Analysis of Bead-summary Data using beadarray

Mark Dunning
April 4, 2013

Introduction

The BeadArray technology involves randomly arranged arrays of beads, with beads having the same
probe sequence attached colloquially known as a bead-type. BeadArrays are combined in parallel on
either a rectangular chip (BeadChip) or a matrix of 8 by 12 hexagonal arrays (Sentrix Array Matrix
or SAM). The BeadChip is further divided into strips on the surface known as sections, with each
section giving rise to a different image when scanned by BeadScan. These images, and associated text
files, comprise the raw data for a beadarray analysis. However, for BeadChips, the number of sections
assigned to each biological sample may vary from 1 on HumanHT12 chips, 2 on HumanWG6 chips or
sometimes ten or more for SNP chips with large numbers of SNPs being investigated.

This vignette demonstrates the analysis of bead summary data using beadarray. The recommended
approach to obtain these data is to start with bead-level data and follow the steps illustrated in the
vignette beadlevel.pdf distributed with beadarray. If bead-level data are not available, the output of
Illumina’s BeadStudio or GenomeStudio can be read by beadarray. Example code to do this is provided
at the end of this vignette. However, the same object types are produced from either of these routes
and the same functionality is available.

To make the most use of the code in this vignette, you will need to install the beadarrayExampleData
and illuminaHumanv3.db packages from Bioconductor.

> source("http://www.bioconductor.org/biocLite.R")
> biocLite(c("beadarrayExampleData", "illuminaHumanv3.db"))

The code used to produce these example data is given in the vignette of beadarrayExampleData,
which follow similar steps to those described in the beadlevel.pdf vignette of beadarray. The following
commands give a basic description of the data.

> library("beadarray")

> require(beadarrayExampleData)
> data(exampleSummaryData)

> exampleSummaryData

ExpressionSetIllumina (storageMode: list)
assayData: 49576 features, 12 samples
element names: exprs, se.exprs, nObservations
protocolData: none
phenoData
rowNames: 4613710017_B 4613710052_B ... 4616494005_A (12 total)
varLabels: sampleID SampleFac
varMetadata: labelDescription
featureData
featureNames: ILMN_1802380 ILMN_1893287 ... ILMN_1846115 (49576

total)

fvarLabels: ArrayAddressID IlluminalID Status

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: Humanv3
QC Information
Available Slots:
QC Items: Date, Matrix,
sampleNames: 4613710017_B, 4613710052_B,

Summarized data are stored in an object of type ExpressionSetlllumina which is an extension of the
EzxpressionSet class developed by the Bioconductor team as a container for data from high-throughput
assays. Objects of this type use a series of slots to store the data. For consistency with the definition
of other ExpressionSet objects, we refer to the expression values as the exprs matrix (this stores the
probe-specific average intensities) which can be accessed using exprs and subset in the usual manner.
The se.exprs matrix, which stores the probe-specific variability can be accessed using se.exprs. You
may notice that the expression values have already been transformed to the logy scale, which is an
option in the summarize function in beadarray. Data exported from BeadStudio or GenomeStudio will

., SampleGroup, numBeads
., 4616443136_A, 4616494005_A

usually be un-transformed and on the scale 0 to 2'6.

> exprs (exampleSummaryData) [1:5, 1:5]

ILMN_1802380
ILMN_1893287
ILMN_1736104
ILMN_1792389
ILMN_1854015

ILMN_1802380
ILMN_1893287
ILMN_1736104
ILMN_1792389
ILMN_1854015

G:4613710017_B G:4613710052_B G:4613710054_B G:4616443079_B

8.454468
5.388161
5.268626
6.767519
5.556947
G:4616443093_B
8.527748
5.221987
5.284026
7.386435
5.558717

8.616796
.419345
.457679
.183788
.721614

[

g N o

> se.exprs (exampleSummaryData) [1:5, 1:5]

ILMN_1802380
ILMN_1893287
ILMN_1736104
ILMN_1792389
ILMN_1854015

ILMN_1802380
ILMN_1893287
ILMN_1736104
ILMN_1792389
ILMN_1854015

G:4613710017_B G:4613710052_B

0.2833023
0.3963681
0.4704854
0.4038533
0.5663066
G:4616443093_B
0.3581862
0.4448673
0.4864355
0.3951935
0.6748219

0.3367157
0.3882834
0.4951260
0.4728013
0.3783570

8.523001
5.162849
5.012766
6.947624
5.595413

G:4613710054_B
0.2750020
0.5516421
0.4031143
0.5032908
0.5511991

8.420796
5.133287
4.988511
7.168571
5.520391

G:4616443079_B
0.4141796
0.6761106
0.5276266
0.3447242
0.5358812

feature and pheno data

The fData and pData functions are useful shortcuts to find more information about the features (rows)
and samples (columns) in the summary object. These annotations are created automatically whenever
a bead-level data is summarized (see beadlevel.pdf) or read from a BeadStudio file. The fData will
be added to later, but initially contains information on whether each probe is a control or not. In this
example the phenoData denotes the sample group for each array; either Brain or UHRR (Universal

Human Reference RNA).

> head(fData(exampleSummaryData))

ArrayAddressID IlluminalID Status
ILMN_1802380 10008 ILMN_1802380 regular
ILMN_1893287 10010 ILMN_1893287 regular
ILMN_1736104 10017 ILMN_1736104 regular
ILMN_1792389 10019 ILMN_1792389 regular
ILMN_1854015 10020 ILMN_1854015 regular
ILMN_1904757 10021 ILMN_1904757 regular

> table(fData(exampleSummaryData) [, "Status"])

biotin cy3_hyb

2 2
cy3_hyb,low_stringency_hyb housekeeping
4 7

labeling low_stringency_hyb

2 4

negative regular

759 48796

> pData(exampleSummaryData)

sampleID SampleFac

4613710017_B 4613710017_B UHRR
4613710052_B 4613710052_B UHRR
4613710054_B 4613710054_B UHRR
4616443079_B 4616443079_B UHRR
4616443093_B 4616443093_B UHRR
4616443115_B 4616443115_B UHRR
4616443081_B 4616443081_B Brain
4616443081_H 4616443081_H Brain
4616443092_B 4616443092_B Brain
4616443107_A 4616443107_A Brain
4616443136_A 4616443136_A Brain
4616494005_A 4616494005_A Brain

Subsetting the data

There are various way to subset an EzpressionSetillumina object, each of which returns an Expression-
Setlllumina with the same slots, but different dimensions. When bead-level data are summarized by
beadarray there is an option to apply different transformation options, and save the results as different
channels in the resultant object. For instance, if summarizing two-colour data one might be interested

in summarizing the red and green channels, or some combination of the two, separately. Both logs and
un-logged data are stored in the exampleSummaryData object and can be accessed by using the channel
function. Both the rows and columns in the resultant ExpressionSetIllumina object are kept in the
same order.

> channelNames (exampleSummaryData)
[1] IIGII IIG.ulll

> exampleSummaryData.log2 <- channel (exampleSummaryData, "G")
> exampleSummaryData.unlogged <- channel (exampleSummaryData, "G.ul")
> sampleNames (exampleSummaryData.log2)

[1] "4613710017_B" "4613710052_B" "4613710054_B" "4616443079_B" "4616443093_B"
[6] "4616443115_B" "4616443081_B" "4616443081_H" "4616443092_B" "4616443107_A"
[11] "4616443136_A" "4616494005_A"

> sampleNames (exampleSummaryData.unlogged)

[1] "4613710017_B" "4613710052_B" "4613710054_B" "4616443079_B" "4616443093_B"
[6] "4616443115_B" "4616443081_B" "4616443081_H" "4616443092_B" "4616443107_A"
[11] "4616443136_A" "4616494005_A"

> exprs (exampleSummaryData.log2) [1:10, 1:3]

4613710017_B 4613710052_B 4613710054_B
ILMN_1802380 8.454468 8.616796 8.523001

ILMN_1893287 5.388161 5.419345 5.162849
ILMN_1736104 5.268626 5.457679 5.012766
ILMN_1792389 6.767519 7.183788 6.947624
ILMN_1854015 5.556947 5.721614 5.595413
ILMN_1904757 5.421553 5.320500 5.522316
ILMN_1740305 5.417821 5.623998 5.720007
ILMN_1665168 5.321087 5.155455 4.967601
ILMN_2375156 5.894207 6.076418 5.638877
ILMN_1705423 5.426463 4.806624 5.357688

> exprs (exampleSummaryData.unlogged) [1:10, 1:3]

4613710017_B 4613710052_B 4613710054_B
ILMN_1802380 356.88235 396.46875 367.81481

ILMN_1893287 40.85000 44.29167 38.42105
ILMN_1736104 40.53333 46.50000 33.46154
ILMN_1792389 112.90909 163.17647 122.65000
ILMN_1854015 50.47059 53.26087 51.57143
ILMN_1904757 41.45833 42.10000 49.92593
ILMN_1740305 38.45455 51.50000 46.21429
ILMN_1665168 42.38889 37.95000 30.46154
ILMN_2375156 61.47368 72.73913 52.46154
ILMN_1705423 42.38889 28.14286 38.62500

As we have seen, the expression matrix of the ExpressionSetIllumina object can be subset by
column or row, In fact, the same subset operations can be performed on the ExpressionSetIllumina
object itself. In the following code, notice how the number of samples and features changes in the
output.

> exampleSummaryData.log2[, 1:4]

ExpressionSetIllumina (storageMode: list)
assayData: 49576 features, 4 samples
element names: exprs, se.exprs, nObservations
protocolData: none
phenoData
rowNames: 4613710017_B 4613710052_B 4613710054_B 4616443079_B
varLabels: sampleID SampleFac
varMetadata: labelDescription
featureData
featureNames: ILMN_1802380 ILMN_1893287 ... ILMN_1846115 (49576
total)
fvarLabels: ArrayAddressID IlluminalID Status
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: Humanv3
QC Information
Available Slots:
QC Items: Date, Matrix, ..., SampleGroup, numBeads
sampleNames: 4613710017_B, 4613710052_B, 4613710054_B, 4616443079_B

> exampleSummaryData.log2[1:10,]

ExpressionSetIllumina (storageMode: list)
assayData: 10 features, 12 samples
element names: exprs, se.exprs, nObservations
protocolData: none
phenoData
rowNames: 4613710017_B 4613710052_B ... 4616494005_A (12 total)
varLabels: sampleID SampleFac
varMetadata: labelDescription
featureData
featureNames: ILMN_1802380 ILMN_1893287 ... ILMN_1705423 (10 total)
fvarLabels: ArrayAddressID IlluminalID Status
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: Humanv3
QC Information
Available Slots:
QC Items: Date, Matrix, ..., SampleGroup, numBeads
sampleNames: 4613710017_B, 4613710052_B, ..., 4616443136_A, 4616494005_A

The object can also be subset by a vector of characters which must correspond to the names of
features (i.e. row names). Currently, no analogous functions is available to subset by sample.

> randIDs <- sample(featureNames (exampleSummaryData), 1000)
> exampleSummaryData[randIDs,]

ExpressionSetIllumina (storageMode: list)
assayData: 1000 features, 12 samples
element names: exprs, se.exprs, nObservations

protocolData: none
phenoData
rowNames: 4613710017_B 4613710052_B ... 4616494005_A (12 total)
varLabels: sampleID SampleFac
varMetadata: labelDescription
featureData
featureNames: ILMN_1810567 ILMN_1788655 ... ILMN_1675788 (1000 total)
fvarLabels: ArrayAddressID IlluminaID Status
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: Humanv3
QC Information
Available Slots:
QC Items: Date, Matrix, ..., SampleGroup, numBeads
sampleNames: 4613710017_B, 4613710052_B, ..., 4616443136_A, 4616494005_A

Exploratory analysis using boxplots

Boxplots of intensity levels and the number of beads are useful for quality assessment purposes. beadarray
includes a modified version of the boxplot function that can take any valid EzpressionSetlllumina
object and plot the expression matrix by default. For these examples we plot just a subset of the
original exampleSummaryData object using random row IDs.

> boxplot (exampleSummaryData.log2[randIDs,])

15.0 - factor(var2)
B3 4613710017 B
B3 4613710052_B
125~ B3 4613710054_B
B3 4616443079_B
o B 4616443081_B
% 10.0- B3 4616443081_H
> B3 4616443092_B

ES 4616443093_B
B3 4616443107_A
B3 4616443115 B
ES 4616443136_A

B3 4616494005_A

461371@6137 BD6537 Bmexs@Ameymmmzlmea;awmemztmemzlmamw@almmsm94005 _A
factor(Var2)

The function can also plot other assayData items, such as the number of observations.

> boxplot (exampleSummaryData.log2[randIDs,], what = "nObservations")

factor(Var2)
ES 4613710017_B

40 ES 4613710052_B
B3 4613710054 B
ES 4616443079_B
30-
ES 4616443081_B
(]
S
3 B3 4616443081_H

20_..... ..l... B3 4616443092_B
. B3 4616443093 B
ES 4616443107_A
B3 4616443115 B

B3 4616443136_A
ES 4616494005_A

10-

46137100137 BO0537 BOO584B30T64 830864 0864480904 830964 836 064436164836 36494005_A

factor(Var2)

The default boxplot plots a separate box for each array, but often it is beneficial for compare
expression levels between different sample groups. If this information is stored in the phenoData slot it
can be incorporated into the plot. The following compares the overall expression level between UHRR
and Brain samples.

> boxplot (exampleSummaryData.log2[randIDs,], sampleFactor = "SampleFac")

15.0 -
12.5-
° factor(sampleFactor)
% 10.0- ‘ Brain
> B3 UHRR
7.5-
5.0-

1 1
Brain UHRR
factor(sampleFactor)

In a similar manner, we may wish to visualize the differences between sample groups for particular
probe groups. As a simple example, we look at the difference between negative controls and regular
probes for each array. You should notice that the negative controls as consistently lower (as expected)
with the exception of array 4616443081_B.

> boxplot (exampleSummaryData.log2[randIDs,], probeFactor = "Status")

4613710017_B

15.0 -
12.5-
10.0 -
75-
5.0-

% 12.5-
= 10.0 -
> 75-

5.0-

12.5-
10.0 -
7.5-
5.0-

Extra feature annotation is available from annotation packages in Bioconductor, and beadarray
includes functionality to extract these data from the annotation packages.
object must be set in order that the correct annotation package can be loaded. For example, the
exampleSummaryData object was generated from Humanv3 data so the illuminaHumanv3.db package must
be present. The addFeatureData function annotates all features of an ExpressionSetIllumina object
using particular mappings from the illuminaHumanv3.db package. To see which mappings are available

4613710052_B

4616443081_H

4616443115_B

1 1
negative regular

4613710054_B

4616443092_B

4616443136_A

1 1
negative regular

factor(probeFactor)

4616443079_B

— . e ww __ mw =

4616443081_B

4616443093_B

———rf—— -

4616443107_A

4616494005_A

P S ——

1
negative regular

1 1
negative regular

factor(probeFactor)

E negative
‘ regular

you can use the illuminaHumanv3() function, or equivalent from other packages.

> annotation(exampleSummaryData)

[1]

"Humanv3"

> exampleSummaryData.log2 <- addFeatureData(exampleSummaryData.log2,

+
+

toAdd = c("SYMBOL",
"GENOMICLOCATION"))

"PROBEQUALITY",

> head(fData(exampleSummaryData.log2))

ILMN_1802380
ILMN_1893287
ILMN_1736104
ILMN_1792389
ILMN_1854015
ILMN_1904757

ILMN_1802380
ILMN_1893287
ILMN_1736104
ILMN_1792389
ILMN_1854015
ILMN_1904757

ILMN_1802380
ILMN_1893287
ILMN_1736104
ILMN_1792389
ILMN_1854015

Row.names
ILMN_1802380
ILMN_1893287
ILMN_1736104
ILMN_1792389
ILMN_1854015
ILMN_1904757
PROBEQUALITY

Perfect
Bad

Bad
Perfect
Bad
Perfect*xx*

ArrayAddressID

10008

10010

10017

10019

10020

10021
CODINGZONE
Transcriptomic
Transcriptomic?
Intergenic
Transcriptomic
Intergenic
Transcriptomic?

"CODINGZONE",

"PROBESEQUENCE",

I1luminaID Status SYMBOL
ILMN_1802380 regular RERE
ILMN_1893287 regular <NA>
ILMN_1736104 regular <NA>
TLMN_1792389 regular RNF165
ILMN_1854015 regular <NA>
ILMN_1904757 regular <NA>

PROBESEQUENCE

GCCCTGACCTTCATGGTGTCTTTGAAGCCCAACCACTCGGTTTCCTTCGG
GGATTTCCTACACTCTCCACTTCTGAATGCTTGGAAACACTTGCCATGCT
TGCCATCTTTGCTCCACTGTGAGAGGCTGCTCACACCACCCCCTACATGC
CTGTAGCAACGTCTGTCAGGCCCCCTTGTGTTTCATCTCCTGCGCGCGTA
GCAGAAAACCATGAGCTGAAATCTCTACAGGAACCAGTGCTGGGGTAGGG

The annotation of the

ILMN_1904757 AGCTGTACCGTGGGGAGGCTTGGTCCTCTTGCCCCATTTGTGTGATGTCT
GENOMICLOCATION

ILMN_1802380 chr1:8412758:8412807: -

ILMN_1893287 chr9:42489407:42489456:+

ILMN_1736104 chr3:134572184:134572223:-

ILMN_1792389 chr18:44040244:44040293:

ILMN_1854015 chr3:160827837:160827885:

ILMN_1904757 chr3:197872267:197872316:

+ 4+ +

> illuminaHumanv3()

####Mappings based on RefSeqID####
Quality control information for illuminaHumanv3:

This package has the following mappings:

i1luminaHumanv3ACCNUM has 31857 mapped keys (of 49576 keys)
i1luminaHumanv3ALIAS2PROBE has 60851 mapped keys (of 96484 keys)
illuminaHumanv3CHR has 29837 mapped keys (of 49576 keys)
i1luminaHumanv3CHRLENGTHS has 93 mapped keys (of 93 keys)
i1luminaHumanv3CHRLOC has 29304 mapped keys (of 49576 keys)
i1luminaHumanv3CHRLOCEND has 29304 mapped keys (of 49576 keys)
illuminaHumanv3ENSEMBL has 29228 mapped keys (of 49576 keys)
illuminaHumanv3ENSEMBL2PROBE has 20983 mapped keys (of 26047 keys)
illuminaHumanv3ENTREZID has 29838 mapped keys (of 49576 keys)
i1luminaHumanv3ENZYME has 3522 mapped keys (of 49576 keys)
i1luminaHumanv3ENZYME2PROBE has 967 mapped keys (of 975 keys)
illuminaHumanv3GENENAME has 29838 mapped keys (of 49576 keys)
illuminaHumanv3GO has 26383 mapped keys (of 49576 keys)
illuminaHumanv3GO2ALLPROBES has 17141 mapped keys (of 17202 keys)
i1luminaHumanv3GO2PROBE has 13303 mapped keys (of 13385 keys)
illuminaHumanv3MAP has 29563 mapped keys (of 49576 keys)
illuminaHumanv30MIM has 21186 mapped keys (of 49576 keys)
illuminaHumanv3PATH has 9175 mapped keys (of 49576 keys)
illuminaHumanv3PATH2PROBE has 229 mapped keys (of 229 keys)
illuminaHumanv3PFAM has 28138 mapped keys (of 49576 keys)
illuminaHumanv3PMID has 29402 mapped keys (of 49576 keys)
i1luminaHumanv3PMID2PROBE has 363320 mapped keys (of 373456 keys)
i1luminaHumanv3PROSITE has 28138 mapped keys (of 49576 keys)
illuminaHumanv3REFSEQ has 29838 mapped keys (of 49576 keys)
illuminaHumanv3SYMBOL has 29838 mapped keys (of 49576 keys)
i1luminaHumanv3UNIGENE has 29686 mapped keys (of 49576 keys)
i1luminaHumanv3UNIPROT has 27671 mapped keys (of 49576 keys)

Additional Information about this package:

DB schema: HUMANCHIP_DB

DB schema version: 2.1
Organism: Homo sapiens

Date for NCBI data: 2013-Marb

Date for GO data: 20130302

Date for KEGG data: 2011-Marib

Date for Golden Path data: 2010-Mar22
Date for Ensembl data: 2013-Janl6
####Custom Mappings based on probe sequence##i#
illuminaHumanv3ARRAYADDRESS ()
illuminaHumanv3NUID ()
illuminaHumanv3PROBEQUALITY ()
illuminaHumanv3CODINGZONE ()
illuminaHumanv3PROBESEQUENCE ()
illuminaHumanv3SECONDMATCHES ()
illuminaHumanv30THERGENOMICMATCHES ()
illuminaHumanv3REPEATMASK ()
illuminaHumanv30VERLAPPINGSNP ()
illuminaHumanv3ENTREZREANNOTATED ()
illuminaHumanv3GENOMICLOCATION ()
illuminaHumanv3SYMBOLREANNOTATED ()
illuminaHumanv3REPORTERGROUPNAME ()
illuminaHumanv3REPORTERGROUPID ()
illuminaHumanv3ENSEMBLREANNOTATED ()

If we suspect that a particular gene may be differentially expressed between conditions, we can subset
the EzpressionSetlllumina object to just include probes that target the gene, and plot the response of
these probes against the sample groups. Furthermore, the different probes can be distinguished using
the probeFactor parameter.

> ids <- which(fData(exampleSummaryData.log2)[, "SYMBOL"] == "ALB")
> boxplot (exampleSummaryData.log2[ids,], sampleFactor = "SampleFac",
+ probeFactor = "I1luminaID")

Brain UHRR

125-

factor(probeFactor)

©10.0-
2 B3 ILMN_1682763
> B3 ILMN_1782939
7.5-
—
— |
5.0-
I I I I
ILMN_1682763 ILMN_1782939 ILMN_1682763 ILMN_1782939
factor(probeFactor)

A note about ggplot2

The boxplot function in beadarray creates graphics using the ggplot2 package rather than the R base
graphics system. Therefore, the standard way of manipulating graphics using par and mfrow etc will
not work with the output of boxplot. However, the ggplot2 package has equivalent functionality and is
a more powerful and flexible system. There are numerous tutorials on how to use the ggplot2 package,

10

which is beyond the scope of this vignette. In the below code, we assign the results of boxplot to
objects that we combine using viewports (a concept from the grid graphics system). The code also
demonstrates how aspects of the plot can be altered programatically.

require("gridExtra")

bpl <- boxplot (exampleSummaryData.log2[ids,], sampleFactor = "SampleFac",
probeFactor = "I1luminaID") + labs(title = "ALB expression level comparison") +
xlab("Illumina Probe") + ylab("Log2 Intensity")

bp2 <- boxplot(exampleSummaryData.log2[randIDs,], probeFactor = "Status") +
labs(title = "Control Probe Comparison')

print(bpl, vp = viewport(width = 0.5, height = 1,

print (bp2, vp = viewport(width = 0.5, height = 1,

x =0.25, y = 0.5))
x = = 0.5))

VV+V + + VvV

=)
~
o1
~
I

Other exploratory analysis
Replicate samples can also be compared using the plotMAXY.

> plotMAXY (exprs(exampleSummaryData), arrays = 1:3, pch = 16, log = FALSE)

G:4613710017_B —*

14
|

12
|

10
Ay

T G:4613710052_B

G:4613710054_B

In the top right corner we see the MA plots for all pairwise comparisons involving the 3 arrays. On
an MA plot, for each probe we plot the average of the log2 -intensities from the two arrays on the x-axis
and the difference in intensities (log -ratios) on the y-axis. For replicate arrays we would expect all
probes to be unchanged between the two samples and hence most points on the plot should lie along
the line y=0. In the lower left corner of the MAXY plot we see the XY plot and for replicate arrays
we would expect to see most points along the diagonal y = x. From this MAXY plot it is obvious that
the second array is systematically different to the other replicates and may benefit from normalisation.
Both XY and MA plots are available separately for a particular comparison of arrays using plotXY and
plotMA.

11

Normalisation

To correct for differences in expression level across a chip and between chips we need to normalise
the signal to make the arrays comparable. The normalisation methods available in the affy package, or
variance-stabilising transformation from the lumi package may be applied using the normaliseIllumina
function. Below we quantile normalise the logs transformed data.

> exampleSummaryData.norm <- normaliselllumina(exampleSummaryData.log2,
+ method = "quantile", transform = "none")

An alternative approach is to combine normal-exponential background correction with quantile
normalisation as suggested in the limma package. However, this requires data that have not been
log-transformed. Note that the control probes are removed from the output object

> exampleSummaryData.norm2 <- normaliseIllumina(channel (exampleSummaryData,
+ "G.ul"), method = "neqc", transform = "none")

Filtering

Filtering non-responding probes from further analysis can improve the power to detect differential
expression. One way of achieving this is to remove probes whose probe sequence has undesirable
properties. Four basic annotation quality categories (‘Perfect’, ‘Good’, ‘Bad’ and ‘No match’) are
defined and have been shown to correlate with expression level and measures of differential expression.
We recommend removing probes assigned a ‘Bad’ or ‘No match’ quality score after normalization. This
approach is similar to the common practice of removing lowly-expressed probes, but with the additional
benefit of discarding probes with a high expression level caused by non-specific hybridization. You can
verify the relationship between probe quality and intensity by using the boxplot function.

> library(illuminaHumanv3.db)

> ids <- as.character (featureNames (exampleSummaryData.norm))

> qual <- unlist(mget(ids, illuminaHumanv3PROBEQUALITY, ifnotfound = NA))
> table(qual)

qual
Bad Good Good**x* Good**** No match Perfect
13475 925 148 358 1739 24687
Perfect*x* Perfect*xx*x
6269 1975
> rem <- qual == "No match" | qual == "Bad" | is.na(qual)

> exampleSummaryData.filt <- exampleSummaryData.norm[!rem,]
> dim(exampleSummaryData.filt)

Features Samples Channels
34362 12 1

> boxplot (exampleSummaryData.norm, probeFactor = "PROBEQUALITY",

+ sampleFactor = "SampleFac") + opts(axis.text.x = theme_text(angle = 45,
+ hjust = 1)) + xlab("Probe Quality") + ylab("Log2 Intensity")

12

Brain UHRR

15.0 -
12.5-
factor(probeFactor)
- Bad
> - Good
@ 10,04 - Good***
E‘a : - Good****
£
Cc\l» - No match
3 - Perfect
E Perfect***
7.5- * - Perfect****
5.0- + + % + + %
I I I I I I I I I I I I I I I I
S O A A S O N TS e
FFS & FEL L FPS & Sl <
S P ERE P O L@
O S QQ,QQ} O S QQ,QQ}

Probe Quality

Differential expression

The differential expression methods available in the limma package can be used to identify differentially
expressed genes. The functions 1mFit and eBayes can be applied to the normalised data. In the exam-
ple below, we set up a design matrix for the example experiment and fit a linear model to summaries
the data from the UHRR and Brain replicates to give one value per condition. We then define contrasts
comparing the Brain sample to the UHRR and calculate moderated t-statistics with empirical Bayes
shrinkage of the sample variances. In this particular experiment, the Brain and UHRR samples are very
different and we would expect to see many differentially expressed genes.

Empirical array quality weights can be used to measure the relative reliability of each array. A
variance is estimated for each array by the arrayWeights function which measures how well the expres-
sion values from each array follow the linear model. These variances are converted to relative weights
which can then be used in the linear model to down-weight observations from less reliable arrays which
improves power to detect differential expression. You should notice that some arrays have very low
weight consistent with their poor QC.

We then define a contrast comparing UHRR to Brain Reference and calculate moderated ¢-statistics
with empirical Bayes’ shrinkage of the sample variances.

> library(limma)

13

> rna <- factor(pData(exampleSummaryData) [, "SampleFac"])
> design <- model.matrix(~0 + rna)
> colnames(design) <- levels(rna)
> aw <- arrayWeights (exprs(exampleSummaryData.filt), design)
> aw
1 2 3 4 5 6 7
2.09018696 2.52678943 1.45410355 1.77470959 2.13405097 1.85777235 0.01233139
8 9 10 11 12
0.11159911 2.45290622 2.04233539 2.08578184 1.28699294
> fit <- 1mFit(exprs(exampleSummaryData.filt), design, weights = aw)
> contrasts <- makeContrasts(UHRR - Brain, levels = design)
> contr.fit <- eBayes(contrasts.fit(fit, contrasts))
> topTable(contr.fit, coef = 1)
ID logFC AveExpr t P.Value adj.P.Val

22053 ILMN_1651358 7.344613 9.202611 87.76990 5.296571e-34 1.660766e-29
2046 ILMN_1796678 7.320711 9.608215 85.77897 9.666297e-34 1.660766e-29
31865 ILMN_1713458 6.419033 8.954098 78.22104 1.084133e-32 1.210370e-28
34021 ILMN_1783832 5.972782 8.323385 77.44244 1.408963e-32 1.210370e-28
3180 ILMN_1782939 6.822151 9.310045 76.19989 2.152332e-32 1.479169e-28
28964 ILMN_1688543 6.708307 9.032077 73.23368 6.088138e-32 3.123578e-28
3885 ILMN_1795679 -7.150689 9.069547 -73.11021 6.363148e-32 3.123578e-28
17902 ILMN_2084825 7.980186 9.899318 72.67719 7.433974e-32 3.193078e-28
9205 ILMN_1782204 6.275340 8.666149 69.87028 2.084422e-31 7.958322e-28
10401 ILMN_1665994 6.693724 8.725046 67.50738 5.127974e-31 1.762074e-27

B
22053 67.02204
2046 66.49238
31865 64.32882
34021 64.09107
3180 63.70543
28964 62.75274
3885 62.71207
17902 62.56876
9205 61.61410
10401 60.77415

Annotation of results

The topTable function displays the results of the empirical Bayes analysis alongside the annotation as-
signed by Illumina to each probe in the linear model fit. Often this will not provide sufficient information
to infer biological meaning from the results. Within Bioconductor, annotation packages are available
for each of the major Illumina expression array platforms that map the probe sequences designed by
Tllumina to functional information useful for downstream analysis. As before, the illuminaHumanv3.db
package can be used for the arrays in this example dataset.

> ids2 <- featureNames (exampleSummaryData.filt)
> chr <- mget(ids2, illuminaHumanv3CHR, ifnotfound = NA)
> cytoband <- mget(ids2, illuminaHumanv3MAP, ifnotfound = NA)

14

VV+ 4+ VVVVYyV

22053
2046
31865
34021
3180
28964
3885
17902
9205
10401

22053
2046
31865
34021
3180
28964
3885
17902
9205
10401

22053
2046
31865
34021
3180
28964
3885
17902
9205
10401

22053
2046
31865
34021
3180
28964
3885

RefSeq
Symbol

I11_1ID Chr

ILMN_1651358
ILMN_1796678
TLMN_1713458
TLMN_1783832
TLMN_1782939
ILMN_1688543
ILMN_1795679
ILMN_2084825
TLMN_1782204
TLMN_1665994

1
1
1

1

ids2, Chr

Cytoband
1 11p15.5
1 11p15.5
6 16p13.3
X Xp11.4-p11.2
4 4q13.3
1 1923.3
8 8g21.13
1 11p15.5
4 4913.3
2 12q13-q14

as.character (genename))

refseq <- mget(ids2, illuminaHumanv3REFSE(Q, ifnotfound = NA)
entrezid <- mget(ids2, illuminaHumanv3ENTREZID, ifnotfound = NA)
symbol <- mget(ids2, illuminaHumanv3SYMBOL, ifnotfound = NA)
genename <- mget(ids2, illuminaHumanv3GENENAME, ifnotfound = NA)
anno <- data.frame(I11_ID

as.character(chr), Cytoband
as.character(refseq), EntrezID = as.numeric(entrezid),
as.character(symbol), Name
contr.fit$genes <- anno
topTable(contr.fit)

c("NM_005330",
c("NM_000559",
c("NM_005332",
c("NM_001476",
c("NM_000477",
c("NM_001643",

c("NM_001199214", "NM_007029", "NP_001186143",

c("NM_000184",
c("NM_001134",

c("NM_001200053", "NM_001200054", "NM_006928", "NP_001186982", "NP_001186983",

EntrezID Sym
3046 H
3047 H
3050
2578

213

336
11075
3048

174

6490
P.Value
5.296571e-34
9.666297e-34
1.084133e-32
1.408963e-32

2

6

6

GA

AP
ST
H

.152332e-32
.088138e-32
.363148e-32

bol
BE1
BG1
HBZ
GE6
ALB
0A2
MN2
BG2
AFP

1
1
1
1.
1
3
3

Name

hemoglobin, epsilon 1
hemoglobin, gamma A
hemoglobin, zeta

G antigen 6
albumin

apolipoprotein A-II
stathmin-like 2
hemoglobin, gamma G

alpha-
PMEL premelanosome protein

adj.P.Val

.660766e-29
.660766e-29
.210370e-28

210370e-28

.479169e-28
.123578e-28
.123578e-28

fetoprotein

B
67.02204
66.49238
64.32882
64.09107
63.70543
62.75274
62.71207

15

o0 o NN

|
~

D O N

logFC

.344613
.320711
.419033
.972782
.822151
.708307
.150689
.980186
.275340
.693724

9
9
8
8
9
9
9
9
8
8

AveExpr
.202611
.608215
.954098
.323385
.310045
.032077
.069547
.899318
.666149
. 725046

8r7.
LT7897
78.
TT.
76.
73.
-73.
72.
.87028
67.

85

69

t
76990

22104
44244
19989
23368
11021
67719

50738

as.character(cytoband),

RefSeq
"NP_005321")
"NP_000550")
"NP_005323")
"NP_001467")
"NP_000468")
"NP_001634")
"NP_008960")
"NP_000175")
"NP_001125")
"NP_008859")

17902 7.433974e-32 3.193078e-28 62.56876
9205 2.084422e-31 7.958322e-28 61.61410
10401 5.127974e-31 1.762074e-27 60.77415

Reading bead summary data into beadarray

BeadStudio/GenomeStudio is Illumina’s proprietary software for analyzing data output by the scanning
system (BeadScan/iScan). It contains different modules for analyzing data from different platforms.
For further information on the software and how to export summarized data, refer to the user’s manual.
In this section we consider how to read in and analyze output from the gene expression module of
BeadStudio/GenomeStudio.

The example dataset used in this section consists of an experiment with one Human WG-6 version
2 BeadChip. These arrays were hybridized with the control RNA samples used in the MAQC project
(3 replicates of UHRR and 3 replicates of Brain Reference RNA).

The non-normalized data for regular and control probes was output by BeadStudio/GenomeStudio.

The example BeadStudio output used in this section is available in the file
AsuragenMAQC_BeadStudioOutput.zip which can be downloaded from
tt http://www.switchtoi.com/datasets.ilmn.

You will need to download and unzip the contents of this file to the current R working directory.
Inside this zip file you will find several files including summarized, non-normalized data and a file
containing control information. We give a more detailed description of each of the particular files we
will make use of below.

e Sample probe profile (AsuragenMAQC-probe-raw.txt) (required) - text file which contains the non-
normalized summary values as output by BeadStudio. Inside the file is a data matrix with some
48,000 rows. In newer versions of the software, these data are preceded by several lines of header
information. Each row is a different probe in the experiment and the columns give different mea-
surements for the gene. For each array, we record the summarized expression level (AVG_Signal),
standard error of the bead replicates (BEAD_STDERR), number of beads (Avg NBEADS) and a
detection p-value (Detection Pval) which estimates the probability of a gene being detected above
the background level. When exporting this file from BeadStudio, the user is able to choose which
columns to export.

e Control probe profile (AsuragenMAQC-controls.txt) (recommended) - text file which contains the
summarized data for each of the controls on each array, which may be useful for diagnostic and
calibration purposes. Refer to the Illumina documentation for information on what each control
measures.

o targets file (optional) - text file created by the user specifying which sample is hybridized to
each array. No such file is provided for this dataset, however we can extract sample annotation
information from the column headings in the sample probe profile.

Files with normalized intensities (those with avg in the name), as well as files with one intensity
value per gene (files with gene in the name) instead of separate intensities for different probes targeting
the same transcript, are also available in this download. We recommend users work with the non-
normalized probe-specific data in their analysis where possible. Illumina’s background correction step,
which subtracts the intensities of the negative control probes from the intensities of the regular probes,
should also be avoided.

> library(beadarray)
> dataFile = "AsuragenMA(JC-probe-raw.txt"

16

> qcFile = "AsuragenMAQC-controls.txt"

> BSData = readBeadSummaryData(dataFile = dataFile, qcFile = qcFile,

+ controlID = "ProbeID", skip = 0, qc.skip = 0, gc.columns = list(exprs = "AVG_Signal",
+ Detection = "Detection Pval"))

The arguments of readBeadSummaryData can be modified to suit data from versions 1, 2 or 3 of
BeadStudio. The current default settings should work for version 3 output. Users may need to change
the argument sep, which specifies if the dataFile is comma or tab delimited and the skip argument
which specifies the number of lines of header information at the top of the file. Possible skip argu-
ments of 0, 7 and 8 have been observed, depending on the version of BeadStudio or way in which the
data was exported. The columns argument is used to specify which column headings to read from
dataFile and store in various matrices. Note that the naming of the columns containing the standard
errors changed between versions of BeadStudio (earlier versions used BEAD STDEV in place of BEAD
STDERR - be sure to check that the columns argument is appropriate for your data). Equivalent
arguments (qc.sep, qe.skip and qgc.columns) are used to read the data from qcFile. See the help page
(?readBeadSummaryData) for a complete description of each argument to the function.

Citing beadarray

If you use beadarray for the analysis or pre-processing of BeadArray data please cite:
Dunning MJ, Smith ML, Ritchie ME, Tavaré S, beadarray: R classes and methods for Illumina
bead-based data, Bioinformatics, 23(16):2183-2184

1 Asking for help on beadarray

Wherever possible, questions about beadarray should be sent to the Bioconductor mailing list!. This
way, all problems and solutions will be kept in a searchable archive. When posting to this mailing list,
please first consult the posting guide. In particular, state the version of beadarray and R that you are
using?, and try to provide a reproducible example of your problem. This will help us to diagnose the
problem.

This vignette was built with the following versions of R and

> sessionInfo()

R version 3.0.0 (2013-04-03)
Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:
[1] grid parallel stats graphics grDevices utils datasets
[8] methods base

Ihttp://www.bioconductor.org
2This can be done by pasting the output of running the function sessionInfo().

17

other attached packages:

(1]
(3]
(5]
(7]
(9]
[11]

limma_3.16.0

illuminaHumanv3.db_1.18.0

RSQLite_0.11.2
AnnotationDbi_1.22.0
beadarray_2.10.0
Biobase_2.20.0

gridExtra_0.9.1
org.Hs.eg.db_2.9.0

DBI_0.2-5

beadarrayExampleData_1.0.5

ggplot2_0.9.3.1

BiocGenerics_0.6.0

loaded via a namespace (and not attached):

(1]
[4]
(7]
[10]
[13]
[16]
[19]

AnnotationForge_1.2.0 BeadDataPackR_1.12.0

KernSmooth_2.23-10
colorspace_1.2-1
gtable_0.1.2
plyr_1.8
scales_0.2.3
tools_3.0.0

MASS_7.3-26
dichromat_2.0-0
labeling 0.1
proto_0.3-10
stats4_3.0.0

18

IRanges_1.18.0
RColorBrewer_1.0-5
digest_0.6.3
munsell_0.4
reshape2_1.2.2
stringr_0.6.2

