice junction loci and exonic segment loci can
be reasonably expected to follow the same trend for dispersion. By default
JunctionSeq fits the two types of features separately. For most datasets the
difference appears to be negligible.

39

JunctionSeq Package User Manual

7.4

JunctionSeq offers a number of alternatives to this methodology, and can cal-
culate dispersions using the methods of older versios of DEXSeq (v1.8.0 and
earlier). See Section 8 for more information.

Hypothesis Testing

Other than our use of overall-gene counts and our use of splice junction counts,
the methods used in the hypothesis test are identical to those used by the more
recent versions of DEXSeq (v1.12.0 and higher).

"Differential usage" is not in and of itself a biological process. Rather, it is
a symptom of transcript-specific differential regulation, which can take many
forms.

Put simply: we are attempting to test whether the fold-change for the biological
condition across feature j is the same as the fold-change for the biological
condition across the gene g as a whole.

This can occur both with and without overall gene-level differential expression.
Some features marked as "differentially used" might show a strong differential
and be part of a gene that is not, as a whole, differentially expressed. Alter-
natively, a feature might be marked as "differentially used" if it displays flat
expression but is part of a gene that otherwise shows extreme differentials. In
both cases, the feature does not show the same pattern of expression relative
to the gene as a whole. Thus, some form of transcript-specific differential
regulation must be taking place.

In statistical terms: we are attempting to detect "interaction" between the
counting-bin variable B and the experimental-condition variable C. Thus, two
models are fitted to the mean u;:

Ho: log(uy) =B+ B2+ p°
Hy o logluw) =B+ BE+ 87 + 57

G B

Where p; is the biological condition (eg case/control status) of sample j.

Note that the bin-condition interaction term (3¢5

Pib) is included, but the con-
dition main-effect term (pc;) is absent. This term can be omitted is because
JunctionSeq is not designed to detect or assess gene-level differential expres-
sion. Thus there are two components that can be treated as "noise": variation
in junction-level expression and variation in gene-level expression. As proposed
by Anders et. al., we use a main-effects term for the sample ID (537), which

subsumes the condition main-effect term. This subsumes both the differential

40

JunctionSeq Package User Manual

7.5

trends and the random variations (noise) in the gene-level expression, improving
the power towards detecting differential interaction between the count-bin term
and the experimental-condition term.

These models can easily be extended to include confounding variables: For
confounding variable 7, define the value of 7 for each sample i as 7;. Then we
can define our null and alternative hypotheses:

Hy : log () = B+ By + B + 7:55 52
H : log(p) = B+ By + 67 + BLY + By Sb

Parameter Estimation

While the described statistical model is robust, efficient, and powerful, it cannot
be used to effectively estimate the size of the differential effect or to produce
informative parameter estimates.

For the purposes of estimating expression levels and the strength of differential
effects, we create an entirely separate set of generalized linear models. For
the purposes of hypothesis testing this model would be less powerful than the
model used in section 7.4, but has the advantage of producing more intuitive
and interpretable parameter estimates and fitted values. As before, we generate
one set of generalized linear models per splice junction locus:

Hp log(ui) = B+ BY + BS + B 6]

These models appear similar to the models used for parameter estimation used
by DEXSeq, however they differ considerably in that JunctionSeq models each
feature separately, rather than attempting to include all features for a given
gene in a single model. This "big model" method was originally used for both
hypothesis tests and parameter estimation in DEXSeq, but later versions only
use this framework for parameter estimation, as the "big model" was found to
be less efficient and less consistent. This "big model" methodology also has
a number of other weaknesses, including over-weighting of loci with a large
number of alternative exonic regions. Reads covering such regions will be "dou-
ble counted" several times over as they cover multiple regions. For all intents
and purposes, DEXSeq counts such double counts as independent observations.
JunctionSeq does not count any read or read-pair more than once in any model
(unless alternative methodologies are selected, see Section 8).

Using linear contrasts, the parameter estimates 3, (37, g, and Bgf can be

used to calculate estimates of the effect size (fold change), as well as the mean
normalized coverage over the sfeature for each condition. Additionally, the

41

JunctionSeq Package User Manual

"relative" expression levels can be calculated for each condition, which indicates
the expression of the splice junction, normalized relative to the overall gene-wide
expression (which may be differentially expressed).

This model can be extended to include confounding variables in a manner similar
to how the hypothesis test models can be extended (as in Equation 5).

Hp: log(u) =B+ B2 + BS + 78 + S8

For Advanced Users: Optional Alternative
Methodologies

Since development began on JunctionSeq, a number of new methods have been
developed for modelling expression in RNA-Seq data. Many of these more-
advanced methods have been integrated into JunctionSeq. However, some
advanced users with strong statistical backgrounds may prefer the older, more
proven methods. Thus, the legacy methods are still optionally available to
JunctionSeq users.

In addition, JunctionSeq includes a number of small methodological changes
relative to the DEXSeq software upon which it was based. Any or all of these
changes can be reverted as well, if desired.

All of these optional alternatives can be selected using the "method" parameters
passed to runJunctionSegAnalyses and its sub-functions (see Section 5.2).
These optional parameters are:

Additionally, there are a number of options that alter the fundamental method-
ology to be used. In general the defaults are sufficient, but advanced users may
prefer alternative methods.

= method.GLM The default is "advanced" or, equivalently, "DESeq2-style".
This uses the dispersion estimation methodology used by DESeq2 and
DEXSeq v1.12.0 or higher to generate the initial (feature-specific) disper-
sion estimates. The alternative method is "simpleML" or, equivalently,
"DEXSeq-v1.8.0-style". This uses a simpler maximum-likelihood-based
method used by the original DESeq and by DEXSeq v1.8.0 or less.

= method.dispFit Determines the method used to generated "fitted" dis-
persion estimates. One of "parametric" (the default), "local", or "mean".
See the DESeq2 documentation for more information.

42

JunctionSeq Package User Manual

= method.dispFinal Determines the method used to arrive at a "final"
dispersion estimate. The default, "shrink" uses the maximum a posteriori
estimate, combining information from both the fitted and feature-specific
dispersion estimates. This is the method used by DESeq2 and DEXSeq
v1.12.0 and above.

= method.sizeFactors Determines the method used to calculate normal-
ization size factors. By default JunctionSeq uses gene-level expression.
As an alternative, feature-level counts can be used as they are in DEXSeq.
In practice the difference is almost always negligible.

= method.countVectors Determines the type of count vectors to be used
in the model framework. By default JunctionSeq compares the counts for
a specific feature against the counts across the rest of the gene minus the
counts for the specific feature. Alternatively, the sum of all other features
on the gene can be used, like in DEXSeq. The advantage to the default
JunctionSeq behavior is that no read or read-pair is ever counted more
than once in any model. Under DEXSeq, some reads may cover many
exonic segments and thus be counted repeatedly.

= method.expressionEstimation Determines the methodology used to gen-
erate feature expression estimates and relative fold changes. By de-
fault each feature is modeled separately. Under the default count-vector
method, this means that the resultant relative fold changes will be a mea-
sure of the relative fold change between the feature and the gene as a
whole.

Alternatively, the "feature-vs-otherFeatures" method builds a large, com-
plex model containing all features belonging to the gene. The coefficients
for each feature are then "balanced" using linear contrasts weighted by
the inverse of their variance. In general we have found this method to
produce very similar results but less efficiently and less consistently. Ad-
ditionally, this alternative method "multi-counts" reads that cover more
than one feature. This can result in over-weighting of exonic regions with
a large number of annotated variations in a small genomic area, as each
individual read or read-pair may be counted many times in the model.

Under the default option, no read or read-pair is ever counted more than
once in a given model.

» fitDispersionsForExonsAndJunctionsSeparately When running a junctionsAndExons-
type analysis in which both exons and splice junctions are being tested
simultaniously, this parameter determines whether a single fitted disper-
sion model should be fitted for both exons and splice junctions, or if
separate fitted dispersions should be calculated for each. By default the
dispersion fits are run separately.

43

JunctionSeq Package User Manual

8.1

Replicating DEXSeq Analysis via JunctionSeq

Using the alternative methods options described in Section 8, it is possible to
run a standard DEXSeq analysis in JunctionSeq, replicating precisely the output
that would be produced by DEXSeq on the given dataset.

jscs.DEX <- runJunctionSegAnalyses(sample.files = countFiles,
sample.names = decoder$sample.ID,
condition = factor(decoder$group.ID),
flat.gff.file = gff.file,
nCores = 1,
analysis.type = "exonsOnly",
method.countVectors = "sumOfAllBinsForGene",
method.sizeFactors = "byCountbins",

method.expressionEstimation = "feature-vs-otherFeatures",

meanCountTestableThreshold = "auto",
use.multigene.aggregates = TRUE,
method.cooksFilter = TRUE,
optimizeFilteringForAlpha = 0.1

);

Output files and plotting can be generated using the normal syntax.

writeCompleteResults(jscs.DEX,
outfile.prefix="./testDEX",
save.jscs = TRUE
);
buildAl1Plots(jscs=jscs.DEX,
outfile.prefix = "./plotsDEX/",
use.plotting.device = "png",
FDR.threshold = 0.01
)

Note that these will be formatted and organized in the JunctionSeq style, in-
cluding the numerous improvements to the plots, along with the browser tracks
designed for use with IGC or the UCSC genome browser.

Using the above method, we can precisely reproduce the exact analyses that
would be generated by the following commands in DEXSeq v1.12.1:

library("DEXSeq");
countFiles.dexseq <- system.file(paste0("extdata/cts/",
decoder$sample.ID,

44

JunctionSeq Package User Manual

8.2

"/QC.exonCounts.formatted. for.DEXSeq.txt.gz"),
package="JctSegData", mustWork=TRUE);
gff.dexseq <- system.file("extdata/annoFiles/DEXSeq.flat.gff.gz",
package="JctSegData", mustWork=TRUE);
dxd <- DEXSegDataSetFromHTSeq/(
countFiles.dexseq,
sampleData = design,
design = ~sample + exon + condition:exon,
flattenedfile = gff.dexseq
);
dxd <- estimateSizeFactors(dxd);
dxd <- estimateDispersions(dxd);
dxd <- testForDEU(dxd);
dxd <- estimateExonFoldChanges(dxd, fitExpToVar = "condition");
dxr <- results(dxd);
write.table(dxr,file="dxr.out.txt");

These options allow standard DEXSeq methods to be applied while still provid-
ing access to the improved output plots and tables generated by JunctionSeq.

Also note: the above analyses use the DEXSeg-formatted counts generated by
QoRTs [4]. The python scripts provided with DEXSeq produce very similar
counts, but with a few very minor differences. Firstly: some elements will
appear in a different order, as DEXSeq uses unsorted collections and thus the
ordering cannot be externally reproduced. This includes the ordering of gene
names in "aggregate genes", and the ordering of transcripts in the flattened gff
file.

Additionally, for un-stranded data DEXSeq does not "flatten" genes that appear
in overlapping regions on opposite strands. This only affects a very small number
of genes, but can produce unusual results under these rare circumstances, and
thus has not been reproduced. For un-stranded data QoRTs aggregates any
genes that overlap on opposite strands.

Advanced generalized linear modelling

Since JunctionSeq uses generalized linear modelling, the experimental condition
variable need not have only two values. Any categorical variable will do. For
example:

threeLevelVariable <- c("GroupA","GroupA",
"GroupB", "GroupB",

45

JunctionSeq Package User Manual

"GroupC", "GroupC");

We can then carry out analysis normally:

jscs <- runJunctionSegAnalyses(sample.files = countFiles,
sample.names = decoder$sample.ID,
condition=factor(threelLevelVariable),

flat.gff.file = gff.file,
nCores = 1,
analysis.type = "junctionsAndExons"

);

Similarly, we could theoretically add additional covariates to our analysis. Note
that it is vitally important that every class have replicates, or else JunctionSeq
will be unable to accurately assess the biological variance. As a result, any
analysis involving covariates should have at least 8 samples.

#Artificially adding additional samples by using two of the samples twice:
(Note: this is purely for use as an example. Never do this.)
countFiles.8 <- c(countFiles, countFiles[3],countFiles[6]);
#Make up some sample names, conditions, and covariates for these samples:
decoder.8 <- data.frame(

sample.names = factor(paste0®("SAMP",1:8)),

condition = factor(rep(c("CASE","CTRL"),each=4)),

smokeStatus = factor(rep(c("Smoker", "Nonsmoker"),4))
)
print(decoder.8);

sample.names condition smokeStatus

1 SAMP1 CASE Smoker
2 SAMP2 CASE Nonsmoker
3 SAMP3 CASE Smoker
4 SAMP4 CASE Nonsmoker
5 SAMP5 CTRL Smoker
6 SAMP6 CTRL Nonsmoker
7 SAMP7 CTRL Smoker
8 SAMP8 CTRL Nonsmoker

To include covariates in the analysis, you will need to modify the various model
formulae used by JunctionSeq:

jscs <- runJunctionSegAnalyses(sample.files = countFiles.8,
sample.names = decoder.8%sample.names,

46

JunctionSeq Package User Manual

test.formula0
test.formulal
effect.formula

condition= decoder.8%condition,
use.covars = decoder.8[, "smokeStatus",drop=F],
flat.gff.file = gff.file,
nCores = 1,
analysis.type = "junctionsAndExons",
sample + countbin + smokeStatus : countbin,

1l
1

]
1

condition + smokeStatus + countbin +
smokeStatus : countbin + condition : countbin,

1
l

genelLevel.formula = ~ smokeStatus + condition

);

Warning: multivariate analysis using GLMs is an advanced task, and Junction-
Seq modelling is already fairly complex. Multivariate GLMs are intended for use
by advanced users only. It's quite easy to misunderstand what the models are
doing, to do something wrong, or to misinterpret the results.

References

[1]

2]

3]

[4]

Simon Anders, Alejandro Reyes, and Wolfgang Huber. Detecting
differential usage of exons from RNA-seq data. Genome Research,
22:2008, 2012. doi:10.1101/gr.133744.111.

Simon Anders Michael | Love, Wolfgang Huber. Moderated estimation of
fold change and dispersion for rna-seq data with deseq2. Genome Biology,
15:550, 2014. URL: http://www.genomebiology.com /content/15/12/550.

Mark D. Robinson and Gordon K. Smyth. Moderated statistical tests for
assessing differences in tag abundance. Bioinformatics, 23:2881, 2007.
URL: http:
//bioinformatics.oxfordjournals.org/cgi/content/abstract/23/21/2881,
arXiv:http:
//bioinformatics.oxfordjournals.org/cgi/reprint/23/21/2881.pdf
doi:10.1093/bioinformatics/btm453.

Stephen W Hartley and James C Mullikin. Qorts: a comprehensive toolset
for quality control and data processing of rna-seq experiments. BMC
bioinformatics, 16(1):224, 2015. URL:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506620/.

sample + countbin + smokeStatus : countbin + condition :

countbin,

47

http://dx.doi.org/10.1101/gr.133744.111
http://www.genomebiology.com/content/15/12/550
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/21/2881
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/21/2881
http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/cgi/reprint/23/21/2881.pdf
http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/cgi/reprint/23/21/2881.pdf
http://dx.doi.org/10.1093/bioinformatics/btm453
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506620/

JunctionSeq Package User Manual

[5] Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris
Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R.
Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics,
29(1):15-21, 2013. URL:
http://bioinformatics.oxfordjournals.org/content/29/1/15.abstract,
arXiv:http://bioinformatics.oxfordjournals.org/content/29/1/15.
full.pdf+html, doi:10.1093/bioinformatics/bts635.

[6] Thomas D. Wu and Serban Nacu. Fast and SNP-tolerant detection of
complex variants and splicing in short reads. Bioinformatics,
26(7):873-881, 2010. URL:
http://bioinformatics.oxfordjournals.org/content/26 /7 /873.abstract,
arXiv:http://bioinformatics.oxfordjournals.org/content/26/7/
873.full.pdf+html, doi:10.1093/bioinformatics/btq057.

[7] Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley,
and Steven Salzberg. Tophat2: accurate alignment of transcriptomes in
the presence of insertions, deletions and gene fusions. Genome Biology,
14(4):R36, 2013. URL: http://genomebiology.com /2013 /14 /4 /R36,
doi:10.1186/gb-2013-14-4-r36.

[8] Stephen W Hartley, Steven L Coon, Luis E Savastano, James C Mullikin,
Cong Fu, David C Klein, and NISC Comparative Sequencing Program.
Neurotranscriptomics: The effects of neonatal stimulus deprivation on the
rat pineal transcriptome. PloS ONE, 10(9), 2015. URL:
http://dx.plos.org/10.1371 /journal.pone.0137548.

9 Session Information

The session information records the versions of all the packages used in the
generation of the present document.

sessionInfo()

R Under development (unstable) (2019-11-04 r77367)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)
##

Matrix products: default

##

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

48

http://bioinformatics.oxfordjournals.org/content/29/1/15.abstract
http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/content/29/1/15.full.pdf+html
http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/content/29/1/15.full.pdf+html
http://dx.doi.org/10.1093/bioinformatics/bts635
http://bioinformatics.oxfordjournals.org/content/26/7/873.abstract
http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/content/26/7/873.full.pdf+html
http://arxiv.org/abs/http://bioinformatics.oxfordjournals.org/content/26/7/873.full.pdf+html
http://dx.doi.org/10.1093/bioinformatics/btq057
http://genomebiology.com/2013/14/4/R36
http://dx.doi.org/10.1186/gb-2013-14-4-r36
http://dx.plos.org/10.1371/journal.pone.0137548

JunctionSeq Package User Manual

[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

##t

attached base packages:

[1] parallel stats4 stats
[8] methods base

##

other attached packages:

[1] JctSegData_1.17.0 JunctionSeq_1.17.0
[3] RcppArmadillo_0.9.800.1.0 Rcpp_1.0.3

[5] SummarizedExperiment_1.17.0 DelayedArray_0.13.0
[7] BiocParallel_1.21.0 matrixStats_0.55.0
[9] Biobase 2.47.0 GenomicRanges_1.39.1
[11] GenomeInfoDb_1.23.0 IRanges_2.21.1

[13] S4Vectors_0.25.0 BiocGenerics_0.33.0
[15] knitr_1.25

##

loaded via a namespace (and not attached):

[1] bit64.0.9-7 splines_4.0.0

[4] assertthat_0.2.1 statmod_1.4.32

[7] BiocManager_1.30.9 latticeExtra_0.6-28
[10] GenomeInfoDbData 1.2.2 yaml_2.2.0

graphics grDevices utils datasets

Formula_1.2-3
highr_0.8
blob_1.2.0
RSQLite_2.1.2

[13] pillar_1.4.2 backports_1.1.5 lattice_0.20-38
[16] glue_1.3.1 digest _0.6.22 RColorBrewer_1.1-2
[19] XVector_0.27.0 checkmate_1.9.4 colorspace_1.4-1
[22] htmltools_0.4.0 Matrix_ 1.2-17 XML _3.98-1.20

[25] DESeq2_1.27.2 pkgconfig_2.0.3 genefilter_1.69.0
[28] zlibbioc_1.33.0 xtable_1.8-4 purrr_0.3.3

[31] scales_1.0.0 annotate _1.65.0 tibble_2.1.3

[34] htmlTable_1.13.2 ggplot2_3.2.1 nnet_7.3-12

[37] lazyeval 0.2.2 survival_3.1-6 magrittr_1.5

[40] crayon_1.3.4 memoise 1.1.0 evaluate _0.14

[43] foreign_0.8-72 tools_4.0.0 data.table_1.12.6
[46] BiocStyle_2.15.0 stringr_1.4.0 locfit_1.5-9.1
[49] munsell_0.5.0 cluster_2.1.0 plotrix_3.7-6

[52] AnnotationDbi_1.49.0 compiler_4.0.0 rlang_0.4.1

[55] grid_4.0.0 RCurl_1.95-4.12 rstudioapi_0.10
[58] htmlwidgets_1.5.1 bitops_1.0-6 base64enc_0.1-3
[61] rmarkdown_1.16 gtable_0.3.0 DBI_1.0.0

[64] R6_2.4.0 gridExtra_2.3 dplyr_0.8.3

[67] zeallot 0.1.0 bit 1.1-14 Hmisc_4.3-0

49

JunctionSeq Package User Manual

10

[70] KernSmooth_2.23-16 stringi 1.4.3 geneplotter_1.65.0
[73] vctrs_0.2.0 rpart_4.1-15 acepack_1.4.1
[76] tidyselect 0.2.5 xfun_0.10

Legal

This software package is licensed under the GNU-GPL v3. A full copy of the
GPL v3 can be found in at inst/doc/gpl.v3.txt

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see http://www.gnu.org/licenses/.

Portions of this software (and this vignette) are "United States Government
Work" under the terms of the United States Copyright Act. It was written as
part of the authors’ official duties for the United States Government and thus
those portions cannot be copyrighted. Those portions of this software are freely
available to the public for use without a copyright notice. Restrictions cannot
be placed on its present or future use.

Although all reasonable efforts have been taken to ensure the accuracy and
reliability of the software and data, the National Human Genome Research
Institute (NHGRI) and the U.S. Government does not and cannot warrant the
performance or results that may be obtained by using this software or data.
NHGRI and the U.S. Government disclaims all warranties as to performance,
merchantability or fitness for any particular purpose.

50

http://www.gnu.org/licenses/

	1 Overview
	2 Requirements
	2.1 Alignment
	2.2 Recommendations

	3 Example Dataset
	4 Preparations
	4.1 Generating raw counts via QoRTs
	4.2 Merging Counts from Technical Replicates (If Needed)
	4.3 (Option 1) Including Only Annotated Splice Junction Loci
	4.4 (Option 2) Including Novel Splice Junction Loci

	5 Differential Usage Analysis via JunctionSeq
	5.1 Simple analysis pipeline
	5.1.1 Exporting size factors (optional)

	5.2 Advanced Analysis Pipeline
	5.3 Extracting test results

	6 Visualization and Interpretation
	6.1 Summary Plots
	6.2 Gene Profile plots
	6.2.1 Coverage/Expression Profile Plots
	6.2.2 Normalized Count Plots
	6.2.3 Relative Expression Plots

	6.3 Generating Genome Browser Tracks
	6.3.1 Wiggle Tracks
	6.3.2 Merging Wiggle Tracks
	6.3.3 Splice Junction Tracks

	6.4 Additional Plotting Options
	6.4.1 Raw Count Plots
	6.4.2 Additional Optional Parameters

	7 Statistical Methodology
	7.1 Preliminary Definitions
	7.2 Model Framework
	7.3 Dispersion Estimation
	7.4 Hypothesis Testing
	7.5 Parameter Estimation

	8 For Advanced Users: Optional Alternative Methodologies
	8.1 Replicating DEXSeq Analysis via JunctionSeq
	8.2 Advanced generalized linear modelling

	9 Session Information
	10 Legal

