The rtracklayer package

Michael Lawrence

July 12, 2013

Contents
1 Introduction 2
2 Gene expression and microRNA target sites 2
2.1 Creating a target site tracko 0. 2
2.1.1 Constructing the GRanges 2
2.1.2 Accessing track informationo 5
2.1.3 Subsetting a GRanges 5
2.1.4 Exporting and importing tracks L. 6
2.2 Viewing the targets in a genome browser 6
2.2.1 Starting asession 7
2.2.2 Laying the track 7
2.2.3 Viewing the track 7
224 Ashortcut 8
2.2.5 Downloading Tracks from your Web Browser 8
2.2.6 Accessing view state Lo 9
3 CPNEL1 expression and HapMap SNPs 10
3.1 Loading and manipulating the track 10
3.2 Browsingthe SNPs 11
3.2.1 Laying a WIG track 11
3.2.2 Plotting the SNP track 12
4 Binding sites for NRSF 12
4.1 Creating the binding site track 12
4.2 Browsing the binding sites oL 13
5 Downloading tracks from UCSC 13
5.1 Example 1: the RepeatMasker Track 13

5.2 Example 2: DNasel hypersensitivity regions in the K562 Cell Line 14
5.3 Discovering Which Tracks and Tables are Available from UCSC . 14

6 Conclusion 15

1 Introduction

The rtracklayer package is an interface (or layer) between R and genome
browsers. Its main purpose is the visualization of genomic annotation tracks,
whether generated through experimental data analysis performed in R or loaded
from an external data source. The features of rtracklayer may be divided
into two categories: 1) the import/export of track data and 2) the control and
querying of external genome browser sessions and views.

There are two basic track data structures in Bioconductor: GRanges, defined
by the GenomicRanges package, and RangedData, a more general data structure
from the IRanges package. For most purposes, GRanges is preferred in the
context of rtracklayer; however, RangedData has some particular use cases.

rtracklayer supports the import and export of tracks from and to files in
various formats, see Section 2.1.4. All positions in a GRanges or RangedData
should be 1-based, as in R itself.

The rtracklayer package currently interfaces with the UCSC web-based
genome browser. Other packages may provide drivers for other genome browsers
through a plugin system. With rtracklayer, the user may start a genome
browser session, create and manipulate genomic views, and import/export tracks
and sequences to and from a browser. Please note that not all features are
necessarily supported by every browser interface.

The rest of this vignette will consist of a number of case studies. First, we
consider an experiment investigating microRNA regulation of gene expression,
where the microRNA target sites are the primary genomic features of interest.

2 Gene expression and microRNA target sites

This section will demonstrate the features of rtracklayer on a microarray
dataset from a larger experiment investigating the regulation of human stem
cell differentiation by microRNAs. The transcriptome of the cells was measured
before and after differentiation by HG-U133plus2 Affymetrix GeneChip arrays.
We begin our demonstration by constructing an annotation dataset from the
experimental data, and then illustrate the use of the genome browser interface
to display interesting genomic regions in the UCSC browser.

2.1 Creating a target site track

For the analysis of the stem cell microarray data, we are interested in the ge-
nomic regions corresponding to differentially expressed genes that are known to
be targeted by a microRNA. We will represent this information as an annotation
track, so that we may view it in the UCSC genome browser.

2.1.1 Constructing the GRanges

In preparation for creating the microRNA target track, we first used limma to
detect the differentially expressed genes in the microarray experiment. The

locations of the microRNA target sites were obtained from MiRBase. The
code below stores information about the target sites on differentially expressed
genes in the data.frame called targets, which can also be obtained by entering
data(targets) when rtracklayer is loaded.

library("humanStemCell")

data(fhesc)

library("genefilter")

filtFhesc <- nsFilter(fhesc)[[1]]

library("limma")

design <- model.matrix(“filtFhesc$Diff)

hesclim <- ImFit(filtFhesc, design)

hesceb <- eBayes(hesclim)

tab <- topTable(hesceb, coef = 2, adjust.method = "BH", n = 7676)
tab2 <- tab[(tab$logFC > 1) & (tab$adj.P.Val < 0.01),]

affyIDs <- tab2$ID

library("microRNA")

data(hsTargets)

library("hgu133plus2.db")

entrezIDs <- mappedRkeys (hgul33plus2ENTREZID [affyIDs])
library("org.Hs.eg.db")

mappedEntrezIDs <- entrezIDs[entrezIDs Jinj, mappedkeys (org.Hs.egENSEMBLTRANS)]
ensemblIDs <- mappedRkeys (org.Hs.egENSEMBLTRANS [mappedEntrezIDs])
targetMatches <- match(ensemblIDs, hsTargets$target, 0)

same as data(targets)

targets <- hsTargets[targetMatches,]

targets$chrom <- paste("chr", targets$chrom, sep = "")

VVVVVVVVVVVVVVVVVVVYVVYV

The following code creates the track from the targets dataset:

library(rtracklayer)

library(GenomicRanges)

call data(targets) if skipping first block
head (targets)

vV VvV Vv VvV

name target chrom start end
32350 hsa-miR-139-3p ENST00000372874 chr20 42681711 42681732
534942 hsa-miR-135a ENST00000336199 chrl 241718191 241718211
534975 hsa-miR-148a ENST00000366540 chrl 241728912 241728933
534987 hsa-miR-505 ENST00000366539 chrl 241733864 241733885
534991 hsa-miR-505 ENST00000263826 chrl 241733864 241733885
699911 hsa-miR-196b ENST00000321955 chrll 89565074 89565096
strand
32350 -
534942 -
534975 -
534987 -

534991 -
699911 +

> targetRanges <- IRanges(targets$start, targets$end)

> targetTrack <- with(targets,

+ GRangesForUCSCGenome ("hg18", chrom, targetRanges, strand,
+ name, target))

The GRangesForUCSCGenome function constructs a GRanges object for the named
genome. The strand information, the name of the microRNA and the Ensembl
ID of the targeted transcript are stored in the GRanges. The chromosome for
each site is passed as the chrom argument. The chromosome names and lengths
for the genome are taken from the UCSC database and stored in the GRanges
along with the genome identifier. We can retrieve them as follows:

> genome (targetTrack)

chril chrl_random chr10 chr10_random chrii
"hgl8" "hg18" "hgl8" "hg18" "hg18"
chrll_random chri2 chr1l3 chri13_random chrid
"hg18" llhglsll llhglsll Ilhglsll llhg18ll
chrl5 chr15_random chrl6 chri16_random chril7
"hg18" "hg18" "hg18" "hg18" "hg18"
chrl17_random chrl8 chr18_random chrl9 chr19_random
"hg18" "hg18" "hg18" "hg18" "hg18"
chr2 chr2_random chr20 chr21 chr21_random
"hg18" "hg18" "hg18" "hg18" "hg18"
chr22 chr22_random chr22_h2_hapl chr3 chr3_random
"hg18" "hg18" "hg18" "hg18" "hg18"
chr4 chr4_random chr5 chrb_random chr5_h2_hapl
"hg18" "hg18" "hg18" "hg18" "hg18"
chr6 chr6_random chr6_cox_hapl chr6_gbl_hap2 chr7
"hg18" "hg18" "hg18" "hg18" "hg18"
chr7_random chr8 chr8_random chr9 chr9_random
"hgl8" "hg18" "hgl8" "hg18" "hg18"
chrM chrX chrX_random chrY
"hg18" llhglsll llhg18" Ilhglsll
> head(seqlengths (targetTrack))
chrl chrl_random chr10 chr10_random chrii
247249719 1663265 135374737 113275 134452384
chrll_random
215294

While this extra information is not strictly needed to upload data to UCSC,
calling GRangesForUCSCGenome is an easy way to formally associate interval data

to a UCSC genome build. This ensures, for example, that the data will always be
uploaded to the correct genome, regardless of browser state. It also immediately
validates whether the intervals fall within the bounds of the genome.

For cases where one is not interacting with the UCSC genome browser, and
in particular when network access is unavailable, the GRangesForBSGenome func-
tion behaves the same, except it finds an installed BSGenome package and loads
it to retrieve the chromosome information.

2.1.2 Accessing track information

The track information is now stored in the R session as a GRanges object. It
holds the chromosme, start, end and strand for each feature, along with any
number of data columns.

The primary feature attributes are the start, end, seqnames and strand.
There are accessors for each of these, named accordingly. For example, the
following code retrieves the chromosome names and then start positions for
each feature in the track.

> head(seqnames (targetTrack))

factor-Rle of length 6 with 3 runs

Lengths: 1 4 1
Values : chr20 chrl chril
Levels(49): chrl chril_random chri10 ... chrX chrX_random chrY

> head(start(targetTrack))

[1] 42681711 241718191 241728912 241733864 241733864 89565074

Exercises
1. Get the strand of each feature in the track
2. Calculate the length of each feature

3. Reconstruct (partially) the targets data.frame

2.1.3 Subsetting a GRanges

It is often helpful to extract subsets from GRanges instances, especially when
uploading to a genome browser. The data can be subset though a matrix-style
syntax by feature and column. The conventional [method is employed for
subsetting, where the first parameter, i, indexes the features and j indexes the
data columns. Both 7 and 7 may contain numeric, logical and character indices,
which behave as expected.

> ## get the first 10 targets
> first10 <- targetTrack[1:10]
> ## get pos strand targets

> posTargets <- targetTrack[strand(targetTrack) == "+"]
> ## get the targets on chrl
> chriTargets <- targetTrack[seqnames(targetTrack) == "chri"]

Exercises

1. Subset the track for all features on the negative strand of chromosome 2.

2.1.4 Exporting and importing tracks

Import and export of GRanges and RangedData instances is supported in the
following formats: Browser Extended Display (BED), versions 1, 2 and 3 of
the General Feature Format (GFF), and Wiggle (WIG). Support for additional
formats may be provided by other packages through a plugin system.

To save the microRNA target track created above in a format understood by
other tools, we could export it as BED. This is done with the export function,
which accepts a filename or any R connection object as its target. If a target
is not given, the serialized string is returned. The desired format is derived,
by default, from the extension of the filename. Use the format parameter to
explicitly specify a format.

> export (targetTrack, "targets.bed")

To read the data back in a future session, we could use the import function.
The source of the data may be given as a connection, a filename or a character
vector containing the data. Like the export function, the format is determined
from the filename, by default.

> restoredTrack <- import("targets.bed", asRangedData = FALSE)

The restoredTrack object is of class GRanges. To obtain a RangedData object
directly upon importing, pass asRangedData = TRUE to import:

> restoredTrack <- import("targets.bed", asRangedData = TRUE)

Exercises
1. Output the track to a file in the “gff” format.
2. Read the track back into R.

3. Export the track as a character vector.

2.2 Viewing the targets in a genome browser

For the next step in our example, we will load the track into a genome browser
for visualization with other genomic annotations. The rtracklayer package is
capable of interfacing with any genome browser for which a driver exists. In this
case, we will interact with the web-based UCSC browser, but the same code
should work for any browser.

2.2.1 Starting a session

The first step towards interfacing with a browser is to start a browser session,
represented in R as a BrowserSession object. A BrowserSession is primarily a
container of tracks and genomic views. The following code creates a BrowserS-
ession for the UCSC browser:

> gsession <- browserSession("UCSC")

Note that the name of any other supported browser could have been given here
instead of “UCSC”. To see the names of supported browsers, enter:

> genomeBrowsers ()

[1] "ucsc"

2.2.2 Laying the track

Before a track can be viewed on the genome, it must be loaded into the session
using the track<- function, as demonstrated below:

> track(session, "targets'") <- targetTrack

The name argument should be a character vector that will help identify the
track within session. Note that the invocation of track<- above does not
specify an upload format. Thus, the default, “auto”, is used. Since the track
does not contain any data values, the track is uploaded as BED. To make this
explicit, we could pass “bed” as the format parameter.

Exercises
1. Lay a track with the first 100 features of targetTrack

Here we use the short-cut $ syntax for storing the track.

2.2.3 Viewing the track

For UCSC, a view roughly corresponds to one tab or window in the web
browser. The target sites are distributed throughout the genome, so we will
only be able to view a few features at a time. In this case, we will view only
the first feature in the track. A convenient way to focus a view on a particular
set of features is to subset the track and pass the range of the subtrack to the
constructor of the view. Below we take a track subset that contains only the
first feature.

> subTargetTrack <- targetTrack[1] # get first feature

Now we call the browserView function to construct the view and pass the
subtrack, zoomed out by a factor of 10, as the segment to view. By passing
the name of the targets track in the pack parameter, we instruct the browser
to use the “pack” mode for viewing the track. This results in the name of the
microRNA appearing next to the target site glyph.

> view <- browserView(session, subTargetTrack * -10, pack = "targets")
If multiple ranges are provided, multiple views are launched:

> view <- browserView(session, targetTrack[1:5] * -10, pack = "targets")

Exercises
1. Create a new view with the same region as view, except zoomed out 2X.

2. Create a view with the “targets” track displayed in “full” mode, instead of
“packed”.

2.2.4 A shortcut

There is also a shortcut to the above steps. The browseGenome function creates
a session for a specified browser, loads one or more tracks into the session and
creates a view of a given genome segment. In the following code, we create a
new UCSC session, load the track and view the first two features, all in one
call:

> browseGenome (targetTrack, range = subTargetTrack * -10)

It is even simpler to view the subtrack in UCSC by relying on parameter
defaults:

> browseGenome (subTargetTrack)

2.2.5 Downloading Tracks from your Web Browser

It is possible to query the browser to obtain the names of the loaded tracks and
to download the tracks into R. To list the tracks loaded in the browser, enter
the following:

> loaded_tracks <- trackNames (session)

One may download any of the tracks, such as the “targets” track that was loaded
previously in this example.

> subTargetTrack <- track(session, "targets", asRangedData = FALSE)

The returned object is a GRanges, even if the data was originally uploaded as a
RangedData or other object. To get a RangedData instead, pass asRangedData
= TRUE. By default, the segment of the track downloaded is the current default
genome segment associated with the session. One may download track data for
any genome segment, such as those on a particular chromosome. Note that this
does not distinguish by strand; we are only indicating a position on the genome.

> chriTargets <- track(session, "targets", chriTargets, asRangedData = FALSE)

Exercises
1. Get the SNP under the first target, displayed in view.

2. Get the UCSC gene for the same target.

2.2.6 Accessing view state

The view variable is an instance of BrowserView, which provides an interface for
getting and setting view attributes. Note that for the UCSC browser, changing
the view state opens a new view, as a new page must be opened in the web
browser.

To programmatically query the segment displayed by a view, use the range
method for a BrowserView.

> segment <- range(view)
Similarly, one may get and set the names of the visible tracks in the view.

> visible_tracks <- trackNames (view)
> trackNames (view) <- visible_tracks

The visibility mode (hide, dense, pack, squish, full) of the tracks may be re-
trieved with the ucscTrackModes method.

> modes <- ucscTrackModes (view)

The returned value, modes, is of class UCSCTrackModes. The modes may be
accessed using the [function. Here, we set the mode of our “targets” track to
“full” visibility.

> modes["targets"]
> modes["targets"] <- "full"
> ucscTrackModes (view) <- modes

Existing browser views for a session may be retrieved by calling the browserViews
method on the browserSession instance.

> views <- browserViews(session)
> length(views)

Exercises
1. Retrieve target currently visible in the view.
2. Limit the view to display only the SNP, UCSC gene and target track.
3. Hide the UCSC gene track.

3 CPNE1 expression and HapMap SNPs

Included with the rtracklayer package is a track object (created by the GGtools
package) with features from a subset of the SNPs on chromosome 20 from 60
HapMap founders in the CEU cohort. Each SNP has an associated data value
indicating its association with the expression of the CPNE1 gene according to
a Cochran-Armitage 1df test. The top 5000 scoring SNPs were selected for the
track.

We load the track presently.

> library(rtracklayer)
> data(cpneTrack)

3.1 Loading and manipulating the track

The data values for a track are stored in the columns on the RangedData in-
stance. Often, a track contains a single column of numeric values, conventionally
known as the score. The score function retrieves the column named or score
or, if one does not exist, the first column in the RangedData, as long as it is
numeric. Otherwise, NULL is returned.

> head(score(cpneTrack))

rs4814683 rs6076506 1rs6139074 1rs1418258 rs7274499 1rs6116610
0.16261691 0.02170423 0.47098379 0.16261691 0.05944578 0.18101862

One use of extracting the data values is to plot the data.

> plot(start(cpneTrack), score(cpneTrack))

10

e]

N g
< g
S © &
©
@
'_
g
Q 8 fe)
k) 8 %o, @9 ©0go°e o oo Qo o
o < % o o0 o oo Oo
3 © o L° 0g®
2]

~

o

T T T T T T T
0e+00 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

start(cpneTrack)

3.2 Browsing the SNPs

We now aim to view some of the SNPs in the UCSC browser. Unlike the
microRNA target site example above, this track has quantitative information,
which requires special consideration for visualization.

3.2.1 Laying a WIG track

To view the SNP locations as a track in a genome browser, we first need to
upload the track to a fresh session. In the code below, we use the [[<- alias of
track<-.

> session <- browserSession()
> session$cpne <- cpneTrack

Note that because cpneTrack contains data values and its features do not over-
lap, it is uploaded to the browser in the WIG format. Omne limitation of the
WIG format is that it is not possible to encode strand information. Thus, each
strand needs to have its own track, and rtracklayer does this automatically,
unless only one strand is represented in the track (as in this case). One could
pass “bed” to the format parameter of track<- to prevent the split, but tracks
uploaded as BED are much more limited compared to WIG tracks in terms of
visualization options.

11

To form the labels for the WIG subtracks, “ p” is concatenated onto the plus
track and “ m” onto the minus track. Features with missing track information
are placed in a track named with the “ na” postfix. It is important to note that
the subtracks must be identified individually when, for example, downloading
the track or changing track visibility.

3.2.2 Plotting the SNP track

To plot the data values for the SNP’s in a track, we need to create a browser View.
We will view the region spanning the first 5 SNPs in the track, which will be
displayed in the “full” mode.

> view <- browserView(session, range(cpneTrack[1:5,]), full = "cpne")

The UCSC browser will plot the data values as bars. There are several options
available for tweaking the plot, as described in the help for the GraphTrackLine
class. These need to be specified laying the track, so we will lay a new track
named “cpne2”. First, we will turn the autoScale option off, so that the bars
will be scaled globally, rather than locally to the current view. Then we could
turn on the yLineOnOff option to add horizontal line that could represent some
sort of cut-off. The position of the line is specified by yLineMark. We set it
arbitrarily to the 25% quantile.

> track(session, "cpne2", autoScale = FALSE, yLineOnOff = TRUE,
+ yLineMark = quantile(score(cpneTrack), .25)) <- cpneTrack
> view <- browserView(session, range(cpneTrack[1:5,]), full = "cpne2")

4 Binding sites for NRSF

Another common type of genomic feature is transcription factor binding sites.
Here we will use the Biostrings package to search for matches to the binding
motif for NRSF, convert the result to a track, and display a portion of it in the
UCSC browser.

4.1 Creating the binding site track

We will use the Biostrings package to search human chromosome 1 for NRSF
binding sites. The binding sequence motif is assumed to be TCAGCACCATG-
GACAQG, though in reality it is more variable. To perform the search, we run
matchPattern on the positive strand of chromosome 1.

> library(BSgenome.Hsapiens.UCSC.hg19)
> nrsfHits <- matchPattern("TCAGCACCATGGACAG", Hsapiens[["chr1"]])
> length(nrsfHits) # number of hits

(1] 2

12

We then convert the hits, stored as a Views object (a particular type of
IRanges object), to a RangedData instance.

> nrsfTrack <- GenomicData(ranges(nrsfHits), strand="+", chrom="chril",
+ genome = "hg19", asRangedData = FALSE)

GenomicData is a convenience function that by default constructs a GRanges
object. A RangedData may be obtained by passing asRangedData = TRUE and
may be preferred in this case, as the nrsfHits object will then be stored as a
Views object in nrsfTrack without any loss of information, in particular the
sequence of chrl.

4.2 Browsing the binding sites

Now that the NRSF binding sites are stored as a track, we can upload them
to the UCSC browser and view them. Below, load the track and we view the
region around the first hit in a single call to browseGenome.

> session <- browseGenome (nrsfTrack, range = range(nrsfTrack[1]) * -10)

We observe significant conservation across mammal species in the region of the
motif.

5 Downloading tracks from UCSC

rtracklayer can be used to download annotation tracks from the UCSC table
browser, thus providing a convenient programmatic alternative to the web in-
terface available at http://genome.ucsc.edu/cgi-bin/hgTables.

5.1 Example 1: the RepeatMasker Track

This simple example identifies repeat-masked regions in and around the tran-
scription start site (T'SS) of the human E2F3 gene, in hgl9:

> library (rtracklayer)

> mySession = browserSession("UCSC")

> genome (mySession) <- "hgl9"

> e2f3.tss.grange <- GRanges("chr6", IRanges (20400587, 20403336))
> tbl.rmsk <- getTable(

+ ucscTableQuery (mySession, track="rmsk",

+ range=e2f3.tss.grange, table="rmsk"))

There are several important points to understand about this example:

1. The ucscTableQuery used above is a proxy for, and provides communi-
cation with, the remote UCSC table browser (see http://genome.ucsc.
edu/cgi-bin/hgTables).

13

http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables

2. You must know the name of the track and table (or sub-track) that you
want. The way to do this is explained in detail below, in section 5.3.

3. If the track contains multiple tables (which is the case for many ENCODE
tracks, for instance), then you must also specify that table name.

4. When the track contains a single table only, you may omit the table
parameter, or reuse the track name (as we did above).

5. If you omit the range parameter, the full track table is returned, covering
the entire genome.

6. The amount of time required to download a track is roughly a function
of the number of features in the track, which is in turn a function of the
density of those features, and the length of the genomic range you request.
To download the entire RepeatMasker track, for all of h19, would take a
very long time, and is a task poorly suited to rtracklayer. By contrast,
one full-genome DNasel track takes less than a minute (see below).

5.2 Example 2: DNasel hypersensitivity regions in the
K562 Cell Line

The ENCODE project (http://encodeproject.org/ENCODE) provides many
hundreds of annotation tracks to the UCSC table browser. One of these de-
scribes DNasel hypersensitivity for K562 cells (an immortalized erythroleukemia
line) measured at the University of Washington using ’Digital Genome Foot-
printing’ (see http://www.ncbi.nlm.nih.gov/pubmed?term=19305407). Ob-
tain DNasel hypersensitive regions near the E2F3 TSS, and for all of hgl9:

track.name <- "wgEncodeUwDgf"

table.name <- "wgEncodeUwDgfK562Hotspots"

e2f3.grange <- GRanges("chr6", IRanges (20400587, 20403336))

mySession <- browserSession ()

tbl.k562.dgf.e2f3 <- getTable(ucscTableQuery (mySession, track=track.name,
range=e2f3.grange, table=table.name))

tbl.k562.dgf.hgl9 <- getTable(ucscTablefuery (mySession, track=track.name,

table=table.name))

+ V. + VvV VvVVvVYy

5.3 Discovering Which Tracks and Tables are Available
from UCSC

As the examples above demonstrate, you must know the exact UCSC-style name
for the track and table you wish to download. You may browse these interac-
tively at http://genome.ucsc.edu/cgi-bin/hgTables?org=Human&db=hgl9 or
programmatically, as we demonstrate here.

> mySession <- browserSession ()
> genome (mySession) <- "hg19"

14

http://encodeproject.org/ENCODE
http://www.ncbi.nlm.nih.gov/pubmed?term=19305407
http://genome.ucsc.edu/cgi-bin/hgTables?org=Human&db=hg19

> # 177 tracks in October 2012

> track.names <- trackNames (ucscTableQuery(mySession))

> # chose a few tracks at random from this set, and discover how
> # many tables they hold

> tracks <- track.names [c (99, 81, 150, 96, 90)]

> sapply(tracks, function(track) {

+ length(tableNames (ucscTableQuery (mySession, track=track)))
+ P

6 Conclusion

These case studies have demonstrated a few of the most important features of
rtracklayer. Please see the package documentation for more details.
The following is the session info that generated this vignette:

> sessionInfo()

R version 3.0.1 (2013-05-16)
Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C

[5] LC_TIME=English United States.1252

attached base packages:
[1] parallel stats graphics grDevices utils datasets
[7] methods Dbase

other attached packages:
[1] BSgenome.Hsapiens.UCSC.hg19_1.3.19
[2] BSgenome_1.28.0
[3] Biostrings_2.28.0
[4] rtracklayer_1.20.4
[5] GenomicRanges_1.12.4
[6] IRanges_1.18.2
[7] microRNA_1.18.0
(8] limma_3.16.5
[9] genefilter_1.42.0
[10] humanStemCell_0.2.8
[11] hgui133plus2.db_2.9.0
[12] org.Hs.eg.db_2.9.0
[13] RSQLite_0.11.4
[14] DBI_0.2-7

15

[15] AnnotationDbi_1.22.6
[16] Biobase_2.20.1
[17] BiocGenerics_0.6.0

loaded via a namespace (and not attached):
[1] BSgenome.Hsapiens.UCSC.hgl8_1.3.19
(2] RCurl_1.95-4.1
[3] Rsamtools_1.12.3
[4] XML_3.98-1.1
[5] annotate_1.38.0
[6] bitops_1.0-5
[7] splines_3.0.1
[8] stats4_3.0.1
[9] survival_2.37-4
[10] tools_3.0.1
[11] xtable_1.7-1
[12] zlibbioc_1.6.0

16

	Introduction
	Gene expression and microRNA target sites
	Creating a target site track
	Constructing the GRanges
	Accessing track information
	Subsetting a GRanges
	Exporting and importing tracks

	Viewing the targets in a genome browser
	Starting a session
	Laying the track
	Viewing the track
	A shortcut
	Downloading Tracks from your Web Browser
	Accessing view state

	CPNE1 expression and HapMap SNPs
	Loading and manipulating the track
	Browsing the SNPs
	Laying a WIG track
	Plotting the SNP track

	Binding sites for NRSF
	Creating the binding site track
	Browsing the binding sites

	Downloading tracks from UCSC
	Example 1: the RepeatMasker Track
	Example 2: DNaseI hypersensitivity regions in the K562 Cell Line
	Discovering Which Tracks and Tables are Available from UCSC

	Conclusion

