
flowWorkspace: A Package for Importing flowJo

Workspaces into R

Greg Finak <gfinak@fhcrc.org>

October 2, 2012

1 Purpose

The purpose of this package is to provide functionality to import relatively
simple flowJo workspaces into R. By this we mean, accessing the sam-
ples, groups, transformations, compensation matrices, gates, and population
statistics in the flowJo workspace, and replicating these using (primarily)
flowCore functionality.

2 Why Another flowJo Workspace Import Pack-
age?

There was a need to import flowJo workspaces into R for comparative gating.
The flowFlowJo package did not meet our needs. Many groups have legacy
data with associated flowJo XML workspace files in version 2.0 format that
they would like to access using BioConductor’s tools. Hopefully this package
will fill that need.

3 Support

This package supports importing of Version 2.0 XML workspaces only.
We cannot import .jo files directly. You will have to save them in XML
workspace format, and ensure that that format is workspace version 2.0.
The package has been tested and works with files generated using flowJo
version 9.1 on Mac OS X. XML generated by older versions of flowJo on
windows should work as well. We do not yet support flowJo’s Chimera
XML schema, though that support will be provided in the future.

1

The package supports import of only a subset of the features present in a
flowJo workspace. The package allows importing of sample and group names,
gating hierarchy, compensation matrices, data transformation functions, a
subset of gates, and population counts.

BooleanGates are now supported by flowWorkspace.

4 Data Structures

The following section walks through opening and importing a flowJo workspace.

4.1 Loading the library

Simply call:

> library(flowWorkspace)

The library depends on numerous other packages, including graph, XML,
Rgraphviz, flowCore, flowViz, RBGL.

4.2 Opening a Workspace

We represent flowJo workspaces using flowJoWorkspace objects. We only
need to know the path to, and filename of the flowJo workspace.

> d<-system.file("extdata",package="flowWorkspaceData");

> wsfile<-list.files(d,pattern="A2004Analysis.xml",full=T)

In order to open this workspace we call:

> ws<-openWorkspace(wsfile)

> summary(ws)

FlowJo Workspace Version 2.0

File location: D:/biocbld/bbs-2.11-bioc/R/library/flowWorkspaceData/extdata

File name: A2004Analysis.xml

Workspace is open.

Groups in Workspace

Name Num.Samples

1 All Samples 2

2

We see that this a version 2.0 workspace file. It’s location and filename
are printed. Additionally, you are notified that the workspace file is open.
This refers to the fact that the XML document is internally represented
using ’C’ data structures from the XML package. After importing the file,
the workspace must be explicitly closed using closeWorkspace() in order
to free up that memory.

4.3 Parsing the Workspace

With the workspace file open, we have not yet imported the XML document.
The next step parses the XML workspace and creates R data structures to
represent some of the information therein. Specifically, by calling parse-

Workspace() the user will be presented with a list of groups in the workspace
file and need to choose one group to import. Why only one? Because of the
way flowJo handles data transformation and compensation. Each group of
samples is associated with a compensation matrix and specific data trans-
formation. These are applied to all samples in the group. When a particular
group of samples is imported, the package generates a GatingHierarchy for
each sample, describing the set of gates applied to the data (note: polygons,
rectangles, quadrants, and ovals and boolean gates are supported). The set
of GatingHierarchies for the group of samples is stored in a GatingSet ob-
ject. Calling parseWorkspace() is quite verbose, informing the user as each
gate is created. The parsing can also be done non–interactively by speci-
fying which group to import directly in the function call (either an index
or a group name). An additional optional argument execute=T/F specifies
whether you want to load, compensate, transform the data and compute
statistics immediately after parsing the XML tree.

> G<-parseWorkspace(ws,name=1,path=ws@path,isNcdf=FALSE,cleanup=FALSE,keep.indices=TRUE); #import the first group

> #Lots of output here suppressed for the vignette.

When isNcdf flag is set TRUE,the data is stored in ncdf format on disk.

> G

A GatingSet with 2 samples

1 . FCS File: a2004_O1T2pb05i_A1_A01.fcs

GatingHierarchy with 20 gates

2 . FCS File: a2004_O1T2pb05i_A2_A02.fcs

GatingHierarchy with 20 gates

3

We have generated a GatingSet with 2 samples, each of which has 19
associated gates. Subsets of gating hierarchies can be accessed using the
standard R subset syntax.

At this point we have parsed the workspace file and generate the gating
hierarchy associated with each sample imported from the file. The data have
been loaded, compensated, and transformed in the workspace, and gating
has been executed. The resulting GatingSet contains a replicated analysis
of the original flowJo workspace.

> G<-lapply(G,function(x)execute(x))

We can plot the gating hierarchy for a given sample:

> require(Rgraphviz)

> plot(G[[1]])

a2004_O1T2pb05i Live

APC

B Cell

mDC

IFNa+

IL−6+

IL−12+

TNFa+

pDC

IFNa+

IL−6+

IL−12+

TNFa+

CD14−MHC2−

Monocytes

IFNa+

IL−6+

IL−12+

TNFa+

We can list the nodes (populations) in the gating hierarchy:

> getNodes(G[[1]])

4

[1] "a2004_O1T2pb05i" "3.Live" "4.APC" "5.B Cell"

[5] "6.mDC" "7.IFNa+" "8.IL-6+" "9.IL-12+"

[9] "10.TNFa+" "11.pDC" "12.IFNa+" "13.IL-6+"

[13] "14.IL-12+" "15.TNFa+" "16.CD14-MHC2-" "17.Monocytes"

[17] "18.IFNa+" "19.IL-6+" "20.IL-12+" "21.TNFa+"

Note that the number preceding the period in the node names is just an
identifier to help uniquely label populations in the gating hierarchy. It does
not represent any information about population statistics. We can get a
specific gate definition:

> getGate(G[[1]],getNodes(G[[1]])[3])

Polygonal gate '4.APC' with 14 vertices in dimensions <PerCP-CY5-5-A> and <PE-CY7-A>

We can extract the dimensions relating to a specific gate:

> getDimensions(G[[1]],getNodes(G[[1]])[3])

[1] "<PerCP-CY5-5-A>" "<PE-CY7-A>"

We can extract vertices of a gate:

> getBoundaries(G[[1]],getNodes(G[[1]])[3])

<PerCP-CY5-5-A> <PE-CY7-A>

[1,] 2349.993 2024.8746

[2,] 2163.383 1575.0085

[3,] 2240.899 992.3135

[4,] 2349.993 793.0647

[5,] 2585.516 696.7596

[6,] 3315.004 1138.4273

[7,] 3586.426 1354.9513

[8,] 3602.373 2040.1931

[9,] 3570.480 2256.4455

[10,] 3363.261 2318.7616

[11,] 3204.000 2240.8992

[12,] 3044.921 2209.8486

[13,] 2711.845 2070.8857

[14,] 2569.755 2055.5302

We can get the population proportion (relative to its parent) for a single
population:

5

> getProp(G[[1]],getNodes(G[[1]])[3])

[1] 0.08402716

Or we can retrieve the population statistics for all populations in the
sample:

> getPopStats(G[[1]])

flowCore.freq flowJo.count flowCore.count

a2004_O1T2pb05i_A1_A01.fcs 1.000000000 61832 61832

/Live 0.800297581 49542 49484

/Live/Monocytes 0.058928138 2931 2916

/Live/Monocytes/TNFa+ 0.250685871 754 731

/Live/Monocytes/IL-12+ 0.047325103 146 138

/Live/Monocytes/IL-6+ 0.237654321 694 693

/Live/Monocytes/IFNa+ 0.003772291 13 11

/Live/CD14-MHC2- 0.543125051 26795 26876

/Live/APC 0.084027160 4141 4158

/Live/APC/pDC 0.104377104 446 434

/Live/APC/pDC/TNFa+ 0.000000000 0 0

/Live/APC/pDC/IL-12+ 0.571428571 250 248

/Live/APC/pDC/IL-6+ 0.000000000 0 0

/Live/APC/pDC/IFNa+ 0.002304147 1 1

/Live/APC/mDC 0.122174122 502 508

/Live/APC/mDC/TNFa+ 0.141732283 71 72

/Live/APC/mDC/IL-12+ 0.005905512 2 3

/Live/APC/mDC/IL-6+ 0.043307087 22 22

/Live/APC/mDC/IFNa+ 0.005905512 2 3

/Live/APC/B Cell 0.525493025 2271 2185

parent.total node

a2004_O1T2pb05i_A1_A01.fcs 61832 a2004_O1T2pb05i

/Live 61832 3.Live

/Live/Monocytes 49484 17.Monocytes

/Live/Monocytes/TNFa+ 2916 21.TNFa+

/Live/Monocytes/IL-12+ 2916 20.IL-12+

/Live/Monocytes/IL-6+ 2916 19.IL-6+

/Live/Monocytes/IFNa+ 2916 18.IFNa+

/Live/CD14-MHC2- 49484 16.CD14-MHC2-

/Live/APC 49484 4.APC

/Live/APC/pDC 4158 11.pDC

6

/Live/APC/pDC/TNFa+ 434 15.TNFa+

/Live/APC/pDC/IL-12+ 434 14.IL-12+

/Live/APC/pDC/IL-6+ 434 13.IL-6+

/Live/APC/pDC/IFNa+ 434 12.IFNa+

/Live/APC/mDC 4158 6.mDC

/Live/APC/mDC/TNFa+ 508 10.TNFa+

/Live/APC/mDC/IL-12+ 508 9.IL-12+

/Live/APC/mDC/IL-6+ 508 8.IL-6+

/Live/APC/mDC/IFNa+ 508 7.IFNa+

/Live/APC/B Cell 4158 5.B Cell

We can plot the coefficients of variation between the counts derived using
flowJo and flowCore for each population:

> print(plotPopCV(G[[2]]))

Coefficient of Variation

a2004_O1T2pb05i_A2_A02.fcs

Live

Monocytes

TNFa+

IL−12+

IL−6+

IFNa+

CD14−MHC2−

APC

pDC

mDC

B Cell

0.0 0.2 0.4 0.6 0.8 1.0

We can plot individual gates: note the scale of the transformed axes.

> print(plotGate(G[[1]],getNodes(G[[1]])[6],lwd=2,cex=2))

7

a2004_O1T2pb05i_A1_A01.fcs
/Live/APC/mDC/IFNa+

<FITC−A>

D
en

si
ty

0.0000

0.0005

0.0010

−110 −57 −13 30 78 140 230 380 630 1100 1800 3100

●●●● ●●● ●●● ●● ●●● ●● ●● ● ●●●● ● ●● ● ●●● ●● ●● ●● ●●● ● ●●●● ●●●●● ●●●● ●●● ●●● ●● ● ●● ● ● ●●● ●● ●●●●● ●●● ●●● ● ●●● ● ●●●●●● ●●●● ● ●●●●● ●● ● ●●● ● ●●●●● ● ●● ●● ●●● ●●● ●● ●●● ●●● ●●● ●● ●● ●● ●● ●●●●●●●● ●● ●●● ●●●● ●●● ●● ●● ●● ●●●● ●●● ●● ●●● ● ● ●● ●●●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ● ●●● ●● ●● ●●●● ●● ●●●●● ●●● ● ●●● ●●●● ● ●●● ●● ●●● ●●● ●● ● ●●● ●● ●● ●●● ●●● ●● ● ●● ●● ●●●● ●●●● ●● ● ●●● ●● ●●● ●● ●●●● ● ●●● ●●● ●● ● ●●● ●●●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●●●●● ● ●●●●● ●● ● ● ●●●● ●●●● ●●● ●●●●● ●●●● ●● ●● ●●●●●●●● ●●●●● ●●● ● ●● ●●●● ●●●●● ●●● ● ●● ● ●● ●●● ●●● ●●●●● ●● ●●●●●● ●●● ● ●●●● ●●● ●● ●● ● ●●● ● ●●●● ●●●●●● ●●● ● ●●●● ●●● ●●●●● ● ●● ●●●● ● ●●● ●● ● ●● ● ●● ●● ●●●● ●●● ●● ●

If we have metadata associated with the experiment, it can be attached
to the GatingSet.

> d<-data.frame(sample=factor(c("sample 1", "sample 2")),treatment=factor(c("sample","control")))

> G@metadata<-new("AnnotatedDataFrame",data=d)

> pData(G);

sample treatment

1 sample 1 sample

2 sample 2 control

We can retrieve the subset of data associated with a node:

> getData(G[[1]],getNodes(G[[1]])[3]);

flowFrame object '1be493f5-51dd-4359-b2ed-524cd104eb5f'

with 4158 cells and 23 observables:

name desc range minRange maxRange

$P1 FSC-A <NA> 262254.000 -111.00000 262143.000

$P2 FSC-H <NA> 262143.000 0.00000 262143.000

8

$P3 FSC-W <NA> 262143.000 0.00000 262143.000

$P4 SSC-A <NA> 262254.000 -111.00000 262143.000

$P5 SSC-H <NA> 262143.000 0.00000 262143.000

$P6 SSC-W <NA> 262143.000 0.00000 262143.000

$P7 <Am Cyan-A> CD123 3661.959 435.34379 4097.303

$P8 Am Cyan-H CD123 262143.000 0.00000 262143.000

$P9 <Pacific Blue-A> IL-12 3927.974 169.60860 4097.582

$P10 Pacific Blue-H IL-12 262143.000 0.00000 262143.000

$P11 <APC-A> CD11c 4405.818 -308.01302 4097.805

$P12 APC-H CD11c 262143.000 0.00000 262143.000

$P13 <APC-CY7-A> IL-6 3714.446 382.93207 4097.378

$P14 APC-CY7-H IL-6 262143.000 0.00000 262143.000

$P15 <Alexa 700-A> TNFa 3712.753 384.62271 4097.376

$P16 Alexa 700-H TNFa 262143.000 0.00000 262143.000

$P17 <FITC-A> IFNa 4180.519 -82.81306 4097.706

$P18 FITC-H IFNa 262143.000 0.00000 262143.000

$P19 <PerCP-CY5-5-A> MHCII 4942.398 -844.59317 4097.805

$P20 PerCP-CY5-5-H MHCII 262143.000 0.00000 262143.000

$P21 <PE-CY7-A> CD14 4942.398 -844.59317 4097.805

$P22 PE-CY7-H CD14 262143.000 0.00000 262143.000

$P23 Time <NA> 9918.400 89.00000 10007.400

322 keywords are stored in the 'description' slot

Or we can retrieve the indices specifying if an event is included inside or
outside a gate using:

> getIndices(G[[1]],getNodes(G[[1]])[3])

The indices returned are relative to the parent population (member of parent
AND member of current gate), so they reflect the true hierarchical gating
structure.

If we wish to do compensation or transformation manually, we can re-
trieve all the compensation matrices from the workspace:

> C<-getCompensationMatrices(ws);

> C

$`A2004-A2005_06i`

Am Cyan-A Pacific Blue-A APC-A APC-CY7-A Alexa 700-A

Am Cyan-A 1.00000 0.04800 0.000000 0.0000 0.00000

Pacific Blue-A 0.38600 1.00000 0.000529 0.0000 0.00000

9

APC-A 0.00642 0.00235 1.000000 0.0611 0.19800

APC-CY7-A 0.03270 0.02460 0.084000 1.0000 0.02870

Alexa 700-A 0.07030 0.05800 0.016200 0.3990 1.00000

FITC-A 0.74500 0.02090 0.001870 0.0000 0.00000

PerCP-CY5-5-A 0.00368 0.00178 0.015300 0.0269 0.07690

PE-CY7-A 0.01330 0.00948 0.000951 0.1380 0.00182

FITC-A PerCP-CY5-5-A PE-CY7-A

Am Cyan-A 0.028500 0.00104 0.00000

Pacific Blue-A 0.000546 0.00000 0.00000

APC-A -0.000611 0.00776 0.00076

APC-CY7-A 0.002690 0.00304 0.01010

Alexa 700-A 0.001530 0.10800 0.00679

FITC-A 1.000000 0.04180 0.00281

PerCP-CY5-5-A 0.000000 1.00000 0.07030

PE-CY7-A 0.002340 0.03360 1.00000

Or we can retrieve transformations:

> T<-getTransformations(ws)

> names(T)

[1] "InputParameterTransform_Gain1_Offset1"

[2] "A2004-A2005_06i"

[3] "InputParameterTransform_Gain1_Offset1262144"

> names(T[[1]])

[1] "InputParameterTransform_Gain1_Offset1"

[2] "InputParameterTransform_Gain1_Offset1262144"

> T[[1]][[1]]

function (x, deriv = 0)

{

deriv <- as.integer(deriv)

if (deriv < 0 || deriv > 3)

stop("'deriv' must be between 0 and 3")

if (deriv > 0) {

z0 <- double(z$n)

z[c("y", "b", "c")] <- switch(deriv, list(y = z$b, b = 2 *

z$c, c = 3 * z$d), list(y = 2 * z$c, b = 6 * z$d,

10

c = z0), list(y = 6 * z$d, b = z0, c = z0))

z[["d"]] <- z0

}

res <- .C(C_spline_eval, z$method, as.integer(length(x)),

x = as.double(x), y = double(length(x)), zn, zx, z$y,

zb, zc, z$d, PACKAGE = "stats")$y

if (deriv > 0 && z$method == 2 && any(ind <- x <= z$x[1L]))

res[ind] <- ifelse(deriv == 1, z$y[1L], 0)

res

}

<bytecode: 0x03d00204>

<environment: 0x06765e14>

getTransformations returns a list, each element of which corresponds
to a transformation applied to a group of samples. The transformation is
presented as a list of functions to be applied to different dimensions of the
data. Above, the transformation is applied to all samples of the group and
for each sample in the group, the appropriate dimension is transformed using
a channel–specific function from the list.

The list of samples in a workspace can be accessed by:

> getSamples(ws);

sampleID name count compID pop.counts

1 1 a2004_O1T2pb05i 61832 1 19

2 2 a2004_O1T2pb05i 45363 1 19

And the groups can be accessed by:

> getSampleGroups(ws)

groupName groupID sampleID

1 All Samples 0 1

2 All Samples 0 2

The compID column tells you which compensation matrix to apply to a
group of files, and similarly, based on the name of the compensation matrix,
which transformations to apply.

11

4.4 Converting to flowCore Objects

You may want to convert the imported workspace into flowCore objects,
such as workflows. We provide this functionality via the flowWorkspace2flowCore
function.

flowWorkspace2flowCore extracts the compensation matrices,transformation
functions and all the gates from GatingHierarchies generated by flowWorkspace
package and converts them to the respective views and actionItems of work-
Flows defined by flowCore package. It takes a gatingHierarchy, flowJoWorkspace
or GatingSet as the input, and returns one or multiple workflows as the re-
sult, depending on whether the gating hierarchies for each sample (including
gate coordinates) are identical.

> wfs<-flowWorkspace2flowCore(G,path=ws@path);

> wfs

[[1]]

A flow cytometry workflow called 'default'

The following data views are provided:

Basic view 'base view'

on a flowSet

not associated to a particular action item

View 'CompensationView'

on a flowSet linked to

compensation action item 'action_defaultCompensation'

View 'a2004_O1T2pb05i'

on a flowSet linked to

transform action item 'action_defaultTransformation'

View '3.Live+'

on a flowSet linked to

gate action item 'action_3.Live'

View '4.APC+'

on a flowSet linked to

gate action item 'action_4.APC'

View '5.B Cell+'

12

on a flowSet linked to

gate action item 'action_5.B Cell'

View '6.mDC+'

on a flowSet linked to

gate action item 'action_6.mDC'

View '7.IFNa++'

on a flowSet linked to

gate action item 'action_7.IFNa+'

View '8.IL-6++'

on a flowSet linked to

gate action item 'action_8.IL-6+'

View '9.IL-12++'

on a flowSet linked to

gate action item 'action_9.IL-12+'

View '10.TNFa++'

on a flowSet linked to

gate action item 'action_10.TNFa+'

View '11.pDC+'

on a flowSet linked to

gate action item 'action_11.pDC'

View '12.IFNa++'

on a flowSet linked to

gate action item 'action_12.IFNa+'

View '13.IL-6++'

on a flowSet linked to

gate action item 'action_13.IL-6+'

View '14.IL-12++'

on a flowSet linked to

gate action item 'action_14.IL-12+'

View '15.TNFa++'

13

on a flowSet linked to

gate action item 'action_15.TNFa+'

View '16.CD14-MHC2-+'

on a flowSet linked to

gate action item 'action_16.CD14-MHC2-'

View '17.Monocytes+'

on a flowSet linked to

gate action item 'action_17.Monocytes'

View '18.IFNa++'

on a flowSet linked to

gate action item 'action_18.IFNa+'

View '19.IL-6++'

on a flowSet linked to

gate action item 'action_19.IL-6+'

View '20.IL-12++'

on a flowSet linked to

gate action item 'action_20.IL-12+'

View '21.TNFa++'

on a flowSet linked to

gate action item 'action_21.TNFa+'

>

plotWf plots the workflow tree

> plotWf(wfs[[1]])

14

base view

CompensationView

a2004_O1T2pb05i

Live+

APC+ CD14−MHC2−+ Monocytes+

B Cell+ mDC+ pDC+ IFNa++ IL−6++ IL−12++ TNFa++

IFNa++ IL−6++ IL−12++ TNFa++ IFNa++ IL−6++ IL−12++ TNFa++

Finally, when we are finished with the workspace, we close it:

> closeWorkspace(ws);

> ws

FlowJo Workspace Version 2.0

File location: D:/biocbld/bbs-2.11-bioc/R/library/flowWorkspaceData/extdata

File name: A2004Analysis.xml

Workspace is closed.

4.5 Exporting to FlowJo OSX 9.2

The exportAsFlowJoXML function can be used to export a flowCore::workFlow
as an XML workspace for FlowJo 9.2 OSX. If flowWorkspace has been used
to import an existing FlowJo workspace, flowWorkspace2flowCore can be
used to obtain a workFlow for exporting. Currently this function can export
one workFlow at a time.

15

4.6 Parallel Support

Parsing and gating can be time–consuming. This latest version (>1.0.0) of
flowWorkspace supports parallelization via multicore, snowfall, and Rmpi.
If multicore is loaded, or a snowfall cluster is initialized, flowWorkspace
will use snowfall or multicore (in that order of preference) to parse the
workspace. Parallel gating of the workspace can be performed by loading
Rmpi and running parseWorkspace(). This corresponds to the execute()
step of the parseWorkspace function. Rmpi is needed to handle concurrent
reads/writes to the ncdfFlowSet file. Parallel gating / parsing will work with
netCDF-backed data or if data is stored in RAM.

4.7 Deprecated Functionality

The following behaviour is no longer supported and has been replace by
more extensive netCDF support via the ncdfFlow package. If you have
particularly large data files (millions of events), then you won’t want to keep
the data around, nor the indices for gate membership. Instead, pass the
options cleanup=TRUE, keep.indices=FALSE to the execute() function,
and the data will be scrubbed after computing population statistics. With
future improvements making use of the netCDF framework, and bitvector
representations of population memberships; this will improve memory usage
in high–throughput unsupervised analysis settings.

5 Troubleshooting

If this package is throwing errors when parsing your workspace, and you are
certain your workspace is version 2.0, contact the package author. If you
can send your workspace by email, we can test, debug, and fix the package
so that it works for you. Our goal is to provide a tool that works, and that
people find useful.

6 Future Improvements

We are working on support for flowJo XML workspaces exported from the
Windows version of flowJo. Efforts are underway to integrate GatingSet and
GatingHierarchy objects more closely with the rest of the flow infrastructure.

16

