
Analysis of Bead-level Data using beadarray

Mark Dunning

April 4, 2013

Introduction

beadarray is a package for the pre-processing and analysis of Illumina BeadArray. The main advantage
is being able to read raw data output by Illumina’s scanning software. Data presented in this form are
in the same format regardless of the assay (i.e expression, genotyping, methylation) being performed.
Thus, beadarray is able to handle all these types of data. Many functions within beadarray have been
written to cope with this flexibility.

The BeadArray technology involves randomly arranged arrays of beads, with beads having the same
probe sequence attached colloquially known as a bead-type. BeadArrays are combined in parallel on
either a rectangular chip (BeadChip) or a matrix of 8 by 12 hexagonal arrays (Sentrix Array Matrix
or SAM). The BeadChip is further divided into strips on the surface known as sections, with each
section giving rise to a different image when scanned by BeadScan. These images, and associated text
files, comprise the raw data for a beadarray analysis. However, for BeadChips, the number of sections
assigned to each biological sample may vary from 1 on HumanHT12 chips, 2 on HumanWG6 chips or
sometimes ten or more for SNP chips with large numbers of SNPs being investigated.

This vignette demonstrates the processing of bead-level data using beadarray using data from the
beadarrayExampleData package. A more comprehensive commentary on the analysis of Illumina BeadAr-
ray package is given in the vignette of BeadArrayUseCases, including other analysis tools that are not
part of beadarray.

> library(beadarrayExampleData)

> library(beadarray)

> data(exampleBLData)

Citing beadarray

If you use beadarray for the analysis or pre-processing of BeadArray data please cite:
Dunning MJ, Smith ML, Ritchie ME, Tavaré S, beadarray: R classes and methods for Illumina

bead-based data, Bioinformatics, 23(16):2183-2184

1 Asking for help on beadarray

Wherever possible, questions about beadarray should be sent to the Bioconductor mailing list1. This
way, all problems and solutions will be kept in a searchable archive. When posting to this mailing list,
please first consult the posting guide. In particular, state the version of beadarray and R that you are
using2, and try to provide a reproducible example of your problem. This will help us to diagnose the
problem.

1http://www.bioconductor.org
2This can be done by pasting the output of running the function sessionInfo().

1

2 Reading bead-level data into beadarray

2.1 File formats

The raw images and text files required to perform a bead-level analysis are produced by Illumina’s
BeadScan or iScan software. Usually, it will be necessary for you to modify BeadScan’s default settings
to obtain bead-level data, see http://www.compbio.group.cam.ac.uk/Resources/illumina.

The command to read bead-level data from the current working directory is as follows. However,
raw data are not included with beadarrayExampleData or beadarray. See the BeadArrayUseCases package
for some example data to try out this function.

> BLData = readIllumina(useImages = FALSE, illuminaAnnotation = "Humanv3")

The useImages argument specifies whether beadarray will read foreground and background inten-
sities from the TIFF images present in the directory, allowing users to experiment with strategies for
image processing. Such strategies are described in greater detail in the imageProcessing.pdf vignette.
In this example we set useImages=FALSE (often a convenient choice), and locally background corrected
intensities will simply be extracted from the txt files. The optical background-correction that is re-
ferred to here is done by subtracting the background pixel intensities surrounding each bead. It should
not to be confused with another background correction further along the analysis pipeline, which may
involve negative control beads to account for non-specific binding. beadarray is able to use some of
Illumina’s files during analysis. These include .locs files, which contain the locations of all beads on an
array (not just those that were decoded), and .sdf files, which contain information about the physical
layout of the chip. In combination, using these files can result in significant time improvements to the
detection of spatial artifacts and add additional information to some QA plots. These files are not read
automatically, but if present, the path to these files is stored by beadarray for future use. If the metrics
file generated by BeadScan is present in the directory, it will be read unaltered and stored.

2.2 A note for those with iScan data

Data from Illumina’s newer iScan system come in a different format to the previous BeadScan data.
The scanner itself is capable of producing higher-resolution images and there are two images of each
array section (along with two .locs files), which are labeled Swath1 and Swath2. These two images are
of the two halves of the array section, with an overlapping region in the middle. However, there is only
one bead-level text file (with the extension perBeadFile.txt), with no indication as to which of the two
images each entry comes from. Given this, simply reading the bead-level text file will result in any
function that uses bead locations performing undesirably. However, the readIllumina function is able
to detect that iScan data is present and will advise the user to run the processSwathData function,
which will try and deconvolute the bead-level data and create two files, one per swath, which can then
be read independently into beadarray.

2.3 Array annotation

The text files produced by the scanning software give a very limited annotation for each bead that was
scanned. All beads are associate with position on the array and a numeric code (ArrayAddress that
refers to the decoding oligonucleotide sequence attached to the bead3. A collection of beads with the
same ArrayAddress are known as a bead-type and have the same 50-base sequence attached. However,
the sequence and the region of the genome that it targets cannot be inferred from bead-level data alone.
The mapping between ArrayAddress and hybridization sequence is provided on Illumina’s FTP site in a
series of flat-files and we have built Bioconductor packages that can be accessed from within beadarray.

3These decoding sequences are required due to the random nature of each array. However, the sequences themselves
have never been disclosed

2

In order that the correct mappings are performed, users must specify an annotation name for their data,
which requires knowing the organism being investigated and annotation revision number (e.g. Humanv4,
Humanv3, Humanv2, Humanv1, Mousev2, Mousev1p1, Mousev1 or Ratv1. The suggestAnnotation

function may be used if you are unsure of which string to use. This checks the overlap between the bead
IDs found in the data with a collection of IDs extracted from Illumina’s annotation files. For the example
data stored with the beadarrayExampleData, the suggested annotation is Humanv3. Provided that the
illuminaHumanv3.db package is present, beadarray will be able to annotate the beadarrayExampleData

object.

> suggestAnnotation(exampleBLData, verbose = TRUE)

Percentage of overlap with IDs on this array and known expression platforms

HUMANREF8_V3_0_R1_11282963_A_WGDASL HumanHT12_V3_0_R3_11283641_A

48.78621 97.16521

HumanHT12_V4_0_R1_15002873_B HumanHT12_V4_0_R2_15002873_B

83.70782 84.05715

HumanHT12_V4_0_R2_15002873_B_WGDASL HumanRef8_V1

54.68237 37.33872

HumanRef8_V2_0_R2_11223162_A HumanRef8_V2_0_R4_11223162_A

38.88553 38.88470

HumanRef8_V3_0_R0_11282963_A HumanRef8_V3_0_R3_11282963_A

48.78621 48.78621

HumanWG6_V1 HumanWG6_V2_0_R2_11223189_A

37.33872 81.32701

HumanWG6_V2_0_R4_11223189_A HumanWG6_V2_11223189_B

81.32619 81.32619

HumanWG6_V3_0_R3_11282955_A MouseRef8_V1

97.16521 36.67984

MouseRef8_V1_1_R4_11234312_A MouseRef8_V2_0_R3_11278551_A

38.10629 43.77615

MouseWG6_V1 MouseWG6_V1_1_R4_11234304_A

36.67984 38.10629

MouseWG6_V1_B MouseWG6_V2_0_R3_11278593_A

36.58768 78.45060

RatRef12_V1_0_R5_11222119_A

36.06644

[1] "Humanv3"

> annotation(exampleBLData) <- "Humanv3"

The verbose output of suggestAnnotation shows high overlap between the ArrayAddress IDs in the
exampleBLData object and the ArrayAddress IDs in the official annotation files HumanHT12_V3_0_R3_11283641_A
and HumanWG6_V3_0_R3_11282955_A. However, both HT12 and WG6 arrays have the same probe se-
quences on them and the difference is the number of sections on a chip. Hence, we can assign the
Humanv3 label to data from either platform.

3 The beadLevelData class

Once imported, the bead-level data are stored in an object of class beadLevelData. This class can
handle raw data from both single channel and two-colour BeadArrays. Due to the random nature of
the technology, each array generally has a variable number of rows of intensity data, and we use an R
environment variable to store this information in a memory efficient way.

3

The beadLevelData class contains a number of slots useful for describing Illumina data. The data
that have been extracted from the text files are found in the beadData slot. This can be thought of
as a list, which can be indexed by name or a numeric value representing a particular array-section. A
data frame holds the data for that array-section, with the number of rows being the number of beads
on the section. For convenience, the function getBeadData is used to access data held in the beadData
slot. The function insertBeadData can be used to assign new data to this slot.

Data types with one value per array-section can be stored in the sectionData slot. For instance, any
metrics information present in the directory used by readIllumina will be stored here. This is also a
convenient place to store any QC information derived during the pre-processing of the data, as we will
see.

The numeric identifiers for the bead-types in the beadLevelData are known as ArrayAddress IDs
in Illumina’s annotation files. For downstream analysis it is convenient to convert these into the form
ILMN ... used in most annotation packages. Mapping objects to convert these IDs are supplied with
beadarray in the extdata directory, but this conversion may be performed automatically if the annota-
tion of the beadLevelData object is known. For two-channel data, the intensities from the Red channel
and associated coordinates are also stored in the object.

> class(exampleBLData)

[1] "beadLevelData"

attr(,"package")

[1] "beadarray"

> slotNames(exampleBLData)

[1] "beadData" "sectionData" "experimentData" "history"

> exampleBLData[[1]][1:10,]

ProbeID GrnX GrnY Grn wts

[1,] 10008 900.6661 10781.320 355 1

[2,] 10008 1992.5400 11352.000 377 1

[3,] 10008 1257.4790 7559.513 452 1

[4,] 10008 1700.1600 6351.157 267 1

[5,] 10008 1814.5210 3299.495 431 1

[6,] 10008 2060.3440 8471.688 357 1

[7,] 10008 609.0356 6028.458 408 1

[8,] 10008 1487.7190 15933.790 431 1

[9,] 10008 1517.5080 14928.520 351 1

[10,] 10008 1619.3640 17650.690 235 1

> getBeadData(exampleBLData, array = 1, what = "Grn")[1:10]

[1] 355 377 452 267 431 357 408 431 351 235

> uIDs = unique(getBeadData(exampleBLData, array = 1, what = "ProbeID"))

> uIDs[1:10]

[1] 10008 10010 10017 10019 10020 10021 10025 10035 10037 10039

4

4 Scan Metrics

The first view of array quality can be assessed using the metrics calculated by the scanner. These
include the 95th (P95) and 5th (P05) quantiles of all pixel intensities on the image. A signal-to-noise
ratio (SNR) can be calculated as the ratio of these two quantities. These metrics can be viewed in real-
time as the arrays themselves are being scanned. By tracking these metrics over time, one can potentially
halt problematic experiments before they even reach the analysis stage. The metrics information for
the exampleBLData object can retrieved in the following way. Illumina recommend that the SNR ratio
should be above 10, so these arrays are acceptable. However, the P95 and P05 values will fluctuate
over time and are dependant upon the scanner setup. Including SNR values for arrays other than those
currently being analysed will give a better indication of whether any outlier arrays exist.

> metrics(exampleBLData)

Date Matrix Section RegGrn FocusGrn SatGrn P95Grn P05Grn

1 3/13/2009 6:45:04 PM 4613710017 B 0.13 0.70 0 704 36

12 04/01/09 04:50 4616494005 A 0.13 0.59 0 678 38

RegRed FocusRed SatRed P95Red P05Red

1 0 0 0 0 0

12 0 0 0 0 0

> p95(exampleBLData, "Grn")

[1] 704 678

> snr(exampleBLData, "Grn")

[1] 19.55556 17.84211

5 Transformation Functions

A more flexible way to obtain per-bead data from a beadLevelData object is to define a transformation
function that takes as arguments the beadLevelData object and an array index. The function then
manipulates the data in the desired manner and returns a vector the same length as the number of
beads on the array. The logGreenChannelTransform is the default transformation in many plotting
/ QA functions within beadarray. Users with two-channel data may also wish to experiment with the
similarly defined logRedChannelTransform or logRatioTransform when plotting.

> log2(exampleBLData[[1]][1:10, 2])

[1] 9.814849 10.960393 10.296319 10.731455 10.825373 11.008670 9.250383

[8] 10.538886 10.567488 10.661212

> logGreenChannelTransform

function (BLData, array)

{

x = getBeadData(BLData, array = array, what = "Grn")

return(log2.na(x))

}

<environment: namespace:beadarray>

> logGreenChannelTransform(exampleBLData, array = 1)[1:10]

5

[1] 8.471675 8.558421 8.820179 8.060696 8.751544 8.479780 8.672425 8.751544

[9] 8.455327 7.876517

> logRedChannelTransform

function (BLData, array)

{

x = getBeadData(BLData, array = array, what = "Red")

return(log2.na(x))

}

<environment: namespace:beadarray>

6 Boxplots and imageplots

Two standard quality assessment plots supported by beadarray are the imageplot and boxplot. Boxplots
can be used to compare foreground and background intensities between arrays. Image plots can be used
to identify spatial artifacts on the array surface that can occur from mis-handling or scanning problems.
With the raw bead-level data, we can plot false images of each array. This kind of visualization is not
possible when using the summarized BeadStudio output, as the summary values are averaged over
spatial positions. Image plots in R are also more convenient than scrutinizing the original tiffs, as
multiple arrays can be visualized on the one page. By default, the array surface is plotted with the
longest edge going horizontally. Both the boxplot and imageplot functions take a transformation
function as an argument, with the default to do a log2 transformation on the green channel.

> boxplot(exampleBLData, las = 2, outline = FALSE, ylim = c(4,

+ 12))

46
13

71
00

17
_B

46
16

49
40

05
_A

4

6

8

10

12

The imageplot can be configured in many ways (see manual page for more details). Sections from
a BeadChip often have one edge that is much longer than the other, and it is important to recognise
this when producing the plots. By default, beadarray makes imageplots with the longest edge on the
x-axis (suitable for widescreen monitors). However, with horizontal = FALSE, the imageplot will be

6

displayed in the same orientation as the original TIFF image from the directory. With the squareSize

we can control how many pixels from the original image make up the pixels in the resulting imageplot.
The following code produces imageplots for all array-sections in the example dataset. Note that we also
change the colour scheme to represent low and high intensities by light and dark green respectively.

If .locs information is available to beadarray, it will be able to determine the optimal squareSize
parameter. If not (as with our example dataset), the user may have to experiment with different values
for squareSize.

> imageplot(exampleBLData, array = 1, low = "lightgreen", high = "darkgreen")

> imageplot(exampleBLData, array = 2, low = "lightgreen", high = "darkgreen")

7 BASH

BASH is a method for managing the spatial artefacts that may be found on an array as described in
Cairns et al (2008). BASH uses the methodology developed for the Harshlight package, but altered
to exploit the availability of replicated observations on the same array. The algorithm first identifies
Extended defects, where an array has gradual but significant shifts across the surface. BASH also seeks
to find more localized artifacts on arrays by classifying features that have unusual intensities as outliers
and then finding outliers close to each other on the array. Two separate algorithms then search for
areas with a larger numbers of outliers than would be expected by chance (Diffuse Defects) and large
connected clusters of outliers (Compact defects). The random nature (both in position and numbers of
each feature type) of Illumina arrays mean that the Harshlight algorithm must proceed in a different
way to the original Harshlight implementation. Whereas Affymetrix probes have replicates on other
arrays, Illumina beads are replicated on the same array. We can therefore generate an error image
based on how much each bead differs from the median of its replicates’ intensities, instead of replicates
on other arrays. Having performed manipulations to the error image, we can then find outliers on this
image by bead type, determining which beads are more than 3 Median Absolute Devations, or MADs,
from the median.

7

Finally, since Illumina arrays are randomly arranged and use a hexagonal grid rather than rectan-
gular, BASH has it’s own method for creating networks of beads on the array. However, if .locs files
are available to beadarray the time taken for this step will be improved considerably.

The following command can be used to run BASH with the default settings

> bsh = BASH(exampleBLData, array = 1:2)

The weights and QC can be stored using setWeights and insertSectionData.

> for (i in 1:2) {

+ BLData <- setWeights(exampleBLData, wts = bsh$wts[[i]], array = i)

+ }

> BLData <- insertSectionData(exampleBLData, what = "BASHQC", data = bsh$QC)

We have already saved the weights into the exampleBLData object and they can be retrieved in the
following way. A weight of zero meaning that the bead will be excluded from an outlier calculations or
summarisation procedures.

> table(getBeadData(exampleBLData, array = 1, what = "wts"))

0 1

13380 1074989

> table(getBeadData(exampleBLData, array = 2, what = "wts"))

0 1

143923 956850

Before combining the observations for each bead-type on an array, Illumina remove any observations
with outlying intensity (more than 3 median absolute deviations from the median). This step can be
repeated in beadarray and can be adjusted so that other outlier removal schemes can be run. It is useful
to see where these outliers are located on the array surface. Often, they will coincide with beads masked
by BASH or with any spatial artefacts that may be seen. The locations of beads that have been masked
by BASH can be visualised using the showArrayMask function.

> showArrayMask(exampleBLData, array = 2)

4616494005_A

8

8 Using control information

Illumina have designed a number of control probes for each expression platform. Two particular controls
on expression arrays are housekeeping and biotin controls. With the poscontPlot function, we can plot
the intensities of any ArrayAddressIDs that are annotated as belonging to the Housekeeping or Biotin
group in the ExpressionControlData object. The mapping of controls to ArrayAddressID is possible
by having the illuminaHumanv3.db package installed and setting the annotation of the object accordingly.

> p <- combinedControlPlot(exampleBLData)

●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●●

biotin cy3_hyb housekeeping

labeling low_stringency_hyb

4

8

12

16

4

8

12

16

50901806510136 145043875607391430239210027329404033940446449016155701325900110

12406475860132240255610647111017021204272510500318044040103274610291
factor(ID)

Lo
g2

In
te

ns
ity

factor(ControlType)

biotin

cy3_hyb

housekeeping

labeling

low_stringency_hyb

In quickSummary the mean and standard deviation of all control types is taken for a specified array,
using intensities of all beads that correspond to the control type. Note that these summaries may
not correspond to similar quantities reported in Illumina’s BeadStudio software, as the BeadStudio
summaries are produced after removing outliers (see later).

The makeQCTable function extends this functionality to produce a table of summaries for all sections
in the beadLevelData object. These data can be stored in the sectionData slot for future reference.

It is also informative to compare the expression level of various control types to the background level
of the array. This is done by the controlProbeDetection function that returns the percentage of each
control type that are significantly expressed above background level. Obviously for positive controls we
would prefer this percentage to be near 100 on a good quality array.

> quickSummary(exampleBLData, array = 1)

9

$biotin

[1] 12.57368

$cy3_hyb

[1] 11.49332

$housekeeping

[1] 13.03082

$labeling

[1] 5.127434

$low_stringency_hyb

[1] 8.859853

$negative

[1] 5.312527

> qcReport <- makeQCTable(exampleBLData)

> head(qcReport)[, 1:5]

Mean:biotin Mean:cy3_hyb Mean:housekeeping Mean:labeling

4613710017_B 12.57368 11.49332 13.03082 5.127434

4616494005_A 11.80727 10.71637 12.37393 5.603400

Mean:low_stringency_hyb

4613710017_B 8.859853

4616494005_A 6.990128

> BLData <- insertSectionData(exampleBLData, what = "BeadLevelQC",

+ data = qcReport)

> for (i in 1:2) {

+ print(controlProbeDetection(exampleBLData, array = i, negativeTag = "negative"))

+ }

housekeeping

100

housekeeping

100

The generation of QA plots for all sections in the beadLevelData object is provided by the expres-
sionQCPipeline function. Results are generated in a directory of the users choosing. This report may
be generated at any point of the analysis. If the overWrite paramater is set to FALSE, then any existing
plots in the directory will not be re-generated. Furthermore, QC tables that have been stored in the
beadLevelData object already can be used.

9 Summarization

The summarization procedure takes the BLData object, where each bead-type is represented by differ-
ing numbers of observations on each array, and produces a summarized object to make comparisons
between arrays. For each array section represented in the BLData object, all observations are extracted,
transformed, and then grouped together according to their ArrayAddressID. Outliers are removed and
the mean and standard deviation of the remaining beads are calculated.

10

The illuminaChannel class is used to define how summarization proceeds with specification of a
transformation function, a function to remove outliers and function to calculate the means and standard
deviation. The default options to summarize apply a log2 transformation, remove outliers using the
Illumina 3 M.A.D cut-off, and report the mean and standard deviation for each bead type.

> BSData <- summarize(exampleBLData)

The code below creates a different summarized object; one which reports median and standard errors
and does not log transform the data.

> myMedian <- function(x) median(x, na.rm = TRUE)

> myMad <- function(x) mad(x, na.rm = TRUE)

> greenChannel2 <- new("illuminaChannel", greenChannelTransform,

+ illuminaOutlierMethod, myMedian, myMad, "G")

> BSData2 <- summarize(exampleBLData, list(greenChannel2))

The BSData object is very similar to the ExpressionSet class in Biobase. However, to accommodate
the unique features of Illumina data we have added an nObservations slot, which gives the number of
beads that we used to create the summary values for each bead-type on each array after outlier removal.

> BSData

ExpressionSetIllumina (storageMode: list)

assayData: 49576 features, 2 samples

element names: exprs, se.exprs, nObservations

protocolData: none

phenoData

rowNames: 4613710017_B 4616494005_A

varLabels: sampleID SampleFac

varMetadata: labelDescription

featureData

featureNames: ILMN_1802380 ILMN_1893287 ... ILMN_1846115 (49576

total)

fvarLabels: ArrayAddressID IlluminaID Status

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: Humanv3

QC Information

Available Slots:

QC Items: Date, Matrix, ..., SampleGroup, numBeads

sampleNames: 4613710017_B, 4616494005_A

It is possible to have multiple channels, each of which is summarized in a different manner, in the
same ExpressionSetIllumina object. This is achieved by passing a list of illuminaChannel objects to
summarize. This would be especially useful for two-channel data, where the Red and Green channels,
and some combination of the two would be of interest in the analysis.

The detection score is a standard measure for Illumina expression experiments, and can be viewed
as an empirical estimate of the p-value for the null hypothesis that there is no expression. These can
be calculated for summarized data provided that the identity of the negative controls on the array
is known. For further analysis of the summarized object, see the separate beadsummary vignette
beadsummary.pdf.

> det = calculateDetection(BSData)

> head(det)

11

4613710017_B 4616494005_A

ILMN_1802380 0.00000000 0.00000000

ILMN_1893287 0.27309237 0.43658211

ILMN_1736104 0.55555556 0.73564753

ILMN_1792389 0.00000000 0.00000000

ILMN_1854015 0.05756359 0.01869159

ILMN_1904757 0.21686747 0.40987984

> Detection(BSData) <- det

> sessionInfo()

R version 3.0.0 (2013-04-03)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] illuminaHumanv3.db_1.18.0 org.Hs.eg.db_2.9.0

[3] RSQLite_0.11.2 DBI_0.2-5

[5] AnnotationDbi_1.22.0 beadarrayExampleData_1.0.5

[7] beadarray_2.10.0 ggplot2_0.9.3.1

[9] Biobase_2.20.0 BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] AnnotationForge_1.2.0 BeadDataPackR_1.12.0 IRanges_1.18.0

[4] MASS_7.3-26 RColorBrewer_1.0-5 colorspace_1.2-1

[7] dichromat_2.0-0 digest_0.6.3 grid_3.0.0

[10] gtable_0.1.2 labeling_0.1 limma_3.16.0

[13] munsell_0.4 plyr_1.8 proto_0.3-10

[16] reshape2_1.2.2 scales_0.2.3 stats4_3.0.0

[19] stringr_0.6.2 tools_3.0.0

12

